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Single-crystal diamond stands out among all the candidate materials that could

be exploited to fabricate compound refractive lenses (CRLs) owing to its

extremely stable properties. Among all related experimental features, beam

divergence, �-angles relative to the incoming beam in Eulerian geometry and

different positions of the X-ray beam relative to the lens geometry may

influence the transmission energy spectrum of CRLs. In addition, the orientation

of the single-crystal diamond sample may also affect the glitches significantly. To

verify these initial assumptions, two experiments, an energy scan and an !-scan,

were set up by employing a polished diamond plate consisting of five biconcave

lenses. The results show that beam divergence does not affect the spectrum, nor

do �-angles when ! is set to zero. Nevertheless, different incident positions have

an appreciable effect on the transmission spectrum, in particular the ‘strengths’

of the glitches. This is attributed to absorption. The !-scan setup is capable of

determining the so-called orientation matrix, which may be used to predict both

‘energy positions’ and ‘strengths’ of the glitches.

1. Introduction

Since synchrotron radiation was observed in 1947, it has been

proven very powerful in probing the inner structure of matter.

Implementation of synchrotron facilities results in state-of-

the-art fundamental and applied research, and synchrotron

radiation facilities have sprung up worldwide. The European

Synchrotron Radiation Facility (ESRF) and PETRA III

are two successful examples of high-class third-generation

synchrotron sources. However, scientists are still in pursuit

of more brilliant sources, which promotes the construction

of the fouth-generation synchrotron facilities, such as the

implementation of MAX IV (Austin et al., 2018) and

completion of the ESRF upgrade (Chenevier & Joly, 2018).

In pace with the more and more brilliant X-ray sources,

advances in the corresponding X-ray optics are also progres-

sing rapidly. Among all the branches in X-ray optics, focusing

optics play an important role, because focused X-ray beams

have higher intensity gain and are smaller in size, and thus

they are preferable for both diffraction and imaging. Several

types of X-ray focusing devices have come into operation,

such as compound refractive lenses (CRLs). CRLs were

demonstrated for the first time by Snigirev et al. (1996) in the

form of 31 drilled cylindrical holes in an aluminium block,
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which led to a revolution in this area and attracted worldwide

attention. Due to the X-rays’ high frequency, anomalous

dispersion (Als-Nielsen & McMorrow, 2011) takes place as

more resonances are passed and the refractive index for the

X-rays is thus slightly smaller than unity. The index of

refraction is written as n = ð1þ �0Þ
1=2
’ 1þ ð1=2Þ�0 =

1� �� i�, where �0 is the average electric susceptibility, �
characterizes the refractive decrement and is of the order of

10�6, while � characterizes the absorption coefficient and is of

the order of 10�9 far from any absorption edge. This refractive

decrement is so small that a stack of concave lenses with radii

of 50–500 mm should be used to achieve optimal focusing

effect and meter-scale focal length. The described CRL-design

makes refractive lenses easy to use, versatile, compact and

robust X-ray optical devices which has been proven by the

variety of their applications such as microfocusing, coherent

microscopy, interferometry and beam conditioning. A diver-

sity of lens types, shapes and forms also led to development of

lens-based devices, with the most frequently used one being

called a ‘transfocator’ (Vaughan et al., 2011; Zozulya et al.,

2012) that has an adjustable number of mechanical cartridges

with lenses inside.

The choice of lens material becomes a very important issue

in light of modern X-ray sources with increased brilliance. In

order to reduce the lens contribution to speckles and wave-

front distortions, X-ray refractive optics tests new materials as

alternatives to polycrystalline beryllium, which is currently the

most frequently used for lens manufacturing. For instance,

diamond lenses (Snigirev et al., 2002; Terentyev et al., 2015,

2017; Polikarpov et al., 2016a,b) were introduced in both

planar and rotational parabolic shapes. They were made of

single-crystal diamond, which is considered as an ideal mate-

rial because it does not cause any undesired diffuse scattering,

and at the same time withstands high heat-load induced by

synchrotron radiation. Being versatile for a wide range of

applications, diamond CRLs, however, have a drawback for

spectroscopic experiments: recent published scientific articles

have noticed a so-called ‘glitch effect’ (Polikarpov et al., 2018)

in the energy spectrum. Essentially, glitches appearing in the

normalized transmission spectrum represent a drop of inten-

sity and may in general be attributed to many sources, such as

multiple diffraction, extinction and Bragg diffraction. Among

all these factors, Bragg diffraction usually plays a dominant

role, and is the main focus in this paper.

Even though glitches always appear in the transmission

spectrum of single-crystal materials, there should be approa-

ches to design a desired experiment in order to minimize glitch

influence. To do so, any experimental features that may affect

the glitches need to be investigated carefully. Bragg diffraction

usually plays a dominant role and it is thus necessary to

calculate the so-called ‘orientation matrix’. Via this orienta-

tion matrix, one should be able to obtain the crystal orienta-

tion with respect to the incident X-ray radiation as it governs

the prediction of glitch positions caused by Bragg diffraction.

A full understanding of the above issues requires both

experimental observations and theoretical modeling of glitch

behavior under various conditions. This will be the main focus

of this paper. We will present experimental results obtained

at the BM31 ESRF beamline, where we investigated the

influence of beam size, beam divergence, lens parameters and

lens orientation on the glitches induced by the single-crystal

diamond CRLs.

2. Samples and experimental setups

2.1. Single-crystal diamond refractive lenses

The diamond refractive lenses tested in the present study

were described in great detail by Polikarpov et al. (2015). They

were fabricated by Nd-YAG laser in the commercially avail-

able single-crystal diamond plate supplied by Element Six

Ltd (Ascot, UK; product reference No. 145-500-0248). The

approximate edge orientation with respect to the beam is

h100i with 3� miscut uncertainty. The diamond plate has two

sets of CRLs, i.e. CRL5 and CRL2. Note that the subscript here

indicates the number of biconcave parabolic lenses. The

experimental results in this paper were obtained by impinging

synchrotron radiation on one set of lenses, CRL5 (cf. Fig. 1).

2.2. Experimental setup

This experiment was set up at one of the Swiss–Norwegian

Beamlines (SNBL), BM31. This is a bending magnet beamline

of the ESRF and it specializes in high-resolution powder

diffractometry and EXAFS spectrometry. The beamline is

equipped with two monochromators: a Si(111) channel-cut

monochromator supplies fast energy scans over a wide range

of energies, while a cryogenically cooled Si(111) double-

crystal monochromator is normally used for the diffraction

measurements. A sample can be mounted on the three-cradle

goniometer, with three translational and three rotational axes

to determine crystal orientations. Fig. 2(a) shows the experi-

mental hutch of the BM31 station to give the reader an

intuitive understanding of the experimental layout, while

Fig. 2(b) is a schematic drawing of the three-cradle goni-

ometer. The rotation of � is realized by using the goniometer

with driven motors, and the positive sense of �-rotation is

counterclockwise when viewed from the X-ray synchrotron

source with ! = 0�. Following Hamilton’s definition (Sands,

1982), the positive sense of � rotation is counterclockwise

when viewed from the top of the circle. Likewise, the positive

direction of ! rotation is anti-clockwise.

The intensity of X-ray radiation can be measured with

ionization chambers I0 (upstream of the sample stage) and I1

(downstream of the sample stage). In addition, a MAR345

detector is installed for orientational determination. The

MAR detector is an image-plate detector (2D detector) which

can be used to visualize and record diffraction patterns from

the sample. It features a large active area and high sensitivity,

which enables data collection time to be reduced and high-

quality diffraction data to be obtained.

Figs. 3(a) and 3(b) show schematically the two experimental

setups that we used for the experiment described in the

present paper. These two setups combined will help us have a
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thorough understanding of the glitches in the transmission

spectrum.

2.2.1. Energy scan setup. In the energy scan mode

[Fig. 3(a)], the goal was to measure the transmission spectrum

and investigate how some experimental features, e.g. beam

divergence, � angles in Eulerian geometry and different inci-

dent positions of the X-rays on diamond CRLs, may influence

the appearances of the glitches at some specific energies.

Therefore, the experimental setup employed the channel-cut

monochromator to perform fast scanning continuously in the

user-defined energy interval. The slit S2 was used to modify the

beam cross-section. To measure the intensity of X-ray radia-

tion in a transmission geometry, we used two gas-filled ioni-

zation chambers, I0 and I1, that were mounted upstream and

downstream of the sample holder, respectively. The diamond

sample was installed on the three-cradle goniometer which

was aligned so that the beam hit the center of the sample.

Although the third-generation synchrotron source has very

high spatial coherence (Snigirev et al., 1995), Cloetens et al.

(1997) pointed out that it still could be viewed as a very small

spherical source with certain divergence due to the very long

source-to-sample distance (�50 m). It is thus expected that

the beam divergence may influence the transmission spectrum.

To verify this, the condenser consisting of five beryllium lenses

was placed upstream of the I0 chamber to change the beam

divergence. These beryllium lenses are for practical purposes

identical, and each of them has a radius of curvature of

50.0 mm at the apex and center thickness of 29.7 mm. The focal

length of this condenser is 1.5 m at E = 10 keV and 6.5 m at

E = 20 keV, generating a divergence of 170 mrad and 40 mrad,

respectively.

2.2.2. x-scan setup. The !-scan setup [Fig. 3(b)] was

intended for calculation of the sample orientation from the

recorded diffracted patterns. Unlike the energy scan setup, we

used the double-crystal monochromator to keep the wave-

length of X-ray radiation fixed. We also did not use the

condenser and ionization chambers, so, after passing the

collimation slit (S2), X-rays arrived at the three-circle goni-

ometer with a sample mounted so that the X-ray beam hit

its center in Eulerian geometry. Further downstream, the

MAR345 detector was used to record diffraction patterns

during the scan of the sample through the !-axis.
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Figure 2
(a) Some key instruments of the experiment, e.g. MAR345 detector, two
ionization chambers, three-cradle goniometer. (b) Schematic representa-
tion of the goniometer axes with available rotations in Eulerian geometry.
Arrows corresponds to positive directions of rotation.

Figure 1
(a) Sketch of the diamond lenses, with the red arrows showing the
approximate crystallographic directions. W, d and R correspond to the
width, web size and radius at the parabola apex of the lens, respectively.
All dimensions are in millimetres. (b) Scanning electron micrograph of
the diamond plate with refractive lenses. (c) Impingement of the X-rays
with the (1) center, (2) edge and (3) bulk material of the diamond lenses
(from top to bottom). The notion of ‘bulk material’ refers to the part with
no profiling between CRL5 and CRL2.



Before the !-scan of the diamond lens, the setup was cali-

brated by employing a Standard Reference Material (SRM),

LaB6 660c. This is vital because we could deduce some key

instrumental parameters, such as sample-to-detector distance,

wavelength of the radiation and center positions of the

incoming beam, precisely.

During the !-scan of the diamond lens, the angular range

was limited from �49� to +20� to guarantee that the goni-

ometer did not collide with other inherent beamline equip-

ment. It should be borne in mind that each frame in the

dataset records all occurrences of diffracted intensities in an

angular interval of �! = 1�, i.e. an integration frame. Each

frame took approximately 10 min, including�5 min recording

and �5 min readout time by laser. In combination with the

instrumental parameters from the calibration process, the

collected images from the MAR detector would help deter-

mine the orientation matrix (also known as ‘UB matrix’). This

will be discussed in depth in the following sections.

2.3. Data processing

Special care should be taken in order to identify whether

the glitches are from the monochromator or the diamond

lenses. In other words, the glitches from the monochromator

may accumulate and are seen by both chambers. Therefore,

an appropriate data processing method was chosen to cancel

out the monochromator’s glitches. The concrete steps are

summarized as follows: first, we divided I1 by I0 (I1/I0) as a

function of the incident energy and masked all the glitches

in this data column. Then, low-order polynomial (1 or 2,

maximum 3) fitting through the remaining I1/I0 line was

applied. The purpose of this fit was to mark the 100% refer-

ence line and the dips of the glitches were then given as a

percentage with respect to the 100% baseline.

The method discussed above is to extract the baseline and

then the dip of intensity is obtained with regard to this. The

spectra of I0 and I1/I0 shown in Appendix A manifest that only

diamond-induced glitches remain after processing with this

method. By importing a raw dataset into the software Origin

(OriginLab, Northampton, MA, USA), we could plot the

transmitted intensity as a function of the X-ray incident

energy.

3. Implementation of the orientation matrix (UB
matrix)

The purpose of the !-scan setup is to predict the ‘positions’

and ‘strengths’ of the glitches and then subsequently avoid

them at some specific energies. This would not be possible

without knowing the orientation matrix (hereafter called the

‘UB matrix’ for simplicity). Therefore, one needs to calculate

the UB matrix which establishes the relations between the

crystallographic orientation of the sample relative to the

incoming beam.

The UB matrix was first proposed by Busing & Levy (1967)

to cater for the increasing demands from three- and four-circle

X-ray or neutron diffractometer user groups. As has been

discussed in their work, the UB matrix is, in practice, a product

of two matrices and can be computed by multiplying the

orthogonal rotation matrix U with the orthonormalization

matrix B. The procedure on how to calculate the UB matrix

has been given in Appendix B.

Once the UB matrix is evaluated according to a certain

procedure, a new quantity, g, is introduced to characterize the

orientation of [�1 0 0] in the laboratory system quantitatively:

g ¼
UB � ½�1 0 0�

kUB � ½�1 0 0�k
: ð1Þ
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Figure 3
Layout of the experiments at BM31, SNBL. The arrows in both figures specify that the X-ray beam propagates from left to right. Panel (a) depicts
schematically the energy scan with/without a condenser. Panel (b) is the fixed-wavelength !-scan setup which is used for orientational measurements.
The slit size of S2 is 126 mm � 400 mm (horizontal � vertical).



It is worth noting that the prerequisite that the direction of

the incoming beam is in perfect alignment with g should be

satisfied.

By applying the conversion between the energy (in keV)

and the wavelength (in Å), the X-ray energy leading to Bragg

diffraction is then given by

E keV½ � ¼
12:398

� ½Å�
¼ 12:398�

�2g �G�1 � h

g �G�1 � g
� �1=2

�h �G�1 � h

" #�1

:

ð2Þ

In this equation, h = [hkl] represents the coordinate matrix

and G�1 is the reciprocal metric tensor. By skipping extinction

reflections and negative energy solutions based on selection

rules for diamond, we could predict the energy positions

where glitches may occur and their corresponding kinematical

structure factors within the pre-set energy range.

With the availability of relevant information from the !-

scan, we are able to calculate the UB matrix. Given this UB

matrix, the real orientation of the diamond lenses with respect

to the X-ray radiation can be readily obtained and then used

as an input parameter to predict the glitch positions and

corresponding ‘kinematical’ strengths. This may help us have a

better understanding of the transmission spectrum and avoid

the glitches at some energies.

4. Results and discussion

To start with, we decided to study the influence of the diver-

gence on the glitches. The overall energy scan range was

limited to 10–20 keV with a selected interval of 1 eV. In order

to increase the signal-to-noise ratio, the energy scans were

repeated three times from 16 keV to 18 keV for various

experimental conditions. These curves were then averaged

and are shown in Figs. 5(a) and 5(b). Note that all the figures

below have the same scaling.

By comparing Figs. 4(a) and Fig. 4(b), it appears that the

two spectra are in agreement on the presented scale in the two

different situations: without and with a condenser. Beam

divergence, at least, does not play an important role in the

energy spectrum, but whether it can be evaluated as a minor

factor still remains to be verified. In order to assess this, the

direct overlay of the four strongest glitches on an even finer

scale is shown in Fig. 5.

As expected, the four graphs in Fig. 5 show that the glitches

become slightly wider as the beam divergence is increased.

However, the influence of beam divergence is very minor and

could be associated with focusing ability provided by the

condenser.

The next step was to evaluate how different � angles may

influence the glitches in the transmission spectrum. To do

so, we moved the �-cradle to 15� and 30� counterclockwise

relative to the zero position while keeping the other two

cradles fixed at the zero position. All three glitch patterns in

Fig. 6 are quite similar except for some minor differences in

both glitch positions and strengths. In this particular case these

minor effects are most likely due to minor deviations from the

ideal alignment. During the whole rotation process, small

misalignments may be further expanded because they may

generate corresponding components in other cradles and

make glitch patterns with different �-angles differ slightly.

Polarization issues may also influence the glitch strengths, but,

for the accessible �-angles interval, such effects are small. To

conclude, the influence on the glitch pattern positions owing to

rotation around the � shaft is only considered negligible if the

sample is perfectly or quasi-perfectly aligned.

Another possible experimental feature is different scanning

positions. The incident X-ray beam was confined to interact

with different parts of the lenses and their corresponding

spectra are plotted in Fig. 7. It can be seen that all the glitches

appear at the same energy positions but differ significantly in

strengths: an X-ray traversing the center of the lenses has the

smallest dips of glitches while that passing through the bulk

part of the material has the largest drops in intensity. The

glitches show strong dependence on the thickness of the

sample, which is due to the absorption process. In other words,

different incident positions can influence the glitch patterns

significantly, especially the dips of the glitches.

The goniostat permits rotations around certain shafts in

Eulerian geometry and collects a sequence of adjacent non-

overlapping rotation images from the diamond sample at a

fixed X-ray wavelength. Only a few reflections are, however,

accessible for the given setup because 2�max here is approxi-

mately 30�.

The actual orientation of [�100] with respect to the

laboratory system is calculated to be 3.2� from equation (12).

An example of the theoretical predictions with the corre-

sponding experimental results is visualized in Fig. 8. It should

be noted that the heights for the two predicted sets represent

‘strengths’ of the glitches, which are estimated by introducing

the squared kinematical structure factors of the actual

reflection appearing.
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Figure 4
Plots of intensity versus energy: (a) the X-ray impinges on the center of
CRL5 without any condenser; (b) the X-ray impinges on the center of
CRL5 with a condenser placed upstream of the sample stage.



From Fig. 8 we notice that only six

theoretical diffraction events occur

within the energy interval in question

for a situation without orientational

correction (red lines). It is thus advan-

tageous to manufacture the lenses with

a preferred alignment; however, the

degree of ‘miscut’ will influence the

results depending on the possibilities

for additional alignment-mechanisms

for individual lenses, or lens-stacks. In

comparison, many more reflections (35

glitches in total) are brought in by

introducing the orientational correc-

tion, more in line with the observation

(35 glitches) from the real experiment.

This means the theoretical prediction

without correction does not match with

the experimental data at all and should

be considered invalid. However, the

‘theoretical glitches’ with correction

(blue lines) are the same in number as

those appearing in the experiment.

Nevertheless, we note that there are

still some discrepancies between the

experimental and theoretical glitch
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Figure 5
The four graphs show direct overlays of the four strongest glitches on a finer scale.

Figure 6
Transmission spectra of different � angles relative to the incoming beam when two other cradles are
at zero positions. From top to bottom the transmission spectra are for � = 0�, � = 15� and � = 30�.



positions. This may be attributed to the uncertainty associated

with the actual UB matrix. For instance, in the !-scan, each

image collected by the detector records all occurrences of

diffracted intensities within a 1� angular range, which means

that the !-angle where Bragg reflections

occur is hampered with an event, and

thus introduces an uncertainty in

calculating the UB matrix. A more

accurate Bragg angle could for instance

be obtained by replacing the MAR

detector with a point detector in the 1�

angular range, which would lead to an

even better prediction of the glitch

positions. In spite of this, it is still

necessary to introduce the orientational

correction because this may help predict

the glitches much more accurately and

avoid them efficiently. To summarize,

the result shows significant sensitivity

of predicted positions to the sample

orientation, and the prediction with

orientational correction shows more

profound agreement with the experi-

ment compared with that without

applying any correction.

5. Conclusion

In the present paper we showed how

various experimental conditions may

affect the positions and strengths of

glitches. We found that the spatial

position of the incident X-ray beam (relative to the lens

aperture) has the strongest effect on the strength of glitches.

This is mainly because of the absorption process, practically

meaning that glitches are becoming more pronounced with the

increase of the thickness that X-rays pass through. Therefore,

one needs to consider minimizing the longitudinal thickness of

the diamond lenses under experimental conditions where the

presence of glitches is critical. This could be achieved by using

diamond lenses with larger parabola radii. Another possible

solution would be to use only the central part of the lens

aperture where it has the minimal thickness of the material.

The results also show that beam divergence has very limited

influence on the transmission spectra. This practically means

that diamond lenses can be installed in different optical

schemes of glitch-sensitive applications while dealing with

various geometries and distances at the modern synchrotron

beamlines.

Another important result presented is a theoretical model

which has been proven consistent with the experimental

results. We believe this model to be useful as it allows one to

predict glitch positions and strengths if the crystallographic

orientation relative to the X-ray beam is known to an

adequate precision. Therefore, by implementing our calcula-

tions for the accurately positioned single-crystal lens with a

known orientation, we are able to select specific energy

intervals where the glitch effect has the minimal impact. This

will make it possible to deliver a more stable and uniform

incoming beam in spectroscopy-like experiments with

diamond lenses. Additionally, our model is not restricted to
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Figure 7
Transmission spectra by confining the X-rays to interact with the (a) bulk, (b) edge and (c) center
of CRL5.

Figure 8
Simulated figures with and without the orientational correction, together
with experimental results, are plot in the same figure for comparison. The
black curve is the normalized intensity retrieved from experimental data
(X-ray radiation interacts with the center part of CRL5 without a
condenser), while the red and blue vertical lines represent the squared
kinematical structure factors (scaled) without and with orientational
correction, respectively.



single-crystal diamond CRLs only, but can also be directly

applied to other transmission diamond devices, e.g. time-of-

flight neutron diffraction employing diamond anvil cells

(Guthrie et al., 2017).

To conclude, the experimental and theoretical results

presented above are complementary for refractive lenses

made of different single-crystal materials (for example,

silicon), leading to better understanding of their performance

at modern synchrotron sources.

APPENDIX A
Transmission spectra of I0 and I1/I0

Fig. 9 aims to demonstrate that glitches from the mono-

chromator have been canceled out successfully. In order to

achieve a better resolution, a small energy range between

19 keV and 20 keV is chosen. The transmission spectrum plot

in red symbolizes the normalized intensity recorded by the I0

chamber, while the black one is from I1/I0. By comparing these

two patterns, we can see that the small red glitches caused by

the silicon monochromator do not appear in the black trans-

mission spectrum. In conclusion, the glitches in the transmis-

sion spectrum after processing are purely induced by the

diamond samples and our processing method is thus consid-

ered valid.

APPENDIX B
Procedures for calculating the UB matrix

As has been stated above, the UB matrix is composed of the

orthogonal rotation matrix U and the orthonormalization

matrix B. The following paragraphs will provide the procedure

in greater detail.

The B matrix is an upper triangle matrix which contains

information about the unit-cell parameters. Here we will

exclusively use the parameters of the reciprocal lattice rather

than the direct lattice since Bragg diffraction is a main cause

of the glitches. In the systematic scanning process, the most

convenient way of constructing the orthonormal coordinate

system is to let its x-axis coincide with the reciprocal unit cell

vector a	. The y-axis is then defined so that it lies in the a	b	

plane and is perpendicular to the x-axis at the same time. The

z-axis is chosen to complete a right-handed Cartesian system,

which means it is perpendicular to the a	b	 plane. Essentially,

the B matrix specifies the components of the unit cell of the

reciprocal lattice in the Cartesian laboratory coordinate

system and has been introduced by Giacovazzo et al. (2002),

B ¼

a	 b	 cos �	 c	 cos � 	

0 b	 sin �	 �c	 sin � 	 cos � 	 cos �	� cos 		

sin� 	 sin � 	

0 0 c	

2
664

3
775; ð3Þ

a	, b	, c	 are the conventional reciprocal lattice parameters

and 	 	, � 	, � 	 are the included angles between b	 and c	, c	

and a	, a	 and b	, respectively. Diamond has a cubic lattice

structure in direct space, so it is deduced to possess a cubic

lattice in reciprocal space based on the definition of recipro-

city. Therefore, in the case of diamond, the B matrix can be

reduced to

B ¼

a	 0 0

0 b	 0

0 0 c	

2
4

3
5: ð4Þ

The purpose of the B matrix is to transform from the reci-

procal lattice vector, denoted as h, to the Cartesian coordinate

system with respect to the crystal and could be described by

the following formula: hc = Bh, where hc is the scattering

vector in the crystal Cartesian system and represents a vector

normal to a family of crystal lattice planes h. In order to find

the Bragg reflections induced by these planes, another rotation

matrix, denoted as the U matrix, is also needed.

The U matrix is an orthogonal rotation matrix (UT = U�1)

which transforms from the orthonormal coordinate system

attached to the crystal to another Cartesian coordinate

attached to the laboratory system.

In essence, the UB matrix acts on a reciprocal lattice vector

h and brings into coincidence with the scattering vector,

Qi ¼ Uh ci ¼ UBh i; i ¼ 1; 2: ð5Þ

In this equation, the subscript i = 1, 2 is used to distinguish two

types of Bragg reflections.

In order to further show the implications of the UB matrix,

the Ewald construction is particularly useful. The wavevector

of the incident X-ray radiation k0 is parallel to the x-axis and

the outgoing wavevector is parallel to kf ; the scattering vector

Qi is defined as Qi = kf � k0, shown in Fig. 10. An arbitrary

reciprocal lattice node is expressed as

Hhkl ¼ ha	 þ kb	 þ lc	 ð6Þ

where h, k, l are Miller indices. The Bragg condition is satisfied

when the scattering vector is equal to the reciprocal lattice

vector, i.e. Hhkl = Qi . For the convenience of further calcula-

tion, we will define an alignment vector, which is denoted as

g0 and is expressed as g0 = �k0 = [�100] in the ideal case.
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Figure 9
Transmission spectra retrieved from I0 and I1/I0. The red curve records
the glitches induced by the silicon monochromator, namely I0, while the
black curve shows the glitches after data processing (I1/I0).



However, the actual incoming beam k0 may slightly deviate

from the ideal unit vector of the incoming beam g0 under real

experimental configuration, as is illustrated in Fig. 10.

Before performing further calculations, let us recall the

Bragg equation,

2dhkl sin � ¼ n�; ð7Þ

where n is an integer (not to be confused with the index of

refraction), dhkl is the lattice spacing and is equal to dhkl =

a=ðh2 þ k2 þ l 2Þ
1=2 for a cubic lattice, and � is the angle

between the incident beam and the family of lattice planes

with Miller indices h,k, l. Diamond is in the Fd�33m space group

and possesses a face-centered-cubic Bravais lattice. The

allowed reflections should thus satisfy the condition that all

Miller indices are odd, or even with h + k + l = 4m (m is an

integer). Otherwise, they are so-called forbidden reflections

due to extinction. This rule is also very useful in predicting

both the energy positions and strength of the glitches.

In this case, two types of reflections are found and they

should come from the lattice planes with the two lowest 2�-
angles, namely {111} and {220}. However, this should be

verified by comparing the theoretical and actual 2�-angles.

The theoretical 2�-angles are completely determined from the

Bragg equation, recast in the form

2� ¼ 2 sin�1 �

2a
k h k

� �
; ð8Þ

where ||h || is the norm (or positive length) of h and the other

symbols have their usual meanings.

In crystallography and materials science, the term ‘metric’

(Prince, 1982) is used to indicate that the metric tensor

pertains to the measurement properties of the space. As

mentioned before, the sample-to-detector distance and the

pixel size of the MAR detector are already known, and thus

we could define the measurement metric, which is denoted as

M. Following on from that, the metric B is then obtained by

performing Cholesky decomposition on the metric M. Then

we are able to construct the unit vector along the incoming

beam s0 and diffracted beam directions sh(x, y) as follows,

s0 ¼ ½�100�; ð9Þ

shðx; yÞ ¼
B � ½�d0; x� x0; y� y0��

½�d0; x� x0; y� y0� �M � ½�d0; x� x0; y� y0�
�1=2

:

In this equation, d0 is the sample-to-detector distance, and x0

and y0 are pixel positions of the direct beam (beam center)

on the detector screen. By substituting all the instrumental

parameters into equation (7), the actual 2�-angles can be

computed and the types of reflections in principle can be

determined.

Another implication of s0 and sh(x, y) is to determine the

coordinates of the reciprocal lattice nodes in the Cartesian

coordinate system with respect to the crystal. In addition,

!-angles associated with frames which have sharp reflection

points should be recorded to compute the U matrix. An

!-rotation matrix R is also needed,

R !ið Þ ¼

cos!i � sin!i 0

sin!i cos!i 0

0 0 1

2
4

3
5; i ¼ 1; 2: ð10Þ

Then the coordinates of the reciprocal lattice nodes are

expressed as

vi ¼ Rð!iÞ � sh x; yð Þ � s0

� �
; i ¼ 1; 2: ð11Þ

In general, two approaches are employed to obtain the UB

matrix: (i) using two independent reflections with known

lattice parameters; and (ii) using three accessible independent

reflections with unknown unit-cell parameters. An important

application of approach (ii) is to deduce the lattice parameters

of the material from the metric tensor. In equation (9), sh(x, y)

stands for the pixel positions of the appearing reflections and

is extracted by inspecting all the frames using the software

CrysAlis (Oxford Diffraction Ltd, Abingdon, UK) together

with their corresponding ! values. The combined use of these

parameters will provide an estimation of the UB matrix for

this sample, using the procedure outlined in Section 3.

In our case, method (i) is adopted because the lattice

parameters for diamond are already known. Here we briefly

review the calculations. Ideally, equation (3) should be satis-

fied. However, due to uncertainties in the angular measure-

ment and lattice parameters, right-handed orthogonal unit

vectors, tc1, tc2, tc3, in the Cartesian system with respect to the

crystal are defined such that tc1 is parallel to hc1; tc2 lies in the

plane of hc1 and hc2, and can be seen as the normalized cross

product of hc1 and hc2; tc3 is perpendicular to the planes of

tc1, tc2. Another triple t’1, t’2 and t’3 based on observations are

defined in the same way as tc1, tc2, tc3 simply by replacing hi

with vi (i = 1, 2). The orthogonal rotation matrix U is defined

such that
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Figure 10
Illustration of the Ewald sphere with radius 1/� for the energy scan, where
� is the wavelength of the X-ray radiation. According to the relation
between the energy E and the wavelength, E = h
 = hc/�, the radius of the
Ewald sphere is proportional to the energy. Therefore, the internal circle
corresponds to the minimum energy and the outer circle corresponds
to the maximum energy. Here, �k0 characterizes the direction of ideal
alignment while k0 (the red arrow) is the real alignment and deviates
slightly from the ideal case. The deviation in this figure is exaggerated.



t’j ¼ Ut cj; j ¼ 1; 2; 3: ð12Þ

Since tcj are orthogonal, the U matrix is deduced to be

U ¼ t’1; t’2; t’3

� ��1
� tc1; tc2; tc3

� �
¼ t’1; t’2; t’3

� �T
� tc1; tc2; tc3

� �
: ð13Þ

Multiplying the U matrix by the B matrix gives the UB matrix.

Acknowledgements

We gratefully thank PhD candidate Stian Ramsnes from

University of Stavanger, Norway, for his kind help in imple-

menting Mathematica 11.3 to predict the glitches with a given

UB matrix.

Funding information

The following funding is acknowledged: Ministry of Education

and Science of the Russian Federation (contract No.

14.Y26.31.0002).

References

Als-Nielsen, J. & McMorrow, D. (2011). Elements of Modern X-ray
Physics, 2nd ed. Hoboken: John Wiley and Sons.

Austin, L., Kumar, R., Kousar, B., Lampadaris, C. H. & Lucas, M. M.
(2018). MAX IV Laboratory, Technical Report. MAX IV, Lund,
Sweden.

Busing, W. R. & Levy, H. A. (1967). Acta Cryst. 22, 457–464.
Chenevier, D. & Joly, A. (2018). Synchrotron Radiat. News, 31, 32–35.
Cloetens, P., Guigay, J. P., De Martino, C., Baruchel, J. & Schlenker,

M. (1997). Opt. Lett. 22, 1059–1061.

Giacovazzo, C., Monaco, H. L., Viterbo, F., Scordari, G., Gilli, G.,
Zanotti, G. & Catti, M. (2002). Fundamentals of Crystallography,
2nd ed. New York: Oxford University Press.

Guthrie, M., Pruteanu, C. G., Donnelly, M.-E., Molaison, J. J., dos
Santos, A. M., Loveday, J. S., Boehler, R. & Tulk, C. A. (2017).
J. Appl. Cryst. 50, 76–86.

Polikarpov, M., Emerich, H., Klimova, N., Snigireva, I., Savin, V. &
Snigirev, A. (2018). Phys. Status Solidi B, 255, 1700229.

Polikarpov, M., Polikarpov, V., Snigireva, I. & Snigirev, A. (2016a).
Phys. Procedia, 84, 213–220.

Polikarpov, M., Snigireva, I., Morse, J., Yunkin, V., Kuznetsov, S. &
Snigirev, A. (2015). J. Synchrotron Rad. 22, 23–28.

Polikarpov, M., Snigireva, I. & Snigirev, A. (2016b). Proc. AIP, 1741,
040024-1–4.

Prince, E. (1982). Mathematical Techniques in Crystallography and
Materials Science. New York: Springer.

Sands, D. E. (1982). Vectors and Tensors in Crystallography. New
York: Dover.

Snigirev, A., Kohn, V., Snigireva, I. & Lengeler, B. (1996). Nature, 384,
49–51.

Snigirev, A., Snigireva, I., Kohn, V., Kuznetsov, S. & Schelokov, I.
(1995). Rev. Sci. Instrum. 66, 5486–5492.

Snigirev, A., Yunkin, V., Snigireva, I., Di Michiel, M., Drakopoulos,
M., Kouznetsov, S., Shabel’nikov, L., Grigoriev, M., Ralchenko, V.,
Sychov, I., Hoffmann, M. & Voges, E. (2002). Proc. SPIE, 4783, 1–9.

Terentyev, S., Blank, V., Polyakov, S., Zholudev, S., Snigirev, A.,
Polikarpov, M., Kolodziej, T., Qian, J., Zhou, H. & Shvyd’ko, Y.
(2015). Appl. Phys. Lett. 107, 111108.

Terentyev, S., Polikarpov, M., Snigireva, I., Di Michiel, M., Zholudev,
S., Yunkin, V., Kuznetsov, S., Blank, V. & Snigirev, A. (2017). J.
Synchrotron Rad. 24, 103–109.

Vaughan, G. B. M., Wright, J. P., Bytchkov, A., Rossat, M., Gleyzolle,
H., Snigireva, I. & Snigirev, A. (2011). J. Synchrotron Rad. 18, 125–
133.

Zozulya, A. V., Bondarenko, S., Schavkan, A., Westermeier, F.,
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