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X-ray computed tomography and, specifically, time-resolved volumetric

tomography data collections (4D datasets) routinely produce terabytes of data,

which need to be effectively processed after capture. This is often complicated

due to the high rate of data collection required to capture at sufficient time-

resolution events of interest in a time-series, compelling the researchers to

perform data collection with a low number of projections for each tomogram in

order to achieve the desired ‘frame rate’. It is common practice to collect a

representative tomogram with many projections, after or before the time-critical

portion of the experiment without detrimentally affecting the time-series to aid

the analysis process. For this paper these highly sampled data are used to aid

feature detection in the rapidly collected tomograms by assisting with the

upsampling of their projections, which is equivalent to upscaling the �-axis of the

sinograms. In this paper, a super-resolution approach is proposed based on deep

learning (termed an upscaling Deep Neural Network, or UDNN) that aims to

upscale the sinogram space of individual tomograms in a 4D dataset of a sample.

This is done using learned behaviour from a dataset containing a high number of

projections, taken of the same sample and occurring at the beginning or the end

of the data collection. The prior provided by the highly sampled tomogram

allows the application of an upscaling process with better accuracy than existing

interpolation techniques. This upscaling process subsequently permits an

increase in the quality of the tomogram’s reconstruction, especially in situations

that require capture of only a limited number of projections, as is the case in

high-frequency time-series capture. The increase in quality can prove very

helpful for researchers, as downstream it enables easier segmentation of the

tomograms in areas of interest, for example. The method itself comprises a

convolutional neural network which through training learns an end-to-end

mapping between sinograms with a low and a high number of projections. Since

datasets can differ greatly between experiments, this approach specifically

develops a lightweight network that can easily and quickly be retrained for

different types of samples. As part of the evaluation of our technique, results

with different hyperparameter settings are presented, and the method has been

tested on both synthetic and real-world data. In addition, accompanying real-

world experimental datasets have been released in the form of two 80 GB

tomograms depicting a metallic pin that undergoes corruption from a droplet of

salt water. Also a new engineering-based phantom dataset has been produced

and released, inspired by the experimental datasets.

1. Introduction

Over recent decades, X-ray computed tomography has

become more and more popular, allowing researchers to

capture the hidden inner structure of many different systems.

Applications of computed tomography can be found in many

fields, including medicine, biology, material science and so on.
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However, there are cases where the time of exposure of the

imaged sample must be limited, allowing only for a small

number of projections to be captured. One of these cases is

during the acquisition of time-resolved volumetric tomography

data collections (4D datasets), where multiple tomograms

with smaller numbers of component projections are collected

to enable capture of fast-occurring temporal events. However,

this comes at a cost. As a lower amount of data is used in

the reconstruction process, the imaged sample is not well

described in each tomogram, making its reconstruction an ill-

posed problem. This results in poor quality reconstructions,

where the level of noise is high and ray artefacts are prevalent.

One computational way to address this issue is by artificially

increasing the number of projections by upscaling the

component sinograms of the respective tomograms along their

�-axis (Section 2.2). This approach in turn can be viewed as an

application of super-resolution, but within the sinogram space.

Super-resolution, and generally the act of increasing the

resolution of an image, has been a very active area of research

in recent years. The main goal is the recovery of an image with

a higher pixel count, that more accurately describes what is

pictured, using one or multiple images of low pixel count to

achieve this.

Over recent years, super-resolution has been investigated

for the task of upscaling images. In the published literature,

there are in general four categories of super-resolution algo-

rithms: (i) edge-based methods, (ii) methods using predictive

models, (iii) statistical methods and (iv) patch-based (some-

times called example-based) methods, which are where most

state-of-the-art algorithms sit. These methods have been

thoroughly investigated and evaluated in Yang et al.’s work

(Yang et al., 2014). Internal example-based methods exploit

the similarity of areas within the same image. In particular,

Glasner et al. (2009) used exemplar patches across different

scales of the same image, while improved variations were

proposed later in which the execution time is reduced

(Freedman & Fattal, 2011), and where the performance has

been improved using sparse coding (Yang et al., 2010a).

External example-based methods work with the aid of an

external database, using it to learn a mapping between patches

with low and high pixel count. One of the first of these

methods was proposed by Freeman et al. (2002), who used

pairs of low/high pixel count patches and a nearest neighbour

strategy to synthesize the high-resolution outputs. Chang et al.

(2004) proposed a manifold learning technique as a replace-

ment to the nearest neighbour strategy. Later, Yang et al.

(2008, 2010b) advanced this nearest neighbour correspon-

dence to a more sophisticated sparse coding formulation.

Other mapping techniques have also been used such as simple

functions (Yang et al., 2013), random forests (Schulter et al.,

2015), kernel regression (Kim & Kwon, 2010) and anchored

neighbourhood regression (Timofte et al., 2013, 2014),

improving either the mapping accuracy or speed. Recently,

Dong et al. (2014, 2016), inspired by the recent success of deep

learning applications, explored its potential use in super-

resolution approaches. In their proposed method, a convolu-

tional neural network (CNN) was used as the mapping func-

tion between patches with low and high pixel count, as CNNs

can learn how to map patches with a low pixel count to ones

with a high pixel count, and optimize that learning in an end-

to-end fashion. During experiments, their network achieved

superior performance compared to the other state-of-the-art

techniques, hinting that deep-learning-based super-resolution

approaches may lead to future improved performance. Based

on their research, new improved variations have been

proposed (Kim et al., 2015; Ledig et al., 2016), with the main

focus being better upscaling of natural images using deeper or

more complex CNN architectures.

Inspired by this previous work, we propose here a super-

resolution deep learning approach that aims to upscale

the sinograms of X-ray tomograms (Section 2.2). Previous

research has attempted sinogram upscaling. These methods

range from methods based on linear interpolation (Brooks et

al., 1978), using a frequency consistency condition (Pohlmann

et al., 2014), using partial differential equations (Kostler et al.,

2006), using dictionary learning (Li et al., 2014; Zhang &

Sonke, 2013), methods based on directional interpolation

(Zhang & Sonke, 2013; Bertram et al., 2009) and methods

using a combination of approaches (Kalke & Siltanen, 2014; Li

et al., 2012; Weiss et al., 1982). However, we believe that with

the recent progress of machine learning, and specifically of

approaches utilizing fully convolutional networks, better

solutions to this challenging ill-posed problem can be offered.

Our approach is primarily influenced by Dong et al.’s work

(Dong et al., 2014, 2016) as it offers a versatile structure

compared with the recently published architectures that are

primarily developed for the upscaling of natural images, in

which the data can be more complex and less well constrained.

Additionally, their network structure is simple and light-

weight, which allows it to be quickly retrained for the

upscaling of different classes of tomograms. However, since

Dong et al.’s approach is designed for the upscaling of natural

images, it is likely not suited to perform optimally on tomo-

graphy data; this was confirmed in preliminary tests. For that

reason it has not been used for comparisons in the later

experiments; instead we would compare our approach with a

popular directional interpolation technique proposed by

Bertram et al. (2009) and cubic interpolation.

The main contribution of this paper is a new super-resolu-

tion deep learning approach, which achieves sinogram

upscaling with better accuracy and faster execution times

compared with known interpolation techniques. Additionally,

as our approach uses a lightweight convolutional network, it

allows sinogram upscaling of a wide variety of samples, as the

network can easily and quickly be retrained to learn priors for

new types of samples on a per experiment basis. This makes

the approach practically useful, as in computed tomography

experiments the samples under study can differ greatly and

therefore being able to retrain the network relatively quickly

is important.

This upscaling approach, then, provides the researchers

with the ability to capture data at higher frequencies, which

is significant during studies of temporal changes within the

sample volume. During high-frequency capture, a time-series
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of tomograms with fewer projections is attained, due to the

period of time required to take a higher number of them being

prohibitive. Researchers can then selectively upscale the

sinograms and therefore increase the number of projections

computationally after capture has taken place. Furthermore,

once our network is trained it can upscale each sinogram at

a faster rate compared with other analytical methods, which

is important as a tomogram time-series is typically comprised

of multiple tomograms, each with potentially thousands of

sinograms, and so are computationally expensive to recon-

struct.

The remainder of this paper is organized as follows.

Section 2 provides details about the challenge of the data

itself, the nature of the tomograms, and background infor-

mation on how they are reconstructed to voxel volumes.

Section 3 presents our super-resolution deep learning

approach, and provides details about the training procedure.

Sections 4 presents the experiments that took place, exam-

ining the effects of parameters and application to real-world

data. Finally, Section 5 concludes the paper.

2. Background on 4D datasets

2.1. The nature of the datasets

The datasets used later in the experiments of Section 4 are

micro-computed tomographic datasets captured at Diamond

Light Source’s I13-2 beamline (Bodey & Rau, 2017). For the

capture of each tomogram, X-ray projections of the sample

are captured from multiple angles within a sweep of 180�. This

series of projections comprises a representation of the tomo-

gram, that later using specialized software (Atwood et al.,

2015) is reconstructed into a 3D representation consisting of

voxels. It is common practice for facilities such as Diamond

Light Source to capture these tomograms with a low number

of projections, allowing for greater time resolution of the

experimental process that is being measured. These rapidly

collected datasets are usually part of an even larger multi-

dimensional (e.g. time series) dataset, which in total captures a

whole temporal event, such as corrosion, deformation or

failure of materials. The reduced number of projections in the

tomograms, though, leads to a correspondingly low quality

reconstruction of the voxel representation of the tomogram,

which makes the clear identification and detection of their

internal components exceedingly difficult. This can sometimes

be addressed using iterative reconstruction methods such as

SIRT (Trampert & Leveque, 1990), SART (Andersen & Kak,

1984) and CGLS (Zhu et al., 1997), or more complex methods

such as model building approaches, but these are often very

computationally expensive and so not computationally plau-

sible for application on large volumes of data, such as seen

here.

2.2. Sinogram space

In addition to the representation of a tomogram as a series

of projections, it can also be represented as a series of sino-

grams. Each sinogram is created by stacking rows of pixels that

correspond to a specific height in the sample from all the

different projections, starting from the row captured first and

ending with the row captured last (Figs. 1–3). For better

understanding, let us denote the size of each projection as

y� x, where y and x are the projection’s height and width,

respectively. Also, let us denote the number of projections

as �, because this can also be thought of as the number of

different angles from which projections have been taken.

After the transition from the projection space to the sinogram

space, there will be y sinograms in total, with each of them

having size � � x. This representation receives its name from

the sinusoidal lines present in the sinograms, a product of the

trace that different internal components create as they are

rotated with the sample (Fig. 1). From the above, we can

suggest that tomograms with reduced number of projections �
can be expressed as undersampled tomograms. An effect of

this is the presence of a reduced number of rows/angles in

their sinograms. Following this point, we will refer to tomo-

grams with such a reduced number of projections as being

undersampled.

When studying high-speed processes, it is common before

or after the acquisition of a series of high-speed, under-

sampled tomograms to capture a low-speed, highly sampled

tomogram to help resolve details and understand the system as

a whole. We will refer to these tomograms as fully sampled

tomograms. Using these fully sampled datasets, it is possible

then to learn important information that would allow the

effective upscaling of the �-axis in the sinograms of under-

sampled datasets. It is the aim of this work to use deep

learning to achieve this by building and training a convolu-

tional neural network using these fully sampled datasets, and

applying the resultant model to the undersampled datasets in

order to increase the number of their projections.

2.3. The datasets used in experiments

In this work we are using both real-world and synthetic

datasets. The real-world datasets were captured at Diamond

Light Source to observe a corrosion process on a metal test

sample. This was initiated by applying a drop of salt water to

the top of a 500 mm-diameter aluminium pin with magnesium
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Figure 1
The formation of a sinogram. Internal components create sinusoidal lines
in the sinogram as they rotate with the sample.



deposits within it (see example images in Figs. 2 and 3). The

sample is mounted on the beamline sample stage, and the salt

water drop is added to the sample, starting the corrosion

process. As soon as this has started, a series of high-speed

tomography data collections (91 projections per collection

over 180�, using a fly scan or continuous rotation metho-

dology) were acquired capturing the corrosion process as it

occurs. Once the corrosion process has finished, or slowed to a

stable level, and before the sample is removed, a final scan

with a much higher number of projections (3601 projections,

again as a fly or continuous scan) is collected. It is at this

moment that the most representive highly sampled tomogram

can be captured for this particular experiment, as different

layers of the sample have undergone different levels of

corrosion in our case. In principle, representive highly

sampled tomograms could be captured at the beginning or at

both the beginning and end of the experiment. It is then

possible for our method to train using the sinograms of these

tomograms and then upscale the component sinograms of the

4D data collection.

This high-quality scan is important for many purposes; in

this case, it is highly representative of the time series of data,

as no significant changes have occurred in the sample, which is

needed for the method presented here. Originally, this high-

quality scan was collected so that the result of the corrosion

events under study could be easily identified manually, to

guide the analysis in the undersampled data which contains

more noise. Similarly, other 4D datasets in the Diamond Light

Source are collected along with one or more highly sampled

tomograms. For the real-world datasets used in our approach

these tomograms are captured at the end of the sequence, as

this is when they contain features that have evolved within

the tomograms of the 4D datasets. However, it is a common

strategy, depending on the experiment, to collect one or more

highly sampled datasets at points where the resulting tomo-

gram will well represent the 4D dataset tomograms partially or

as a whole; this could be the beginning or end of a time series.

This collection strategy is not performed solely to facilitate our

approach, as it is already regularly performed to assist the

researcher in the post-processing of the 4D datasets. This

helps our approach to have a wider application, as one or

more representative tomograms will most likely be available

as part of standard protocols.

All the projections have a size of 2160� 2560 pixels; it takes

approximately 30 s for the capture of each of the under-
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Figure 2
Images of projections (the 1801th projection out of 3601) from the
different datasets used in this paper. (A) From the real-world data used
for training. (B) From the real-world data used for testing. (C) From the
synthetic data used for training. (D) From the synthetic data used for
testing. The sample in the real-world data is an aluminium pin with
magnesium deposits that reacts with the droplet of salt water on the top of
the pin which produces hydrogen air bubbles. The synthetic data were
constructed trying to simulate the real world counterpart.

Figure 3
Images of sinograms (the 1001st pixel row counting from the top for the
real-world data, the 201th pixel row for the synthetic data) from the
different datasets used in this paper. (A) From the real-world data used
for training. (B) From the real-world data used for testing. (C) From the
synthetic data used for training. (D) From the synthetic data used for
testing. These sinograms correspond to the height where hydrogen
bubbles are expected to be found. As can be seen in the real-world data,
the sinograms suddenly stop (marker 1) as the bubbles surface on the top
of the sample and pop. This was purposely avoided in the synthetic data in
order to check the accuracy of our method when the conditions are
nominal. The image ratio is different from the original for presentation
purposes.



sampled tomograms in the time-series and 5 min for the final,

fully sampled scan. The data are stored using the NeXuS data

format (Könnecke et al., 2015) which is built upon the HDF5

format (.h5) (The HDF Group, http://www.hdfgroup.org/

HDF5/), which enables the researchers at Diamond to easily

process the datasets and keep a detailed history as the data are

processed through various steps (Atwood et al., 2015). The

real-world datasets (160 GB) are available on Zenodo (Bellos

et al., 2018a). Apart from these real experimental data, it is

also important to investigate our new analysis approach using

synthetic data which can be generated in predictable ways.

Therefore, synthetic data were created using the Tomo-

Phantom toolbox (Kazantsev et al., 2018). The data were

created through the use of simple geometric objects like

cylinders and ellipsoids in an effort to simulate their real life

counterparts, broadly representing the real life datasets used

here [see Figs. 2(C) and 2(D)]. Because of current limitations

of the TomoPhantom toolbox the size of the synthetic

projections is 1080 � 1280 pixels, again having 3601 projec-

tions. The synthetic projections produced by TomoPhantom

are simulated using a step-scan collection approach. Specifi-

cally, the pin is simulated via a cylinder primitive, and the

droplet of salt water via an ellipsoid, cut in half. The hydrogen

bubbles, a product of the corrosion in the real-world data, are

simulated with randomly placed spheres of random radii

(numbering three in the training synthetic dataset and four in

the testing one). Additionally, the magnesium deposits in the

pin are simulated with 40 randomly placed ellipsoids with

random elliptic radii for each in both training and testing

dataset. The noise present in the real-world data is simulated

using a Poisson distribution. In the real-world data, however,

temporal events occur during capture (the corrosion creates

hydrogen bubbles). Such events produce abrupt changes in

the sinogram [e.g. see marker 1 in Figs. 3(A) and 3(B)]. This

produces an extra challenge while upscaling, as analytical

interpolation methods are not able to account for this step

change, compared with our method that may be able to learn

from the provided data. The software to generate the noisy

datasets as well as the noiseless training and testing datasets

themselves can be found online (Bellos et al., 2018b).

3. The Upscaling Deep Neural Network (UDNN)

3.1. Network architecture

We propose a convolutional network architecture designed

to upscale the sinograms of the earlier mentioned tomograms

with accuracy greater than previous analytical interpolation

techniques. As described in Section 2, the �-axis of each

sinogram corresponds to different source projections, and,

since we aim to increase artificially the number of projections,

the proposed approach is designed to effectively upscale the

sinograms along their �-axis. Subsequently, this requires the

estimation of the intermediate projections that are skipped

during collection. Using such an upscaling approach, attaining

tomogram reconstructions with better quality would become

achievable using fewer acquisition steps, meaning that it would

be possible to acquire data faster and also using less memory.

The network architecture is based on the work of Dong et

al. (2016) and comprises three convolutional layers seperated

by two rectified linear units (ReLUs) (Glorot et al., 2011). The

network layers jointly learn the underlying mapping between

the input sinograms and the missing intermediate pixel-rows/

projections. Because of that, the output of the network is

the aggregation of these missing pixel-rows/projections. The

desired upscaled sinogram is obtained by interlacing the pixel-

rows/projections from the initial input sinogram with the

output of the network (more details are given in Section 3.2).

The three layers of the network are designed to perform the

following three operations:

(1) Feature extraction. This operation generates a number of

high-dimensional vectors for each pixel of the output using a

local neighbourhood from the input sinogram. These vectors

comprise the set of feature maps for the first layer, equal in

number to the dimensionality of the vectors.

(2) Introduction of non-linearity. This operation maps

the previous high-dimensional vectors to others with lower

dimensionality via a non-linear function. This is desirable as it

introduces sufficient non-linearity into the learned mapping,

which is critical for the network’s overall performance.

(3) Construction of the upscaled output. This operation

linearly combines the feature maps of the previous layer

to synthesize the intermediate pixel-rows/projections, which

interlaced with the input generate the desired sinogram with

higher number of projections.

In the following section we will present how these opera-

tions inspired the design of each convolutional layer. An

overview of the complete network is depicted in Fig. 4.

3.2. Formulation

Here we denote the input sinogram I and the desired

learned mapping F. The goal is to recover from I an image F Ið Þ

that would be as similar as possible to the ground truth image

O. Here O is the aggregated intermediate pixel-rows/projec-

tions (see Fig. 5) extracted from a ground truth sinogram G of

the fully sampled tomogram.

The first layer of the network can be expressed as

F1 Ið Þ ¼ max 0;W1 � I 0 þ B1ð Þ: ð1Þ

Here I 0 represents the input sinogram I appropriately padded

with zeros, W1 are the weights and B1 the biases of the first

layer (identified by subscript 1). The symbol � denotes the

operation of convolution. In equation (1) the weights W1

represent N1 kernels of size 1� f1h � f1w, where f1h and f1w are

the height and width of the kernels of this layer, respectively.

In this first layer, N1 convolutions are applied on the input I 0

resulting in an output of N1 feature maps. Additionally, the

biases are a N1-dimensional vector represented by B1. It is

important to mention here that input sinograms are appro-

priately padded with zeros before the convolutions. The act of

padding with zeros is common in CNNs as it is used to dictate

the size of the output. In this layer the padding is used so each
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of its feature maps have the same size as O. Lastly, the function

of ReLU is represented as a max function with the second

argument being zero. ReLU’s functionality is to replace all the

negative elements in the feature maps with zero.

Next in the architecture is another convolutional layer

which provides the necessary depth and non-linearity to the

network. The mathematical expression for it is as follows,

F2 Ið Þ ¼ max 0;W2 � F1 Ið Þ
0
þB2

� �
: ð2Þ

Here F1 Ið Þ
0 represents the feature maps F1 Ið Þ appropriately

padded with zeros, so that the input and output feature maps

have the same size. Also in this second layer (identified by

subscript 2), W2 corresponds to N2 kernels of size

N1 � f2h � f2w, where f2h and f2w are the height and width of

the kernels of this layer, respectively. The biases for this layer

are represented by the N2-dimensional vector B2. In this layer

the N1 previous vectors are replaced with N2 new ones,

replacing also consecutively the corresponding feature maps.

This is achieved by applying N2 convolutions with kernels

of W2.

At this stage, it be should noted that it is possible to add

additional layers to deepen the network further at the expense

of more training time. However, this was explored by Dong et

al. (2016) and shown to have diminishing returns. For that

reason, and since our proposed network is designed to upscale

only greyscale intensity images in only one direction (along

the y-axis; versus 2D colour upscaling), and it is important

here to have short training times, the idea of adding additional

layers was considered unnecessary.

Finally, the last layer constructs the output F Ið Þ using the

feature maps of the previous layer. The layer can be expressed

as follows,

F Ið Þ ¼ W3 � F2 Ið Þ 0 þB3: ð3Þ

Here F2 Ið Þ
0 represents the feature maps F2 Ið Þ appropriately

padded with zeros, so that F Ið Þ has the same size as O.

Additionally, in the third layer (identified by subscript 3), W3

contains Nout kernels of size N2 � f3h � f3w, where f3h and f3w

are the height and width of the kernel, respectively. B3 are the

biases for this layer and are represented in an Nout-dimen-

sional vector. In this layer the N2 feature maps are being

condensed using Nout convolutions to the desired output. As

we will explain in Section 3.3.3, Nout is the number of inter-

mediate pixel-rows/projections between two neighbouring

pixel-rows/projections of the input. Therefore, Nout equals the

upscaling factor minus one and by increasing it the network

can be set to upscale the sinogram further. The parameters for

this layer must be precisely fine-tuned as the estimation of

each output pixel is the linear combination of multiple feature

vectors, thus making it very error sensitive. This sensitivity will

play an important role during the design of the training.

3.3. Training

3.3.1. Loss function. In order for the network to configure

its weights and biases P = W1;W2;W3;B1;B2;B3

� �
, it has to
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Figure 4
Graphical representation of the functionality of the proposed network. The downscaling of the sinograms is necessary during the network’s training with
a set of fully sampled sinograms, but not for using the network after the training has finished.

Figure 5
Diagram presenting how the input sinogram and the aggregation of the
intermediate pixel-rows/projections are formed. Intermediate pixel-rows
that are within two neighbouring pixel-rows/projections of the input
sinogram are placed in different output channels.



train using already-known pairs of inputs and known outputs.

This is achieved through the minimization of a loss function

which calculates the error between the network’s predictions

F I; Pð Þ and the ground truth G. For this network the mean

square error is being used as it is a good general loss function

for estimating error; it is differentiable and values any incli-

nation from ground truth equally. Given aggregated inter-

mediate pixel-rows/projections O extracted from ground truth

sinograms G of the fully sampled tomogram, and the available

input sinogram I, the mean square error can expressed as

E Pð Þ ¼
1

N

XN

k¼ 1

��F Ik; Pð Þ �Ok

�� 2
; ð4Þ

where N is the total number of pixels present in the aggregated

intermediate pixel-rows/projections O.

3.3.2. Backpropagation methods and learning rate. The

minimization of the loss function is typically achieved through

backpropagation. In the experiments described later

(Section 4), the adaptive momentum estimation (Adam)

method (Kingma & Ba, 2014) is used to train the network.

Adam has been shown to outperform stochastic gradient

descent methods, like AdaGrad (Duchi et al., 2011) and

RMSProp (Tieleman & Hinton, 2012). There are two learning

rates, one for the first two layers which starts from 0.01 and

one for the last layer which starts from 0.001. Both decrease

gradually as the network converges to the desired mapping.

Two learning rates are used because of the sensitivity that

the last layer demonstrates, as described earlier. The other

hyperparameters described in the Adam algorithm are left at

their default values (Kingma & Ba, 2014).

3.3.3. Training and testing with our data. As is described in

Section 2.3, two datasets are reserved for training/validation

(one from the synthetic and one from the real-world data)

while the other two for testing (again from both real-world

and synthetic data). The sinograms of datasets used for

training/validation are split into two halves, one for training

and the other for validation. Specifically from the training/

validation dataset with real-world data, 1079 sinograms are

reserved for training (2nd, 4th, . . . , 2158th) and 1079 for

validation (3rd, 5th, . . . , 2159th), while from synthetic data 540

sinograms are reserved for training (1st, 3rd, . . . , 1079th) and

1079 (2nd, 4th, . . . , 1080th) for validation. The reason sino-

grams are selected in an alternating fashion for training and

validation is because it splits them into two different, but also

representative, halves. This is because the structure of the

sample present in both real-world and synthetic data changes

along its height axis, thus splitting the sinograms into two

halves (one for the top part of the sample and one for the

lower) would create two subsets that are not representative of

the whole sample. It could be claimed that this might cause the

training and validation sets to have a high correlation with

each other and so generate misleading results; however, this

was not observed in the later experiments when the accuracy

of UDNN was tested in different datasets, respectively, for

real-world and synthetic data.

In an effort to utilize the available sinograms during

training as much as possible, the network does not use as

inputs the whole sinograms but rather patches of them. This

increases the number of training instances, which is important

for sufficient training and also keeps the memory demands of

the network low. The selection of the patches is executed as

follows. In each sinogram, patches of 401 pixels in height and

2560 pixels in width are selected. From each of these patches,

11 pixel-rows/projections are used as the input for the network

and another 10 as the ground truth. The pixel-rows/projections

used as input are the 1st, 41st, 81st, . . . , 401st rows from the

patch and the 21st, 61st, . . . , 381st are those used as ground

truth. By doing that, the sinograms are being downscaled. This

is because the sinograms of the fully sampled tomogram are

comprised of 3601 projections, and the undersampled of only

91. This downscaling of the sinograms by a factor of 40 sets the

angle difference between the pixel-rows/projections of the

input and the ground truth similar to when they are part of an

undersampled tomogram (Section 2). Also, since there is only

one pixel-row/projection selected from the ground truth

between each two neighbouring input pixel-rows/projections

(Nout = 1), this sets the upscaling factor to 2�. This means that

the output will be almost double in size along the y-axis

(almost, because if the input has a length of nþ 1 in the y-axis

the output will have a length of 2nþ 1). It is possible to

increase the upscaling factor even more by adding more

output channels (Fig. 5) where Nout > 1 in the final convolu-

tional layer. For example, if there were three output channels

instead of one, the upscaling factor would be 4�. In this case

each channel would try to predict different intermediate rows

in the patch. The first channel would be for the 11th, 51st, . . . ,

371st rows, the second for the 21st, 61st, . . . , 381st and the

third for the 31st, 71st, . . . , 391st. In the following experiments

we shall mostly test our network using an upscaling factor of

2�, but will demonstrate an upscaling factor of 4� in the real-

world data.

Each sinogram patch is selected with a stride of 1, resulting

in 3200 patches per sinogram. Through the use of a stride

smaller than 401 (in this case 1), the patches will overlap with

each other. This was chosen in order to diversify the input data

as if the same sample was captured under different starting

positions, utilizing therefore all 3601 different projections.

During the training of the network the sequence of input

patches used for training are chosen each time from a different

sinogram of those available. A sinogram will be ‘visited’ again

to select and use one of its patches only after all other sino-

grams have been ‘visited’ and one of their patches has been

used. The use of a patch from all the available training sino-

grams marks one ‘iteration’. The sequence of sinograms

from which patches are drawn in each ‘iteration’ is selected

randomly for each ‘iteration’. Additionally, the patches are

provided in minibatches of ten for each backpropagation.

Based on the above, the number of patches reserved for

training is 3452800 and 1728000 for the real-world and

synthetic data, respectively, while also the same numbers of

patches are reserved for validation. Obviously, using all the

patches available for validation would result in an enormous
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time being needed for training. For this reason ten random

patches are selected from each sinogram resulting in 10790

and 5400 patches used for validation, for the real-world and

synthetic data, respectively. The validation is selected to occur

after every 16 of the earlier-mentioned ‘iterations’ have been

passed, meaning that each validation occurs after every 17280

and 8640 backpropagation iterations, again for the real-world

and synthetic data, respectively. After every validation, a

snapshot of the network parameters is captured and,

depending on the trend of the error measured by the loss

function, the learning rates are appropriately decreased (by a

factor of ten) to enable the network to converge.

The testing of the network was conducted on completely

separate, different datasets, both with real-world and synthetic

data to ensure the validity of the results. From the testing

datasets 10% of the sinograms are downscaled by a factor of

40 (using 91 projection out of the 3601) and then upscaled with

the trained network. These are the sinograms 1, 11, 21, . . . for

the syntetic data and 2, 12, 22, . . . for the real (the first of the

sinogram of the real-world datasets contains metadata making

it therefore unusable). Since the network learns to upscale

sinogram patches, the final upscaled sinogram is constructed

through merging the output patches. This is applied by setting

the value of each pixel of the output sinogram as the average

value of the pixels from the different patches that overlap in

the corresponding pixel-position (Fig. 6). Finally, it was shown

in early experiments that the network performs better when

the pixels in each real-world data patch are normalized.

Therefore, each real-world data input is normalized before

it is fed into the network and then the output is accordingly

denormalized before it is compared with the ground truth

in the evaluation stage. This process was not needed for the

synthetic datasets because they are already normalized when

generated.

3.3.4. The UDNN model. For the basic model of the

network, UDNN (Upscaling Deep Neural Network), the first

layer has a kernel size of f1h � f1w = 10 � 17, with N1 = 64

feature maps as well as padding (4, 8) accordingly for height

and width. The second layer has a kernel size of f2h � f2w = 7�

13, N2 = 32 feature maps and (3, 6) for height and width

padding. Finally, the last layer has kernel size of f3h � f3w = 7�

13, Nout = 1 output channels (for an upscaling factor of 2�),

and (3, 6) for padding. The number of features for the UDNN

model are set based on the network proposed by Dong et al.

(2016); however, the sizes of the kernels are changed here.

They were selected in an effort to be adequately large, so that

the network can accurately upscale the sinograms, but not

excessively so, as that would affect the training and execution

speed. Additionally, the padding was selected appropriately

so that the output has the desired size (Section 3.2). It can

be conjectured that further performance might be gained

by exploring different feature numbers, sizes of kernels or

training strategies. Based on that idea, we performed experi-

ments exploring the two basic hyperparameters (number of

feature maps and kernel sizes) and observed their effects on

the overall performance. This is explored in Section 4 below.

4. Experiments

4.1. Experiments with different hyperparameters

In these experiments, we want to examine the accuracy of

the UDNN model (Section 3.3.4) for different hyperparameter

values. For these experiments we used real-world data with the

setup described in Section 3.3.3. Bertram’s directional inter-

polation (Bertram et al., 2009) is not used as a comparison as it

is computationally expensive and the aim of these experiments

is to compare the accuracy of different versions of the network

(with different hyperparameters). Instead, cubic interpolation

is used in order to provide a comparative baseline. Therefore,

only training and validation was performed. Namely, we

examine:

(1) The effects of the number of features on accuracy, where

we examine whether a larger or smaller number of features in

the hidden layers can improve accuracy.

(2) The effects of the sizes of kernels on accuracy, similarly

to examine whether larger or smaller kernels can improve

overall accuracy.

The reason we choose to experiment with these particular

hyperparameters is because they comprise the fundamental

hyperparameters affecting CNN archi-

tecture and training. It can be specu-

lated that additional performance might

be gained by experimenting with other

hyperparameters (e.g. other number of

features, kernel sizes, learning rates) or

network architectures, but these ques-

tions are left for future research.

As a quality metric for the experi-

ments we use the PSNR (peak signal-to-

noise ratio). The PSNR is a widely used

metric for evaluating image restoration,

as high PSNR values signify higher

restoration qualities. Additionally, we

also use the SSIM (structural similarity

index) metric (Wang et al., 2004) to

compare the structural similarity of
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Figure 6
Diagram presenting how the output patches are merged to produce the output sinogram. At the end
of the process each pixel of the output sinogram will be the average value of the pixels from the
patches that overlap in each corresponding pixel-position.



the different reconstructions with a high-quality reconstruc-

tion (using 3601 projections) that acts as the ground truth.

Both metrics are very commonly used to quantitatively

measure the visual quality of an imaging system (image or

volume) compared with another that is held as the ground

truth in terms of quality.

All experiments were executed using a workstation with

two 12 GB NVIDIA Titan Xp GPU, Intel Xeon E5-2620 v4

2.10 GHz CPU, 64 GB of RAM, using the Pytorch package

(Ketkar, 2017) (version 0.4) for Python 3.6.4 and executing the

training, validation and testing on GPU using CUDA 8.0

through Pytorch’s appropriate library.

4.1.1. Effects of the number of features on performance.

One important parameter when it comes to designing a neural

network is the number of features in each layer. In the UDNN

model the number of features selected for the first layer is

64 and for the second 32. For this experiment the number of

features of the UDNN is doubled to 128 and 64 (UDNN-128)

and halved to 32 and 16 (UDNN-32), respectively, for the first

two layers.

The PSNR score at the 32400th backpropagation is

43.88 dB for the UDNN, 43.89 dB for the UDNN-128 and

43.71 dB for UDNN-32. Based on these numbers and the

dynamic response in Figs. 7(A) and 7(B), we can conclude

that the addition of more feature maps helps the network

to converge in a higher PSNR value, but with diminishing

returns. Because of that, in the later experiments we use the

UDNN-128 and UDNN model, but do not use or test a model

with an even higher number of feature maps. Additionally, the

UDNN-32 model with the fewer number of feature maps

converged with an accuracy lower than the UDNN model.

Therefore, we also can conclude that using less that 64–32

feature maps would not lead to satisfactory results.

4.2. Effects of the sizes of kernels on performance

Next, the effect of size of the kernels in each layer was

investigated. For the base UDNN model the kernels have size

10 � 17, 7 � 13, 7 � 13. For this experiment, two variations of

the model are tested. One with larger sizes of kernels (UDNN-

LK), specifically 12 � 19, 9� 15, 9� 15, respectively, for each

of the three layers; and one where the kernels are smaller

(UDNN-SK), specifically 8 � 15, 5 � 11, 5 � 11, respectively,

for each of the three layers. The kernel sizes were increased

by adding or subtracting two columns and rows from those

UDNN in order to examine how the network’s behaviour

changes with larger or smaller kernels generally in all layers.

Results are shown in Fig. 8.

The PSNR score at the 32400th backpropagation is

43.88 dB for the UDNN, 43.74 dB for the UDNN-LK and

43.78 dB for the UDNN-SK. Based on these results and

Figs. 8(A) and 8(B) we can infer that the enlargement or

shrinkage of the sizes of the kernels does not offer better

results regarding accuracy in practice. This is perhaps because

with the increased kernel size the network takes into consid-

eration pixel values from further away pixels which do not

contain valuable information for the task of upscaling the
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Figure 7
The training (A) and validation (B) PSNR graphs for the cubic
interpolation (CI), the UDNN, the UDNN using 128–64 feature maps
(UDNN-128) and the one using 32–16 (UDNN-32). The graphs depict the
PSNR score from the initial 32 400 backpropagations; after this point the
network has converged and the PSNR score plateaus.

Figure 8
The training (A) and validation (B) PSNR graphs for the cubic
interpolation (CI), the UDNN, the UDNN using large kernel sizes
(UDNN-LK) and the one with small (UDNN-SK). The graphs depict the
PSNR score from the initial 32 400 epochs. The graphs do not show any
further backpropagations as the network has converged and the PSNR
score plateaus.



central pixel. On the other hand, smaller kernels perhaps miss

information which is occasionally crucial for upscaling of the

central pixel, especially in our case where the angle difference

between neighbouring rows/projections of the input is large

(in only 91 projections the sample is rotated 180�).

4.3. Experiments with synthetic data

As previously described, we also performed experiments on

synthetic data that were created using the TomoPhantom

toolbox (Kazantsev et al., 2018). For these experiments we

used the UDNN-128 model, as this is the best performing so

far. Results are shown in Section 4.3.1.

4.3.1. Synthetic data sinogram upscaling. Visual results can

be seen in Figs. 9 and 10, and numerical results in Table 1.

4.3.2. Synthetic data reconstructions. The upscaled sino-

grams were later reconstructed by filter back projection using

the Astra toolbox integrated into the TomoPhantom

(Kazantsev et al., 2018). Visual results can be seen in Figs. 11

and 12, and numerical results in Table 2.

4.4. Real-world data

In addition to synthetic data we also tested our method on

data provided by the Diamond Light Source [see Section 2.3

for details, Figs. 2(B) and 3(B)]. For these experiments we

used the UDNN-128 model.

4.4.1. Experimental complexities. For the upscaling of the

sinograms in real-world data, there are two important issues

which can arise.

The first is that the rotation axis between the different

tomograms of the time-series may change. This is expressed in

the sinograms collected at the Diamond Light Source as a shift

of the collected data along the x-axis. However, due to the

nature of CNNs this does not affect the final result; this is

because the respective kernels within the convolutional layers

are shifted to perform the operation of convolution, which

makes the whole network translationally invariable.

The second issue is that the sample may be shifted

perpendicular to the orientation of the detector. This effect
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Table 1
PSNR score for upscaling the sinograms 1, 11, . . . , 108 of the synthetic
dataset used for testing [Section 2.3, Figs. 2(D) and 3(D)].

For the calculations, the intermediate row/projections (rows 21, 61, . . . , 3581)
of the original sinograms without noise were used as ground truth. Noisy Proj
is the PSNR from the error between the downscaled noisy sinograms
(sinograms 1, 11, . . . , 108 and for rows 21, 61, . . . , 3581) and the downscaled
noiseless sinograms (again sinograms 1, 11, . . . , 108 and rows 21, 61, . . . , 3581).
For the other columns the sinograms (1, 11, . . . , 108) were downscaled to a
height of 91 (or 91 projections) and then upscaled using the different methods
to 181 (2� upscaling), therefore creating the predictions for the rows 21,
61, . . . , 3581 of the original (intermediate row/projections). The PSNR for
these predictions was then calculated against the downscaled noiseless
sinograms. In the table below CI stands for cubic interpolation and DI for
directional interpolation. Best result shown in bold.

Noisy Proj CI UDNN-128 DI

Testing PSNR 40.88 dB 42.53 dB 48.43 dB 48.15 dB

Figure 9
The 201st synthetic sinogram with only the intermediate row/projections
(rows 21, 61, . . . , 3581, pixel-value [e�1:1]). (A) From the original dataset
without noise. (B) From the original dataset with noise. (C) Prediction for
these rows using UDNN-128 for upscaling. (D) Prediction for these rows
using Bertram’s directional interpolation. (E) Prediction for these rows
using cubic interpolation. Each image ratio is different from the original
for presentation purposes. The red region in (A) is shown zoomed
in Fig. 10.

Figure 10
The selected area marked by the red window in Fig. 9(A) enlarged (width
window [401:600] out of [1:1280] and for rows 821, 861, . . . , 3221, pixel-
value [e�1: 1]). (A) From the original dataset without noise. (B) From the
original dataset with noise. (C) Prediction for these rows using UDNN-
128 for upscaling. (D) Prediction for these rows using Bertram’s
directional interpolation. (E) Prediction for these rows using cubic
interpolation. Note the clarity of the proposed method [panel (C)]. Each
image ratio is different from the original for presentation purposes.

Table 2
PSNR and SSIM score of the reconstructions using the sinograms
1, 11, . . . , 108 of the synthetic dataset used for testing [Section 2.3,
Figs. 2(D) and 3(D)].

For the calculations, a reconstruction of the original sinograms without noise
(3601 projections) was used as ground truth. The 181 and 91 Noisy Proj
correspond to reconstructions made from sinograms that were only down-
scaled accordingly from the original. The other columns correspond to
reconstructions made by these sinograms, where they are initially downscaled
to a height of 91 (or 91 projections) and then upscaled to 181 (2� upscaling)
with the available methods. In the table below CI stands for cubic
interpolation and DI for directional interpolation. Best results for each
metric highlighted in bold.

181 Noisy
Proj CI UDNN-128 DI

91 Noisy
Proj

Testing PSNR 14.82 dB 15.67 dB 17.67 dB 17.40 dB 11.67 dB
Testing SSIM 0.0391 0.0454 0.0625 0.0607 0.0211



can change the shape of the sinusoidal lines in the sinograms.

While that could pose a problem for the correct upscaling of

the sinograms, it was not observed during the experiments. As

a matter of fact, the sample used in the real-world testing was

in a different position compared with the training sample. We

speculate that this behaviour is due to the light-weight struc-

ture of our network which helped it to not overtrain using the

training dataset, leaving the door open for potential recycling

of the trained network across varied capture regimes.

In any case though, commonly the researchers during the

collection of 4D datasets strive to minimize the movement of

the sample as it can become troublesome for many post-

processing techniques.

4.4.2. Real-world data sinogram upscaling. Visual results

can be seen in Figs. 13–16, and numerical results in Tables 3

and 4.

Additionally, as explained in Sections 3.2 and 3.3.3, we also

tested our network with a higher upscaling factor (of 4�), by
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Figure 11
The reconstruction of the 601th synthetic sinogram (area [273:848,
273:848] of [1:1280,1:1280], pixel-value [0:0.5]). (A) From the original
dataset without noise and 3601 projections. (B) From the original dataset
with noise and 181 projections. (C) Using UDNN-128 for upscaling (181
projections). (D) Using the Bertram’s directional interpolation (181
projections). (E) Using cubic interpolation (181 projections). (F) From
the original dataset with noise and 91 projections. Region of interest
shown zoomed in Fig. 12.

Figure 12
The selected area marked by the red window in Fig. 11(A) enlarged (area
[373:573, 343:543] of [1:1280,1:1280], pixel-value [0:0.5]). (A) From the
original dataset without noise and 3601 projections. (B) From the original
dataset with noise and 181 projections. (C) Using UDNN-128 for
upscaling (181 projections). (D) Using the Bertram’s directional
interpolation (181 projections). (E) Using cubic interpolation (181
projections). (F) From the original dataset with noise and 91 projections.
Note the with the proposed method (panel C) the presence of noise is
decreased and that there are fewer rotational artefacts.

Figure 13
The 1002th real-world sinogram with only the intermediate row/
projections (rows 21, 61, . . . , 3581, pixel-value [0.59:0.74]). (A) From
the original dataset. (B) Prediction for these rows using UDNN-128 for
upscaling. (C) Prediction for these rows using Bertram’s directional
interpolation. (D) Prediction for these rows using cubic interpolation.
Each image ratio is different from the original for presentation purposes.
Region of interest is shown zoomed in Fig. 14.

Figure 14
The selected area marked by the red window in Fig. 13(A) enlarged
(width window [1301:1800] out of [1:2560] and for rows 821, 861, . . . ,
3221, pixel-value [0.59:0.74]). (A) From the original dataset. (B)
Prediction for these rows using UDNN-128 for upscaling. (C) Prediction
for these rows using Bertram’s directional interpolation. (D) Prediction
for these rows using cubic interpolation similar to Fig. 13. Similar to
Fig. 10, with the proposed method (panel B) there is less noise introduced
into the sinograms. Each image ratio is different from the original for
presentation purposes.



adding additional output channels in the final convolutional

layer in our network, Nout = 3. The reason we jump from two to

four and not to three is because it is intuitively easier, as the

input patch with 400 rows (+1 in the end) in height is divisible

by 4. For this experiment we did not apply the directional

interpolation method as it was not designed to be used

iteratively. Results are shown in Figs. 15 and 16 and Table 4.

4.4.3. Real-world data reconstructions. The upscaled

sinograms were later reconstructed by filter back projection

using the Savu Framework (Wadeson & Basham, 2016) and

the AstraReconGpu plug-in. For the calculation of SSIM for

these data only the window [501:1500, 501:1500] was used. This

was because the AstraReconGpu plug-in adds a circular mask

of NaN elements, so these and some of the surrounding air

were excluded from analysis. Visual results can be seen in

Figs. 17–20, and numerical results in Tables 5 and 6.
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Table 3
PSNR score for upscaling the sinograms 2, 12, . . . , 217 of the real-world
dataset used for testing [Section 2.3, Figs. 2(B) and 3(B)].

For the calculations, the intermediate row/projections of the original
sinograms were used as ground truth. Namely, the sinograms (2, 12, . . . ,
217) were downscaled to a height of 91 (or 91 projections) and then upscaled
using the available methods to 181 (2� upscaling), therefore creating the
predictions for the rows 21, 61, . . . , 3581 of the original (intermediate row/
projections). The PSNR for these predictions was then calculated against the
downscaled noiseless sinograms. In the table below CI stands for cubic
interpolation. Best result shown in bold.

CI UDNN-128 DI

Testing PSNR 42.20 dB 43.90 dB 42.59 dB

Table 4
PSNR score for upscaling the sinograms 2, 12, . . . , 217 of the real-world
dataset used for testing [Section 2.3, Figs. 2(B) and 3(B)].

For the calculations, the intermediate row/projections of the original
sinograms were used as ground truth. Namely, the sinograms (2, 12, . . . ,
217) were downscaled to a height of 91 (or 91 projections) and then upscaled
using the available methods to 361 (4� upscaling), therefore creating the
predictions for the rows 21, 61, . . . , 3581 of the original (intermediate row/
projections). The PSNR for these predictions was then calculated against the
downscaled noiseless sinograms. In the table below CI stands for cubic
interpolation. Best result shown in bold.

CI UDNN-128

Testing PSNR 42.01 dB 43.89 dB

Figure 15
The 1002th real-world sinogram with only the intermediate row/proj-
ections (rows 11, 21, 31, 51, 61, 71, . . . , 3571, 3581, 3591, pixel-value [0.59:
0.74]). (A) From the original dataset. (B) Prediction for these rows using
UDNN-128 with three output channels. (C) Prediction for these rows
using cubic interpolation. Region of interest is shown zoomed in Fig. 16.

Figure 16
The selected area marked by the red window in Fig. 15(A) enlarged
(width window [1301:1800] out of [1:2560] and for rows 811, 821, 831,
851, . . . , 3211, 3221, 3231, pixel-value [0.59:0.74]). (A) From the original
dataset. (B) Prediction for these rows using UDNN-128 with three output
channels. (C) Prediction for these rows using cubic interpolation. Again
with the proposed method (panel B), there is less noise introduced into
the sinograms. Each image ratio is different from the original for
presentation purposes.

Table 5
PSNR score for reconstruction of the upscaled sinograms 2, 12, . . . , 217 of
the dataset with real-world data used for testing [Section 2.3, Figs. 2(B)
and 3(B)].

For the calculations, a reconstruction of the original sinograms (3601
projections) was used as ground truth. The 181 and 91 Noisy Proj correspond
to reconstructions made from sinograms that were only downscaled
accordingly from the original. The other columns correspond to reconstruc-
tions made by these sinograms, where they are initially downscaled to a height
of 91 (or 91 projections) and then upscaled to 181 (2� upscaling) with the
available methods. In the table below CI stands for cubic interpolation and DI
for directional interpolation. Best result for each metric highlighted in bold.

181 Proj CI UDNN-128 DI 91 Proj

Testing PSNR 19.03 dB 19.69 dB 21.79 dB 20.13 dB 15.94 dB
Testing SSIM 0.1737 0.1504 0.2122 0.1627 0.0936

Table 6
PSNR score for reconstruction of the upscaled sinograms 2, 12, . . . , 217 of
the dataset with real-world data used for testing [Section 2.3, Figs. 2(B)
and 3(B)].

For the calculations, a reconstruction of the original sinograms (3601
projections) was used as ground truth. The 361 Noisy Proj correspond to
reconstructions made from sinograms that were only downscaled to 361
projections from the original. The other columns correspond to reconstruc-
tions made by these sinograms, where they are initially downscaled to a height
of 91 (or 91 projections) and then upscaled to 361 (4� upscaling) with the
available methods. In the table below CI stands for cubic interpolation. Best
result for each metric highlighted in bold.

361 Proj CI UDNN-128 (Nout = 3)

Testing PSNR 22.28 dB 25.59 dB 26.89 dB
Testing SSIM 0.3043 0.2163 0.3925



Apart from using an upscaling factor of 2� we also used an

upscaling factor of 4� (Nout = 3). Results are shown in Figs. 19

and 20 and Table 6.

For comparison, Fig. 21 shows the previous numerical

PSNR and SSIM scores presented as two bar charts. They

depict how the scores change as the number of projections

used for reconstruction is increased.

4.5. Discussion

Based on the above results, we can observe that the UDNN-

128 version of our network was able to slightly but consistently

outperform the directional (Bertram et al., 2009) and cubic

interpolation in both PSNR and SSIM metrics (Tables 1–6). In

addition, as can be seen in both synthetic and real-world data

(Figs. 11–12, 17–20), the reconstructions after the use of our

UDNN upscaling method contain fewer rotational artefacts,

and have lower levels of noise. However, due to the loss of

information in undersampled tomograms, it is difficult to

restore detail especially in small components. This is a

limitation for all upscaling techniques. This becomes more

prevalent as the upscaling factor increases. For this reason, we

consider that an upscaling factor larger than 4� will not be

practically helpful despite probably having better relative

performance in the metrics because of the noise reduction

(Fig. 15). A potential solution to this issue would be the

introduction of weights associated with these smaller internal

components in the loss function during training; we will

explore this in future research.

Apart from the improved restoration quality over other

interpolation techniques, UDNN also offers fast execution

times. For the upscaling of each sinogram, using UDNN-128

generally takes up to 1.7 s compared with 5.5 s of the direc-

tional method (Bertram et al., 2009). Nonetheless, this is

without considering the time required for training. For the

UDDN-128 model, training essentially concludes after

approximately 4 h, as the validation error later plateaus
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Figure 17
The reconstruction of the 1502th real-world sinogram (area [501:1500,
501:1500] of [1:2560,1:2560], pixel-value [�1/2560:1/2560]). (A) From the
original dataset with 3601 projections. (B) From the original dataset with
181 projections. (C) Using UDNN-128 for upscaling (181 projections).
(D) Using the Bertram’s directional interpolation (181 projections).
(E) Using cubic interpolation (181 projections). (F) From the original
dataset with 91 projections. Region of interest shown zoomed in Fig. 18.

Figure 18
The selected area marked by the red window in Fig. 17(A) enlarged (area
[651:951, 701:1001] of [1:2560,1:2560], pixel-value [�1/2560:1/2560]). (A)
From the original dataset with 3601 projections. (B) From the original
dataset with 181 projections. (C) Using UDNN-128 for upscaling (181
projections). (D) Using the Bertram’s directional interpolation (181
projections). (E) Using cubic interpolation (181 projections). (F) From
the original dataset with 91 projections. Similar to Fig. 9, in the proposed
method (panel C) the level of noise is lower compared with the other
methods and there are fewer rotational artefacts.

Figure 19
The reconstruction of the 1502th real-world sinogram (area [501:1500,
501:1500] of [1:2560,1:2560], pixel-value [�1/2560:1/2560]). (A) From the
original dataset with 361 projections. (B) Using UDNN-128 and an
upscaling factor of 4� (361 projections). (C) Using cubic interpolation
(361 projections).

Figure 20
The selected area marked by the red window in Fig. 17(A) enlarged
for Fig. 19 (area [651:951, 701:1001] of [1:2560,1:2560], pixel-value
[�1/2560:1/2560]). (A) From the original dataset with 361 projections.
(B) Using UDNN-128 and an upscaling factor of 4� (361 projections).
(C) Using cubic interpolation (361 projections). Again, the proposed
method (panel B) introduces less noise and fewer rotation artefacts.



without reducing further. However, this is only required once

per experiment. If we consider the case of a time-series with 20

tomograms each with 2160 sinograms it would take approxi-

mately 66 h for our workstation to upscale all sinograms using

directional interpolation, but roughly 25 h with our method

including the training session.

4.6. Example application to a time-series tomogram

In Figs. 22 and 23 we present some reconstruction images,

where our UDNN method was applied on an actual under-

sampled tomogram which is part of a time-series. Conve-

niently, this time-series has as its final, fully sampled tomogram

the dataset used for training during experiments with real-

world data, so retraining is not necessary here. The following

reconstuctions are presented in order to visually demonstrate

that our method does not behave differently when it is used to

upscale tomograms collected with a low number of projec-

tions, as opposed to artificially created datasets where a few

projections are selected from a complete dataset.

5. Conclusion

To conclude, this paper presents a novel approach of upscaling

sinograms along the �-axis in tomograms that are part of 4D

data collections using a super-resolution approach based

on deep learning. The proposed approach, UDNN, using a

convolutional neural network architecture and a fully sampled

representative tomogram learns an end-to-end mapping

between sinograms with low and high number of projections.

Because of the prior provided by the fully sampled dataset, the

network is able to train effectively and eventually surpass

common interpolation techniques in accuracy. This in turn also

leads to better improvement of the quality of the tomograms’

reconstructions, with fewer artefacts and less noise, enabling

easier procesing of the tomograms for further analysis.
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Figure 21
Bar charts showing the progression of the two used metrics (PSNR and
SSIM), for the UDNN-128 network as the sinogram upscaling factor
increases and therefore also the number of projections.

Figure 22
Applying our upscaling method on an undersampled tomogram that is
part of a time-series. (A, B, C) Reconstruction of the 1101th sinogram
(area [550:2000, 550:2000] of [1:2560,1:2560], pixel-value [�4.501 �
10�4:1.097 � 10�4]). (D, E, F) Reconstruction of the 1601th sinogram
(area [550:2000, 550:2000] of [1:2560,1:2560], pixel-value [�1/2560:
1/2560]). (A, D) From the original dataset with 91 projections. (B, E)
Using UDNN-128 for upscaling resulting to 181 projections. (C, F) Using
UDNN-128 for upscaling resulting to 361 projections. Region of interest
presented zoomed in Fig. 23.

Figure 23
The selected area marked by the red window in Fig. 22(A) enlarged (area
[1501:1800, 701:1000] of [1:2560,1:2560]). (A, B, C) Reconstruction of the
1101th sinogram (area [550:2000, 550:2000] of [1:2560,1:2560], pixel-value
[�4.501 � 10�4:1.097 � 10�4]). (D, E, F) Reconstruction of the 1601th
sinogram (area [550:2000, 550:2000] of [1:2560,1:2560], pixel-value
[�1/2560:1/2560]). (A, D) From the original dataset with 91 projections.
(B, E) Using UDNN-128 for upscaling resulting in 181 projections. (C, F)
Using UDNN-128 for upscaling resulting in 361 projections. Similar to the
earlier Figs. 12, 18 and 20, the proposed method (panels B, C, E and F)
produces more clear reconstructions with less noise.



Based on the above experiments, the best performing

version of UDNN, UDNN-128, was able to achieve better

accuracy than Bertram et al.’s directional interpolation

method and cubic interpolation (Bertram et al., 2009).

We conjecture that additional accuracy or faster training/

execution times can be further achieved by exploring different

network architectures and/or training strategies. Beside that,

one could also investigate network architectures for different

upscaling factors or type of data (e.g. MRIs).

For the software used for our method see Bellos et al.

(2018c), and that for the datasets see Bellos et al. (2018a,b).
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