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High-throughput protein crystallography using a synchrotron light source is an

important method used in drug discovery. Beamline components for automated

experiments including automatic sample changers have been utilized to

accelerate the measurement of a number of macromolecular crystals. However,

unlike cryo-loop centering, crystal centering involving automated crystal

detection is a difficult process to automate fully. Here, DeepCentering, a new

automated crystal centering system, is presented. DeepCentering works using a

convolutional neural network, which is a deep learning operation. This system

achieves fully automated accurate crystal centering without using X-ray

irradiation of crystals, and can be used for fully automated data collection in

high-throughput macromolecular crystallography.

1. Introduction

Automated experimental environments in macromolecular

X-ray crystallography (MX) have been developed at many

synchrotron light sources and have greatly contributed to

accelerating the determination of crystal structures. Auto-

mated diffraction experiments require an accurate and cred-

ible centering system of protein crystals. Here we present

DeepCentering, a novel centering system based on automated

sample recognition by digital image processing using a

convolutional neural network (CNN).

Existing automated centering systems developed at various

synchrotron facilities are roughly categorized into three types

in terms of sample recognition: digital photo-image proces-

sing; X-ray diffraction (so-called raster scanning); and others,

such as ultraviolet (UV) or infrared (IR) irradiation (Asanov

et al., 2001; Bourgeois et al., 2002; Pohl et al., 2004; Vernede et

al., 2006; Chavas et al., 2011; Madden et al., 2011). Among

these methods, image-processing-based systems are by far the

simplest method as they do not require specific apparatus or

X-rays, just an image-processing program such as feature

extraction. However, the accuracy of the sample recognition

using this method is generally lower than that of manual

centering by human eye.

Diffraction-based crystal centering (Song et al., 2007)

has been implemented at many synchrotron MX beamlines.

However, this method requires a whole scan over the cryo-

loop, which is time-consuming even when using high-frame-

rate detectors such as the EIGER series (DECTRIS). In

particular, the scan time increases when using the larger cryo-
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loop compared with the beam size. Moreover, diffraction-

based centering cannot avoid radiation damage even though

the incident beam is attenuated. Furthermore, the dose effect

is a severe problem for protein crystals when using room-

temperature crystallography.

The second-harmonic-generation-based crystal centering

system (Kissick et al., 2013) is a dose-free method that

provides high centering accuracy. The system is able to detect

only chiral crystals that are suitable for detecting protein

crystals. However, this system requires additional apparatus

such as femtosecond IR lasers.

While the digital photo-image processing method has

many advantages, the development of an effective automated

centering system has proved difficult. Some existing systems

work by subtracting background images to detect the outline

of cryo-loops and use simple feature extraction to detect

crystals in the images (Lavault et al., 2006). However, these

methods are unable to cope with images with a significant

background change. The accuracy of the crystal detection also

decreases when the boundary between the crystal and mother

liquor is ambiguous. However, there have been recent tech-

nological breakthroughs in object detection techniques in

digital image processing, most of which utilize CNNs. The

method has been adopted in various fields, not only in object

detection but also in crystallography, particularly in X-ray

serial crystallography (Ke et al., 2018) and crystallization

(Bruno et al., 2018). DeepCentering was developed based on a

CNN to apply the method to cryo-loop and crystal detection

for automated centering, and is expected to provide a novel

system based on the nonconventional object detection algo-

rithm which is robust against background changes and cases

where the boundary between the crystal and mother liquor is

ambiguous.

DeepCentering has been implemented at SPring-8 MX

beamlines and tested by various loops and crystals, and has

shown a high success rate of centering crystals at the beam

center. DeepCentering was achieved using accurate auto-

mated crystal centering without X-rays or an additional

apparatus. This system is applicable to fully automated

diffraction data collection and structure determination.

2. Methods

2.1. Development of cryo-loop and crystal detecting
programs

Several deep learning frameworks are currently available,

such as Tensorflow, Chainer, Caffe and MxNet. DeepCen-

tering was developed utilizing TensorFlow Object Detection

API (Huang et al., 2017) because it is easy to use and the

framework was actively developed and is frequently upgraded

worldwide. We developed two programs to detect the cryo-

loop and crystal (hereafter ‘LoopDetector’ and ‘Crystal-

Detector’, respectively), as components of DeepCentering.

Both detectors were trained using Single Shot MultiBox

Detector (Liu et al., 2016), a robust CNN method. To develop

LoopDetector, 6031 cryo-loop images were prepared as

training data taken for mail-in data collection at SPring-8

BL26B2 (Okazaki et al., 2008; Murakami et al., 2012). We

marked the cryo-loop area in each image to highlight the

cryo-loop position for the TensorFlow Object Detection API

training program. In order to avoid overfitting, we first split

the 6031 cryoloop images into a training set and a test set using

24 batch numbers. Both sets of loss functions were monitored.

Learning was terminated at an epoch number of 50, which is a

sufficiently small epoch number where the loss function

difference between the learning set and the test set is not

so large

For CrystalDetector, real crystal images in the cryo-loops

were initially used as training data; however, CrystalDetector

trained using these data was unable to detect crystals in the

images sufficiently. Therefore, various polygon patterns such

as triangular and tetragonal generated using the Python PIL

library were used as training data instead (Fig. 1). In total, 418

images were used as training data. Although the number of

images for the training data was minimal from the viewpoint

of deep learning, the practical CrystalDetector was appro-

priately trained due to the nature of the protein crystals, as

their shapes matched the prepared training data. Since the

boundaries between the crystal and mother liquor of the real

crystal images were ambiguous, polygon patterns with clear

edges were suitable for training data within the limited

training data. Unlike in the case of LoopDetector, when

CrystalDetector overfits, it incorrectly recognizes the entire

image as a crystal, so it was possible to immediately judge that

the learning was not successful. Therefore we trained with

multiple epoch numbers without splitting all the images into

training and test sets. The validation of the result was actually

performed using the newly prepared crystal images. The batch

number was also 24 for CrystalDetector. As a result, when the

short communications

1362 Ito, Ueno and Yamamoto � DeepCentering J. Synchrotron Rad. (2019). 26, 1361–1366

Figure 1
Examples of training images used in CrystalDetector. A total of 418
images were used as training models. All images were generated by
Python PIL library.



epoch number is 8, the detection result is much better than for

the cases of other epoch numbers, so we selected this epoch

number to create a crystal detector.

2.2. Sample detection testing and fully automated structure
determination by DeepCentering

DeepCentering was implemented and all test experiments

were performed at BL26B2, which has standard bending-

magnet beamline design at SPring-8 (Ueno et al., 2006). The

beamline was aimed to acquire high-throughput data from

vast amounts of macromolecular crystals, applicable for

routine data collection such as ligand screening. The end-

station is equipped with a horizontal goniometer with an air-

bearing spindle unit and a three-dimensional pulse motor

stage for crystal positioning. A digital microscope coaxial to

the X-ray beam with an automatic zooming function is avail-

able for sample observation and capturing VGA 24-bit digital

color images. The typical beam size and photon flux at the

sample are 80 mm � 90 mm, in horizontal and vertical full

width at half-maximum (FWHM), and

1.5 � 1011 photons s�1 using an X-ray

energy of 12.4 keV.

First, a test experiment was

conducted for cryo-loop detection

using LoopDetector with 100 samples

consisting of two types of loops: nylon

and lytholoop. Second, the crystal

detection test was performed as follows.

Crystals were kindly provided by

beamline users, and the images were

manually captured by the digital

microscope at the beamline. The total

number of images was 960. Finally, the

test images were processed using Crys-

talDetector to evaluate success rates,

and the whole centering flow that covers

the loop centering and the crystal

detection using lysozyme crystals was

tested. Afterwards, the automated

system proceeded to diffraction data

collection, followed by data processing

using KAMO (Yamashita et al., 2018)

and a structure determination pipeline

locally developed based on Dimple

(Winn et al., 2011). Data processing and

structure refinement statistics were

compared with diffraction data from

the same protein crystals with manual

centering. All experimental statistics

are shown in Fig. 2.

2.3. Flow of the automated centering
procedure

The automated centering procedure

using DeepCentering was performed

as follows (Fig. 3). Remarkably, this

automated centering system does not

require initial processing of images or a

digital microscope, such as binarization

of captured images and optimization of

brightness and contrast. (1) Cryo-loop

centering was performed from two

directions with LoopDetector. Firstly,

an image was taken at a reference

spindle angle, and then the goniometer
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Figure 2
Data processing and structure refinement statistics of lysozyme crystals by DeepCentering and
manual centering. Data collection covered 180� of the ! axis, and the rotation angle and exposure
time were 0.5� and 0.5 s for each frame, respectively. All data were measured using a 1 Å wavelength
at 150 mm camera distance (edge resolution of the detector = 1.58 Å), and shutterless
measurement.



spindle was rotated by +90� from the first angle and a second

image was taken. (2) The zoom ratio of the coaxial camera was

changed to higher magnification for precise centering, and the

sequence was repeated from step (1) until the loop position

was converged. (3) The cryo-loop face was oriented perpen-

dicular to the X-ray beam, so that the width of the detected

object was maximized, using the least-squares fitting method.

(4) To improve results of crystal detection, we installed a

defroster system whereby the cryo-loop is sprayed with liquid

nitrogen to remove frost. (5) The crystal on the cryo-loop was

detected using CrystalDetector, and finally crystal centering

was completed. On average, it took 117.2 s (ten attempts) for

the whole crystal centering sequence. At this stage, all calcu-

lations for the sample detection were executed on a CPU-

based calculator. DeepCentering is called about ten times in

the whole centering process. Also, one detection time is about

2.0 s when using CPU and less than 0.2 s when using GPU.

Therefore, if a GPU machine is used for crystal centering, the

centering time will be shortened by 20 s at least.

3. Results

3.1. Cryo-loop centering using LoopDetector

We tested 100 samples using LoopDetector to assess

the cryo-loop detection accuracy. All loop detection was

successful and loop centering was correctly completed as

rough centering to proceed to the next step (i.e. crystal

centering using CrystalDetector). Compared with the

conventional method that utilizes background subtraction,

DeepCentering does not require an update of background

images or maintenance of the gain control of the digital

capture device.

3.2. Crystal detection using CrystalDetector

In total, 960 crystal images taken at the beamline were used

for off-line evaluation of CrystalDetector. Crystal detection is

considered as successful when the crystal is within 30 mm of

the beam center, which corresponds to 30% of the beam size

FWHM. The success rate of the test result was 90.5% (869/960

images). In many cases, the crystals were detected correctly

(Fig. 4) despite the edge of the crystal being ambiguous.

Typical cases in which DeepCentering failed to detect crystals

included frost sticking to the cryo-loop, severely low contrast

images between the crystal and the mother liquor on the cryo-

loop (Fig. 4), and crystals that were invisible to the human eye.

3.3. Fully automated structure determination

A test operation of the automated diffraction data collec-

tion and structure analysis was conducted for test samples of

15 lysozyme crystals using DeepCentering at BL26B2. Data

collection and structure refinement statistics were compared

with data collected from the same crystals by manual

centering. The automated centering procedure for all lyso-

zyme crystals resulted in success. All test crystals were

harvested from an identical crystallization lot, and showed a

similar quality to diffract up to the detector edge that corre-

sponds to 1.58 Å. Data processing and structure refinement

results also showed similar quality for all data sets on average

(Fig. 2). There was no significant difference in data collection

statistics between DeepCentering and manual centering

experiments. Compared with the other crystals, crystals 2, 3, 4

and 6 showed poorer intensity statistics in Rmeas. This is

probably due to the final centering position of these four

crystals being slightly further from the centering position of

manual centering than the other crystals (Figs. 5 and 6). As a

result, the centering position of DeepCentering is in the

thinner part of the crystal than that of manual centering, which

makes the diffracted volume I/�(I) in DeepCentering smaller

than that of manual centering. In addition, Rmeas of Deep-

Centering tended to show higher values compared with the

manual centering values. This indicates that manual centering

is more strictly centered.

However, refinement statistics for all crystals show that

there was no significant difference between both centering

methods. The averaged Rfactor /Rfree values were 27.9/30.0 by

DeepCentering and 28.0/29.7 by manual centering (Fig. 2).

From these statistics, DeepCentering is considered to work

correctly to detect the crystals, which is essential for structure

determination.
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Figure 3
Flow of DeepCentering. LoopDetector is used a few times until the loop
position is converged. Before CrystalDetector operates, an automatic
defroster system pours liquid nitrogen onto the sample to remove frost
stuck to the cryo-loop.
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Figure 4
Detection results of CrystalDetector. (a) Successful cases, (b) failed cases. CrystalDetector worked correctly in almost all cases. Green bounding boxes
represent detected areas of CrystalDetector and the final crystal positions are shown in the center of boundaries. The actual length of all images was
600 mm � 765 mm.

Figure 6
Crystals for which the centering positions from DeepCentering were
slightly different from manual centering. Red and white crosses show
the position of manual centering and DeepCentering, respectively. The
numbers on the top left correspond to the crystal numbers in Fig. 5.

Figure 5
Discrepancies in the centered position with DeepCentering measured
from the beam center. The distance of crystal 2 is longer than that of the
others because of its large size (500 mm at the major side) and the crystal
is partly shaded.



4. Conclusions and future plans

We have developed an automated crystal centering system

using deep learning that has a high success rate of automated

crystal centering. DeepCentering was applied to fully auto-

mated structure determination, including ligand screening.

Since DeepCentering does not use X-rays, it might be suitable

for room-temperature crystallography.

A hypothesis of promising future application of DeepCen-

tering is in situ data collection using a crystallization plate

scanner, which is available at one of the SPring-8 MX beam-

lines. Automation of series data collection for a large number

of crystals in multi-well crystallization devices such as the SBS

crystallization plate and micro-fluid devices, followed by the

structure analysis pipeline, might be expected to accelerate

the cycle of structure determination in ligand screening

experiments.

DeepCentering is expected to continuously improve the

accuracy of cryo-loop and crystal detection by increasing the

amount of training data. There is also scope to improve object

detection accuracy. Specifically, current DeepCentering

outputs detection results as a boundary box (rectangle);

however, an improved method, such as Mask R-CNN (He et

al., 2017), which outputs the object as pixels, could be used to

improve the detection accuracy.

5. Program availability

The object detection aspect of DeepCentering utilizes

TensorFlow Object Detection API, and information and

documentation can be found at https://github.com/tensorflow/

models/tree/master/research/object_detection. The program-

ming language used is Python 2.7. Other centering aspects

including instrument control of the beamline utilizes BSS, the

standard data collection program at SPring-8 (Ueno et al.,

2005). DeepCentering works using Linux CentOS 6.5 with

kernel 2.6.32431. Currently, DeepCentering is available at

BL26B2, SPring-8; however, it is straightforward to implement

at other SPring-8 MX beamlines that apply common control

systems and experimental devices. The possibility of adapting

this method to other facilities should be discussed with

the authors.
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