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In this work the longitudinal shifts of the focal plane of an ellipsoidal mirror

induced by longitudinal shifts of the source and by the optical figure error of

the mirror itself are investigated. The case of an ideal mirror illuminated by a

Gaussian beam is considered first, deriving an analytical formula predicting the

source-to-focus shift. Then the realistic case of a mirror affected by surface

shape defects is examined, by taking into account metrological data and

numerically solving the Huygens–Fresnel integral. The analytical and numerical

solutions in the ideal and real cases are compared. Finally, it is shown that

an additional dependence of the focal shift is introduced on the wavelength and

the pointing angle of the source. Both effects are investigated by numerical

computations. We limit the treatment in the XUV spectral range, choosing as a

test bench the Kirkpatrick–Baez mirror system of the DiProI and LDM end-

stations and at the FERMI seeded free-electron laser (FEL). The work is

primarily aimed at disentangling the different causes of focal shift at FEL light

sources, where source position, wavelength and pointing angle are either tunable

or rapidly fluctuating. The method can be easily extended to parabolic reflectors

and refractors (lenses) with other kinds of illuminating sources and wavelengths.

1. Introduction

Ellipsoidal or elliptical mirrors are popular focusing elements

at X-ray wavelengths (Nightingale, 1993; Citterio & O’Dell,

2004). They are used both for imaging, like in astronomical

telescopes, and for concentrating high-energy flux into a

micrometre or sub-micrometre spot size, like in synchrotrons

or free-electron lasers (FELs) (Kim et al., 2017). For these

reasons, their performance has been thoroughly studied, with

a particular emphasis on the causes that reduce their focusing

(or imaging) sharpness. These causes typically include the

surface shape accuracy and the surface finishing. Since

they represents a crucial element in mirror manufacturing,

different authors have tackled the idea of using the surface

metrology to predict, by means of different approaches, the so-

called point spread function, which provides a quantification

of the smallest achievable spot size (or equivalently of the best

image resolution) (Takacs, 1986; Willingale, 1988; O’Dell et al.,

1993; Aschenbach, 2005; Raimondi & Spiga, 2015).

In this work, we intend to put the accent on a different

aspect, i.e. the shift of the focal plane along the propagation

direction and its possible causes.

The original motivation lies in the recent spread of the use

of elliptical mirrors across FEL facilities. These light sources

are distinguished from synchrotrons, the other high-perfor-

mance terrestrial X-ray sources, not only for their unique

radiation properties (laser-like coherence and ultra high-bril-
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liance) but also for the mechanism used to extract radiation

from the electron beam. In particular, coherent emission from

FELs relies on an instability that develops on the electron

beam when passing through a long undulator. Due to this

emission mechanism, important parameters such as the

effective source position and dimension may not be known

a priori (Bachelard et al., 2011), as they depend on the parti-

cular machine configuration required for optimizing the lasing

process. The longitudinal source position, for instance, may

suffer large r.m.s. fluctuations, of the order of �7–10 m

(Kayser et al., 2016; Liu et al., 2018). In some cases, it can be

even adjusted to meet the experiment needs: for instance, in

the case when the FEL undulating length is split into different

sections to accommodate the request of a multicolor FEL

(Allaria et al., 2013; Hara et al., 2013; Lutman et al., 2016;

Ferrari et al., 2016; Prince et al., 2016), or when different

sections are tuned to emit at a distinct polarization (Allaria et

al., 2014; Ferrari et al., 2015). The scenario is really complex,

since both the source metrology and the focusing optics play a

role, and the shift of the focal plane is determined by the

interplay between the two. In particular, the demagnification

ratios at play are very large (1/M’ 1/50� to 1/100�), so that a

small shift of the source translates into a large shift of the focal

spot at the end-station.

The longitudinal position of the source, however, is not

the sole responsibility of the shift of the focal plane. In the

presence of optics affected by surface error defects, there

are other parameters that may induce a focal shift. The most

representative ones are the wavelength of the source and its

angular pointing. Their importance lies in the fact that FELs

are machines with high wavelength tunability, and with char-

acteristic shot-to-shot jitter of the electron orbit, which ulti-

mately transfers to the wavevector of the photon beam. Both

phenomena induce an additional shift of the focal plane that is

not connected with the longitudinal position of the source, and

which therefore needs a dedicated investigation.

In this perspective, the first aim of this work is to investigate

the longitudinal shifts of the focal spot of an ellipsoidal mirror

induced by longitudinal shifts of the source. In doing so, we

will first consider the simple case of an ideal mirror, deriving

an analytical formula predicting the source-to-focus shift.

Then we will examine the realistic case of a mirror affected by

surface defects, by numerically solving the Huygens–Fresnel

integral. We will compare the analytical and numerical solu-

tion, both in the ideal and real cases. Finally, we will investi-

gate the dependence of the focal shift on the wavelength and

the pointing angle. This will be done by means of numerical

simulations, since the effects are intimately connected to the

surface defects and require metrological data to be taken

into account. We will limit the treatment to the XUV spectral

range, choosing as a test bench the Kirkpatrick–Baez (K–B)

mirror system of the DiProI and LDM beamlines (Pedersoli et

al., 2011; Capotondi et al., 2015; Svetina et al., 2015) at the

FERMI FEL (Allaria et al., 2015). It is interesting to remark

that FERMI operates in the so-called ‘seeded’ configuration

(Prazeres et al., 1988; Doyuran et al., 2001), where the initial

instability is triggered by a high-power conventional laser. As

a consequence, the final emitted light has a high degree of

spectral purity, and it can be likened to a TEM00 Gaussian

mode (Allaria et al., 2012). For this reason, in the following we

will use the Gaussian source over the conventional point

source emitting spherical waves, since the diffraction of a

Gaussian beam focused through an elliptical mirror causes, in

general, an extra focal shift, as we will see in the next section.

2. Focusing a Gaussian beam through an ideal
elliptical section

2.1. Analytical derivation

The focusing of a spherical Gaussian beam through a thin

lens has been extensively investigated by Siegman & Weichel

(1974) and Self (1983) in a geometrical optics approach.

Focusing upon conical reflecting surfaces has been treated in

many possible configurations, including reflection and refrac-

tion at tilted ellipsoidal surfaces (Massey & Siegman, 1969;

Yu & Dou, 2010), reflection on paraboloid and hyperboloid

interfaces (Abadi et al., 2015; Gangopadhyay & Sarkar, 1997)

and the effects of distortions on Gaussian beams upon ellip-

tical mirrors. However, none of these works present in a

simple form the results we are interested in, i.e. providing the

relation between the longitudinal source shift and the corre-

sponding focal shift of a Gaussian beam focused by an ellip-

tical mirror.

The situation of interest is illustrated in Fig. 1: a curved off-

axis elliptical profile is used to focus a Gaussian source which

is ideally located at the focal point F1 of the ellipse. With

respect to cylindrical coordinates (z1, r) with the origin at F1,

the intensity distribution of a propagated Gaussian beam

normalized to unit total beam power is

I z1; rð Þ ¼ 2=�w z1ð Þ
2 exp �2r2=w2 z1ð Þ

� �
; ð1Þ

where w0 is the beam radius at the waist (z1 = 0), zR � �w2
0=�

is the Rayleigh length, and w(z1) = w0[1 + (z1 /zR)2]1/2 is the

evolving beam size. If the mirror’s material length is small

with respect to the total focus-to-focus distance, the radii of

curvature of the incident and reflected beams ( f1, f2) can be

treated as constants. The quantities f1 and f2 are thus referred

to as the focal lengths of the mirror. In a FEL facility the focal

point F1 is typically set at the center of the last undulator.
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Figure 1
Geometry of an off-axis elliptical mirror.



We are interested in finding the relation between the shift

�f2 of the focal plane (around F2) and the shift �f1 of the

source (around F1). The focal lengths of the vertical (V) and

horizontal (H) K–Bs and the beam radius w0 used throughout

this work are reported in Table 1.

If we had a parabolic mirror (or a thin lens) of focal length f,

the solution would be expressed by the lens-maker equation

for a Gaussian beam (Self, 1983),

s2

f
¼ 1þ

s1

f
� 1

� �
m2 zR; s1; fð Þ: ð2Þ

Here s1 and s2 are the source-to-lens and the lens-to-image

distances, oriented as in Fig. 1, and m(zR, s1, f) is the Rayleigh

length-dependent magnification, defined as

m zR; s1; fð Þ ¼
1

ðs1=f � 1Þ2 þ zR=fð Þ
2

� �1=2
: ð3Þ

Equation (2) is similar to the ordinary lens-maker equation

except for the presence of the term zR, which discriminates

between the cases of a Gaussian (zR > 0) or a point-like source

(zR = 0). These two kinds of source have different behavior

when focused, as we will see in Section 2.2.

Equation (2) can be applied to an elliptical section of focal

lengths f1, f2 by finding the equivalent focal length f. This

corresponds to approximating an elliptical reflector to a

parabolic reflector, and is done by matching the incident and

reflected phase front radii of curvature ( f1, f2) at the interface.

The method was first proposed in the field of ellipsoidal

reflectors for antennas (Chu, 2004), and then also reported by

Goldsmith (1998) and Yu & Dou (2010). The equivalent focal

length of an elliptical arc can be expressed as

1

f
¼

1

f1

þ
1

f2

¼
b2

4a cos2 �GA

; ð4Þ

where a and b are the coefficients of an ellipse written in the

canonical form x2/a2 + y2/b2 = 1 and �GA is the grazing angle.

Equation (4) can be regarded as the equivalent focal length of

a section of the ellipse in terms of the distances to the focii,

and allows us to treat an elliptical arc section as a single-focal-

length optics. The conditions for which equation (4) holds are

discussed by Chu (2004), and they involve considerations on

the symmetry of the mirror (related to the f1 /f2 ratio) and on

the incidence angles used. Without entering the details, since

in our setup the material length of the mirror L is very small

compared with the major axis of the ellipse (L/2a’ 2 � 10�2),

it turns out that proper conditions are met. A simulation

confirming the validity of the underlying assumption will be

shown in Section 3.3.

In order to find the relation mapping the source shift into

the focal shift, it is useful to define �f1 = s1� f1 and �f2 = s2�

f2 (where f1 and f2 are constants) which, substituted into

equation (2), yields

�f2 �f1; s1; f ; zRð Þ ¼ m2 �f1; f ; zRð Þ�f1: ð5Þ

When considering a beam of fixed waist radius w0, it may be

convenient to replace zR in equation (5). Before discussing

equation (5), we will consider the Gaussian nature of the

source.

2.2. Focal shift due to source Gaussianity

Equations (2) and (4) set an analogy between a thin lens

and an elliptical-arc section when they are illuminated either

by a Gaussian beam or by a uniform spherical wave.

The most striking difference between a spherical wave and a

Gaussian beam is that, while the first one placed at the front-

focal plane of a positive lens yields a collimated beam

[Fig. 2(a)], a Gaussian waist yields an emerging beam with a

waist at the back-focal plane [Fig. 2(e)]. Such a behavior is

shown in Fig. 2, where equation (2) is shown in graphical form

for different values of zR/f. If zR = 0 (point source), then

equation (3) has a singularity for s1! f, which generates the

branches of a hyperbola of Fig. 2 (left). This corresponds to

having a collimated beam, as predicted by geometrical optics.

Conversely, if zR /f > 0 (Gaussian source), the singularity is

removed and all the curves pass through the point s1 /f = s2 /f =

1. This corresponds to the simultaneous existence of a waist in

the front and back focal planes (s1 = s2 = f).

By introducing the equivalent focal length f, the behavior of

an elliptic section can be described in the same way: a point

source set at the focal point F (corresponding to the effective

focal length f) is imaged into a collimated beam [Fig. 2(c)].

Such a configuration is of little interest for an elliptical mirror,

since collimating can be better achieved by means of pure

parabolic profiles. In its usual operating condition, an elliptical

arc section focuses a point source at F1 into F2 [Fig. 2(d)]. This

case can be likened to a source placed off the focal point of a

lens [Fig. 2(b)].

If we now consider a Gaussian source, then the waist at the

front focal point F1 is no longer focused at F2 but at a shorter

distance f < s2 < f2 [Figs. 2(h) and 2( f)]. For a beam of fixed

waist parameter w0 , the Gaussian-induced focal shift strongly

depends both on the wavelength [Fig. 3(a)] and on the ratio

f1 : f2 [inset of Fig. 2(d)], according to equations (2) and (4).

Using the parameters of Table 1, the focal shift is negligible

at large wavelengths (�f2
<
� 100 mm for � > 40 nm) while it

becomes progressively appreciable at shorter wavelengths

(�f2 ’ 2 mm at � = 4 nm). In evaluating �f2(�; s1, f) it is

stressed that the source is meant to be at F1 (�f1 = 0), and thus

the existence of a focal shift is solely due to the Gaussian

nature of the source. Although in principle it would provide an

indirect way of measuring the source waist size, it will be clear

from the following sections that the presence of defects in
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Table 1
Parameters of the elliptical mirror and of the photon source used
throughout this work.

m0 = f2 /f1 is the nominal magnification. w0 is the beam size parameter.

f1 f2 f 1/m0 w0

V 98.754 1.750 1.700 57.1
180 mm

H 99.304 1.200 1.186 82.754



the mirror surface largely alters the fashion of the curve

in Fig. 3(b).

2.3. Focal shift due to source shift

Equation (5) is shown in graphical form in Fig. 3 for � =

20 nm and � = 2 nm (solid curves). They can be regarded as

the non-normalized version of the curves of Fig. 2 taken for

very high values of s1 /f. Specifically, the range of s1 /f is about

f1V /fV ’ 57 for the vertical K–B and about f1H /fH ’ 83 for the

horizontal K–B, with 1/fV � 1/f1V + 1/f2V and 1/fH � 1/f1H +

1/f2H . The evaluated function �f2(�f1) exhibits just a very

mild convexity and can be approximated to a straight line

whose slope and zero-intercept are essentially determined by

the (zR)2 parameter in the function m(s1, f, zR). A detailed

plot of the magnification can be found, for example, in the

work of Self (1983). The dashed thick curves correspond to the

geometrical limit of equation (3) obtained for zR = 0, corre-

sponding to the branch of hyperbole of Fig. 2. In this case the

dependence on the wavelength has been dropped. The dashed

thin lines are obtained by setting both zR = 0 and �f1 = 0 in

equation (3), maintaining the dependence on �f1 in equation

(5). This corresponds to evaluating equation (5) using the

constant magnification value m0 = f2 /f1, i.e. the nominal
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Figure 3
(a) Solid lines: focal shift as a function of wavelength according to equation (5) (left axis). Dotted lines: normalized Rayleigh length as a function of
wavelength (right axis). Inset: relative focal shift as a function of normalized Rayleigh length for distinct values of demagnification (see legend). The
source lies at F1 (�f1 = 0). (b) Focal shift for K–B mirrors as a function of the source shift at � = 2, 20 nm. Solid line: graph of �f2(�f1) from equation (5).
Thick dashed line: graph of �f2(�f1) from equation (5) with zR = 0. Thin dashed line: graph of �f2(�f1) from equation (6) (nominal magnification).

Figure 2
Left pane: Cartesian plot of the lens formula for Gaussian beams showing the normalized source distance s1/f versus the normalized image distance
s2/f, with normalized Rayleigh length of the input beam zR/f as parameter. Dashed blue line: behavior of a hypothetical elliptical mirror with focal lengths
f1/f, f2/f. The source lying at f1/f is imaged to a distance s2/f < f2/f depending on the Rayleigh length zR/f of the source, with a single image for each value
of zR/f. The source lying at f2/f is imaged to a distance s1/f < f1/f with a number of solutions depending on the value zR/f. For a given couple of values ( f2/
f, zR/f ), there is a minimum distance s2/f < � beyond which no real image is produced. Right pane: comparison of a thin lens and elliptical mirror when
illuminated by a spherical wave (upper row) and a Gaussian wave (lower row). F1, F2, F mark the points corresponding to the focal lengths f1, f2, f,
respectively [equation (4)]. (a, c) Collimating a point source to a plane wave. (e, g) Waist-to-waist imaging. (b, d) Extrafocus-to-intrafocus imaging. In an
elliptical mirror (c), the relevant extrafocal/intrafocal points are the focii F1, F2. ( f , h) The same as before but with a Gaussian beam. In an elliptical
mirror (h), the waist at F1 is imaged into an intermediate position between F and F2.



magnification of the elliptical mirror. From the plot it turns out

that, for small source shifts and within the geometric limit, the

focal shift can be approximated to a line of the form

�f2 ¼ m2
0�f1: ð6Þ

We conclude this section by saying that the aforementioned

results can be easily extended to the case of a possibly highly

non-Gaussian beam simply by introducing the so-called ‘beam

propagation factor’ M2 (Siegman, 1998). This can be done by

replacing zR with zR /M2 in the expressions of equations (1)

and (2).

3. Focal shift induced by the figure error

3.1. Numerical computing

If the mirror profile departs from its ideal shape, then the

focal shift cannot be expressed in a closed form and it shall

be numerically computed by numerical evaluation of the

Huygens–Fresnel integral. In doing so we make use of WISEr,

a physical optics simulation package that we have developed

for beamline design and the investigation of X-ray optics

performance. Originally conceived for simulating X-ray tele-

scopes, it has recently been included in the Orange Synchro-

tron Suite (OASYS) (Sanchez del Rio & Rebuffi, 2019;

Manfredda & Raimondi, 2018). In simulating the diffraction

effects from ellipsoidal mirrors we follow the prescriptions of

Raimondi & Spiga (2015). At grazing incidence, the influence

of transverse surface errors is negligible compared with

longitudinal ones (Peatman, 1997). The reflection upon a

surface can be simplified to a one-dimensional problem by

limiting it to the tangential defects only. The surface integral

reduces to one dimension in the form

E x00; y00ð Þ ¼

Z
E0 x0; y0ð Þ ð7Þ

� exp ik x00 � x0ð Þ
2
þ y00 � x00ð Þ

2
h i1=2

� �
dx0 dy0;

where, referring to Fig. 1, (x00, y00) are the coordinates on the

(one-dimensional) detector, (x0, y0) are the points on the

mirror profile, and E0 is the complex Gaussian field evaluated

on the mirror.

The new focus of the outcoming (aberrated) wavefront is

found by minimizing the spot size along the longitudinal

direction by sweeping the value of �f2 . This operation

numerically mimics the practical action of moving a screen

back and forth around the nominal focus F2 . The sought

position is labeled �f min
2 . The beam size is computed as the

half energy width (HEW), i.e. as the width containing half

of the total energy of the beam. Such a definition is generic

enough to be suitable also for non-symmetric intensity

distributions. The radius parameter w0 corresponds to the

HEW value W0 ’ 0:68� 2=
ffiffiffi
2
p

w0.

As an example, we show some computations of the HEW as

a function of �f2 . The ideal profile of the vertical K–B is used.

Fig. 4(a) provides an overview on the behavior of the HEW as

a function of the wavelength (� = 5, 10, 20, 35 nm) for a source

lying at the nominal focal plane F1 (�f1 = 0) with the nominal

emission angle (�# = 0) (Fig. 1). The trend may recall that of

the size parameter of a magnified Gaussian beam across the

waist: W(�f2) = W0[1 + (�f2 /m2zR)2]1/2. However, aperture

diffraction effects introduced by the finite longitudinal mirror-

size make the HEW deviate from the pure quadratic behavior.

For the same reason, the HEW value at the waist is larger

than its theoretical value W0 and it grows accordingly with

the wavelength.

Fig. 4(b) provides a comparison of the HEW between the

the source in the nominal and in a shifted position (�f1 = 0,

�11.25 m) combined with the cases of on-axis and off-axis

emission angles (�# = 0, �10 mrad) at � = 20 nm. The length

11.25 m corresponds to half of the total FERMI undulator

length and 10 mrad is an angular tilt which is typically

encountered. Such a small tilt of the source does not induce

any appreciable variation neither in minimum position nor

in the value of the HEW (dashed curves overlap with solid

curves). Consequently, the shift of the minimum still follows

equation (5). Similar results would be obtained for positive

values of �#, provided that the pointing deviation is small

enough to ensure negligible variation of the optical path with

respect to the focal lengths f1, f2. In the next section we will
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Figure 4
Simulated HEW as a function of the focus shift �f2 for a Gaussian source of waist radius w0 = 180 mm. The vertical K–B is considered. (a) Ideal mirror
profile, wavelength as input parameter (see legend). (b) Ideal mirror profile. (c) Real mirror profile. Color code for (b) and (c): green – source at �f1 = 0,
� = 20 nm; purple – source at �f1 =�11.25 m, �= 20 nm (radiator III); orange – source at �f1 = 0, �= 10 nm. Solid lines: source on-axis emission at �# =
0. Dashed lines: source off-axis emission at �# = �10 mrad.



see how the configuration evolves by introducing a defected

mirror profile.

3.2. The figure error

The surface defects that affect a mirror are traditionally

distinguished into figure error and roughness. Figure errors

include medium-low spatial frequencies typically within the

millimetre scale and they are measured, for example, with a

long-tracing profilometer (LTP). They can be due either to

the manufacturing process or, in an adaptive system, to

sub-optimal bending. Roughness encompasses high spatial

frequencies typically down to the micrometre scale and it

is measured via phase-shift interferometry or atomic force

microscopy. It is eminently due to the polishing process in

manufacturing and, due to its statistical nature, it should not

induce a neat curvature effect on the wavefront. For this

reason it will be neglected in this work.

In Fig. 5 we show the residual height function h(l),

computed as the difference between the measured and the

ideal curvature profiles along the longitudinal position of the

mirror l (see caption for details). The measurements were

performed ex situ with an LTP with 150 nrad angular resolu-

tion and 0.5 mm lateral resolution. The optimal curvature

(measured profile) was achieved by means of iterative least-

squares method (Signorato, 1999). The difference between

vertical and horizontal curves, in terms of shape and peak-to-

valley, is mostly due to gravitational effects: the weight of

the vertical K–B mirror induces a spontaneous deformation, a

catenary-like curve, which warps the quasi-elliptical desired

curvature generated by the active system. On the contrary, by

virtue of its orientation, the effect does not occur for the

horizontal K–B [possible solutions include shape tapering

(Nistea et al., 2017)]. A comprehensive discussion on this kind

of K–B active optical system has been given by Raimondi et al.

(2019). The footprint of the intensity distribution that effec-

tively illuminates the figure error varies on the divergence of

the beam �0 (Fig. 5, light blue curves) which depends on the

wavelength as

�0 ¼ �=�w0: ð8Þ

By adding the height function h(l) to the ideal curvature

profile of the mirror, some major changes occur in the beha-

vior of the HEW across the focus, in its minima and in its

Rayleigh range [Figs. 4(b) and 4(c)].

First, the HEW values are higher and vary more slowly as

one moves farther from the effective focal plane, resulting

in an increased Rayleigh length (computed as the distance

from the waist where the HEW is
ffiffiffi
2
p

larger). For example,

considering the case �f1 = 0 and �# = 0 [solid green lines in

Figs. 4(b) and 4(c)], the HEW at the waist is �2.4 mm in the

ideal case, while it is �5 mm in the real case. The measured

Rayleigh length almost doubles as well, ranging from �2 mm

(ideal case) to�5–8 mm (real case). Second, the minima of the

HEWs are dramatically shifted upstream by several milli-

metres, which corresponds to a shift of the focal plane of the

beam. The focal shift at � = 20 nm is �10 mm for both the

non-shifted and shifted source [solid green and purple lines,

respectively, in Figs. 4(b) and 4(c)]. However at � = 10 nm the

focal shift is �12 mm [orange curve in Fig. 4(c)], revealing

a marked dependence on the wavelength. Also, the HEW

completely departs from previously observed behavior

[Fig. 4(a)] and is no longer symmetric with respect to its local

minimum. Third, the behavior of the HEW as a function of

the pointing angle changes as well, since it assumes distinct

functional forms at the emission angles �# = 0 mrad and �# =

�10 mrad. This preludes to a slippage of HEW minimum as a

function of �#. In addition, computations performed at �# =

+10 mrad (not shown here) would report a slightly different

shape of the HEW, showing that it is by no way symmetric with

respect to the nominal propagation axis (�# = 0).

The first effect corresponds to the well known spot size

broadening due to shape defects, and it will not be discussed

here [a review of independent techniques is given by

Raimondi et al. (2013)]. The other effects are due to the

variation of the wavefront curvature induced by the figure

error. In particular, the upstream focal shift is due to the

pronounced convexity in the central region of the the vertical

residual, which reduces the focusing power of the mirror (a

concavity would yield a downstream focal shift). A deeper

analysis on the effects of convexity in the central region of the

mirror, and of the dependence of the focal planes on the

emission angle, will be described in Sections 3.4 and 3.5.

Before exploring this, however, we observe that the distance

between the waists of the non-shifted and shifted sources

(�3 mm) appears to be substantially unaltered [arrows in

Figs. 4(b) and 4(c)]. This suggests that the source shift and the

figure error act independently on the position of the focal

plane, and that they can effectively be treated independently

by adding a constant term to equation (5). For this reason we

will start our numerical investigation by testing the validity of

equation (5) in the presence of figure errors.

3.3. Dependence on the source shift

For the inspection of the focal shift we will refer to plots

like that of Fig. 6, where we represent the two-dimensional
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Figure 5
Red and black lines: figure errors of K–B mirrors (left axis). Light blue
lines: normalized intensity distributions at distinct � (right axis).



distribution of the HEW as a function of the focal shift �f2 and

of the independent variable (in this case the source shift �f1).

The color maps the spot size. The locus of points obtained by

minimizing the HEW along �f2 for any � (white dots) defines

the function �f min
2 ð�f1Þ, providing the dependence of the

focal shift on the source shift. We report the results

for the vertical K–B in the cases of ideal and real surface

profiles [Figs. 6(a) and 6(b)]. The solid white curve represents

the interpolant function �f min
2 ð�f1Þ passing through the

computed minima, while the dashed curve (light blue) corre-

sponds to the theoretical trend of �f min
2 ð�f1Þ for an ideal

mirror. Here the minima (white dots) are computed following

the spacing of the radiators II–VI (3.75 m).

For an ideal mirror, there is perfect agreement between

the numerical computation [�f min
2 ð�f1Þ] and the theoretical

prediction [�f2(�f1)] of the focal shift, confirming that the

underlying assumptions to equation (4) are satisfied. For

the real mirror, in order to match the numerical result,

equation (5) can be empirically adapted in the form

�f2ð�f1; �Þ ’ m2�f1 þ�f min
2 ð0; �Þ; ð9Þ

where the offset �f min
2 ð0; �Þ corresponds to the focal shift at

�f1 = 0 for the wavelength � [e.g. for the vertical K–B,

�f min
2 ð0; � = 20 nm) ’ 10.25 mm; �f min

2 ð0; � = 10 nm) ’

12.1 mm]. The general dependence of the offset �f min
2 ð0; �Þ on

the wavelength will be investigated in the next section. There

is still very close agreement between the corrected theoretical

predictions [equation (9)] and the computed results [solid and

dashed lines in Fig. 6(b)]. Small deviations are specific to the

figure error under consideration and may depend on the

illuminated region of the mirror (see next section). Simula-

tions performed at wavelengths in the range 2–80 nm (not

shown in this work) confirm that the focal shift due to the

source shift and to the figure error can be treated as inde-

pendent, suggesting that equation (9) is a good approximation

for a wide spectral range.

It is worth noting that the distributions of the two HEWs

are pretty similar, but in the real case the growth of the HEW

around the locum of minima is slower (i.e. the Rayleigh

length is globally longer). The behavior is clear in the inset

of Fig. 6(b), which reports the HEW profile taken in corre-

spondence of radiator V (the profiles are shifted so to have

the waist in the origin for the sake of comparison). A more

dramatic change in the fashion of the 2D-HEW is expected

when the wavelength and the source tilt will be considered as

free parameters.

3.4. Dependence on the source wavelength

In Fig. 7 we show the distribution of the HEW as a function

of the focal shift �f2 and of the the wavelength �. Results for

both the vertical and horizontal K–Bs are shown.

At a glance, the two 2D-HEW distributions as well as the

computed functions �f min
2 ð�Þ largely differ from each other.

The horizontal one has a more regular appearance, closer to

the theoretical prediction (dashed), whereas the vertical one

has a more complex fashion which largely departs from

the theory. For the vertical K–B, the focal shift has values

around 5–10 mm for � in the range 10–80 nm [�f2(�) ’

�0.1 mm nm�1
� � + 12.5 nm], whereas for the horizontal

K–B the focal shift fluctuates around 0. In both cases,

however, the trend of the focal shifts shows an abrupt change

for � <� 5 nm. Such a behavior can be explained as follows.

Generally speaking, the wavelength determines the inter-

ference effects and the extension of the illuminated mirror

area [the latter by virtue of equation (8)]. Whereas the effects

due the interference cannot be intuitively described, since

they rely on the solution of the Huygens–Fresnel integral,

the effects due to the beam footprint offer a simpler under-

standing. In the case of a beam with a very narrow footprint,

the impinging wavefront is sensitive to localized curvature

defects. These ones may easily induce a large curvature

variation over the transverse beam size, thus producing a

pronounced focal shift. Conversely, in the presence of a large

beam footprint, the overall effect on the wavefront is milder.

The reason is that the phase variations due to defects at the
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Figure 6
HEW as function of �f1 and �f2 for the vertical K–B mirror (� = 20 nm). (a) Ideal profile. (b) Real profile. Solid white line: interpolating function
�f min

2 ð�f1Þ. White dots: minima computed for values of �f1 corresponding to the position of radiators II–VI. Dashed light blue line: equation (5),
computed for continuous values of �f1. Inset: profiles of the HEW taken along �f2 for �f1 = �3.75 m (corresponding to radiator V). Solid black line:
ideal mirror. Dashed black line: real mirror. See description in the text.



small scales appear as fast fluctuations over the slower phase

error due to the larger spatial scale. It follows that, by inte-

grating over a large area (due to the extended beam foot-

print), the fast contributions partially compensate, so that it is

likely to obtain a less pronounced focal shift than the previous

case.

Clearly, the magnitude of the effect depends on the figure

error under consideration, and so it is case-specific. As far as

the focused spot size is concerned, the behavior is reversed.

Large beam footprints (i.e. large wavelengths) are more prone

to emphasize the phase errors derived from an extended

integration area, thus resulting into larger values of the HEW.

On the other hand, smaller beam footprints (i.e. smaller

wavelengths) are more likely to suppress such phase errors,

yielding smaller values of the HEW. For example, the focal

shift and the HEW for the spot focused by the vertical K–B

are �f2 ’ +11.5 mm and HEW ’ 4 mm at � = 10 nm, and

�f2 ’ +5 mm and HEW ’ 11 mm at � = 80 nm. Larger values

of the HEW at larger wavelengths are also due to edge

diffraction that becomes increasingly important. For � <� 5 nm

the direction of the focal shift is reversed, probably due to the

fact that the beam footprint sweeps through the minimum

in the residual height (at 160 mm). This fact shall be ascribed

to the particularities of the figure error under examination.

The horizontal K–B, for instance, yields a different trend of

the focal shift in the same spectral range. It is worth noticing

that, for both K–Bs, such a dependence at � <� 5 nm is so

strong that it overrides the Gaussianity effects, i.e. the focal

displacement induced by the figure error is always greater

than that induced by the finite-source size.

3.5. Dependence on the source pointing angle

We can apply a similar reasoning to the pointing angle of

the source (�#). Since the focal shift has a strong dependence

on the wavelength, it is appropriate to test the HEW for

different values of � (� = 20 nm, � = 10 nm and � = 5 nm). The

results are shown in Fig. 8 for values of �# in the range

(�30 mrad, +15 mrad). At short wavelengths (i.e. for small

beam footprints) the distribution of the HEW and

its corresponding function �f min
2 ð�#Þ

exhibit fine details over the small

angular size, appearing peaked and fast

varying, whereas at long wavelengths

(i.e. for large beam footprints) their

appearance is broader and smoother.

The fine-structure of �f min
2 ð�#Þ is

related to the short- and middle-scale

contributions of the figure error, as it is

visible by comparing Figs. 8(e), 8( f) and

Fig. 5. The two peaks of Fig. 8(e) recall

those of the vertical residual in Fig. 5,

and the wavy details in the central

region in Fig. 8( f) recall that of the

horizontal residual in the central region

of the mirror. The knowledge of

�f min
2 ð�#Þ is useful in two circum-

stances: to identify the best incidence angle on the mirror

surface and to predict the average focal shift due to the

angular jitter.

3.5.1. Best incidence angle. From Figs. 8(a), 8(c) and 8(e)

(green crosses) it can be seen that smaller values of the HEW

are achieved for negative values of �#, i.e. for larger incidence

angles than the nominal one (corresponding to �# = 0). This

suggests operating the photon beam at an effective incidence

angle ~##i = #i þ� ~##, where the work point � ~## should be

chosen by minimizing the value of the HEW. Practically, if the

HEW is slowly varying around its minimum, it is reasonable to

choose � ~## to be the smallest possible, in order to stick to the

nominal design. Since the emission angle of the source is a

consequence of the machine optimization, it cannot be easily

modified. For this purpose, plane mirrors or other deflecting

optical elements are typically used to correct the beam

trajectory. In principle, in order to reproduce a deflection �#
of the source by means of N deflecting mirrors, each deflection

angle �#k can be independently adjusted provided that the

relation
PN

k¼ 1 �#k = �#=2 is satisfied. It shall be kept in

mind, however, that the impact region of the beam on the

focusing mirror will generally change if the lateral positions

of the deflectors are not properly adjusted (Fig. 9). For this

reason, two computations with distinct numbers of deflecting

elements will not in general yield the same result, even if the

aforementioned condition on the angles is met. Practically,

however, the alignment of an X-ray focusing system is a

complex operation that is periodically achieved in beam

tuning operations, with the aid of techniques that allow a fast

and quantitative response (such as wavefront sensing). In such

a perspective, the information provided by simulating a single

source tilt, as in Fig. 8, represents a valuable support, although

not simulating the exact layout of the transport system. For

making this approximation more effective, it shall be kept in

mind that the pointing variation of the source is better mimed

by changing the pointing of most upstream deflectors, rather

than of the downstream ones.

3.5.2. Angular jitter. The angular jitter is the shot-to-shot

fluctuation of the photon beam around its mean direction of

propagation (at FERMI ’ 5 mrad r.m.s.). It is a direct conse-
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Figure 7
HEW as a function of �f2 and � for vertical and horizontal K–B. Dots: computed minima for each
sample of �. Solid line: interpolating function �f min

2 ð�Þ. Dashed line: equation (5) as a function of �
for �f1 = 0 [same as in Fig. 3(a)]. The discrepancy between theory and simulations is due to figure
errors, which induce different trends in the vertical and horizontal K–Bs.



quence of electron orbit fluctuations and, unlike the neat

change of the emission angle, it cannot be compensated by

means of static deflection optics. The angular jitter induces a

focal shift (Fig 8) that depends on the figure error and the

wavelength involved. Depending on the functional form of

�f min
2 , the fluctuations of the focal shift may also be strongly

dependent on the selected work angle � ~##. So, the choice of

� ~## is important not only for achieving a tight focusing but also

for properly minimizing the focal plane fluctuations. For

instance, an r.m.s. fluctuation of �5 mrad at � = 10 nm

[Fig. 8(c)] would yield a �12 mm focal shift and a 20% HEW

variation if taken around �# = 0 mrad (nominal work angle),

whereas the same fluctuation would yield a �5 mm focal shift

and a <5% HEW variation if taken around �# = 0 mrad

(optimized work angle). It shall be pointed out that, for many

experimental applications, the fluctuations of the HEW do

matter more than the fluctuation of �f2 they are associated

with. So, for instance, the latter afore-

mentioned case would induce a negli-

gible effect in diffraction experiments,

since the HEW is very small. Conver-

sely, it would induce a blatant effect in

beam metrology applications, where the

position of the focal plane effectively

matters.

As far as the wavelength dependence

is concerned, since the function

�f min
2;� ð�#Þ appears to be progressively

fast varying at short wavelengths, in

this spectral range the angular jitter is

expected to yield a greater effect (�f2 of

the order of a few millimetres for � =

10 nm and an angular jitter of 5 mrad

r.m.s.).

4. Conclusions

We have addressed the focusing of a

Gaussian beam through an elliptical

mirror, studying for the first time the

focal shift induced by the source displacements and the optical

figure errors. The aim was to disentangle the two contributions

at advanced light sources, such as FELs. Knowledge of the

focal shift is important whenever critical properties of the light

source, such as longitudinal position, wavelength and pointing

angle, are subject to change or are possibly unknown. This

becomes especially relevant when the requirements on the

performance of the focusing optics are highly demanding.

We have derived the focal shift for an ideal mirror

[equation (2)], starting from the corrected lens-maker equa-

tion for a Gaussian beam and approximating the elliptical arc

section of focal lengths f1, f2 to a parabolic section of focal

length 1/f = 1/f1 + 1/f2 [equation (5)]. The relation is valid for

any spectral range, it holds for conventional point-like sources

and can be extended to non-Gaussian beams by introducing

the propagation factor M2. Furthermore, we have extended

the study to the case of a real mirror affected by measured
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Figure 8
HEW as a function of �f2 and �# for K–B mirrors. (a, b) � = 20 nm. (c, d) � = 10 nm. (e, f ) � =
5 nm. Dots: computed minima for each sample of �#. Solid lines: interpolating function �f min

2 ð�#Þ.
Dashed lines: theory.

Figure 9
(a) Initial alignment. (b) Pitched mirror (new
exit angle and transverse position). (c) Pitched
and shifted mirror (new exit angle, same
transverse position).



figure errors. We have considered a set of K–B mirrors oper-

ating in the XUV bandwidth at the seeded FEL FERMI

(Trieste, Italy). Simulations were performed in the 2–80 nm

wavelength range with a Gaussian beam of size w0 = 180 mm

(compatible with FERMI characteristics). The focal shift as a

function of the wavelength � and of the source pointing angle

�# has been numerically investigated. We observe that the

presence of figure errors substantially affects the dependence

of the focal shift on � and �#, inducing a deviation from the

theoretical predictions. For the vertical K–B, we computed a

neat shift of 5–11 mm in the spectral range 10 nm < � < 80 nm,

whereas a negligible shift is induced by the horizontal mirror.

The differences are ascribed to the figure error, which is

smaller in the latter case. The pointing-related dependence of

the focal shift is strongly dependent on the wavelength as well.

For instance, a variation of �#’�5 mrad around the nominal

pointing direction yields a shift of�1.5 mm at � = 10 nm and a

shift of �11 mm at � = 5 nm.

The results presented in this paper identify different

contributions to the focal shift, which can be due to either a

genuine source shift or to the effects of the figure error on the

wavelength and pointing instabilities. The disentanglement of

these contributions opens the way to a manifold of applica-

tions, including: predicting focal spot changes at the end-

station, optimizing the alignment of the optics and improving

source metrology. This is especially true when evaluating the

fluctuations of the source position, as the angular jitter can

be mistaken with a source jitter. Such an effect is expected to

become even more critical at SASE-FEL sources, where the

angular jitter is inherently larger than that in a seeded FEL

because of the longer path that electrons have to cover to

reach saturation in the light emission.

The approach developed in this work can be profitably

applied to the study of hard X-ray mirrors, which are char-

acterized by much lower r.m.s. figure errors (<10 nrad) and

outstanding focusing performance. At hard X-ray wave-

lengths, the scattering from surface roughness is not negligible

and it largely contributes to the HEW of the focal spot.

However, due to its stochastic nature, the roughness should

not affect the longitudinal position of the focal plane. None-

theless, this prediction should be validated with dedicated

numerical simulations. In this regard, the Database for

Metrology (DABAM) provides a valuable source for the

reader that may be interested in extending the scope of this

work at X-ray wavelengths.

Acknowledgements

We acknowledge Enrico Allaria for the inspiring discussions.

References

Abadi, M. M., Ghassemlooy, Z., Smith, D. & Ng, W. P. (2015). J
Electr. Comput. Eng. Innov. 3, 1–11.

Allaria, E., Appio, R., Badano, L., Barletta, W., Bassanese, S.,
Biedron, S., Borga, A., Busetto, E., Castronovo, D., Cinquegrana,
P., Cleva, S., Cocco, D., Cornacchia, M., Craievich, P., Cudin, I.,
D’Auria, G., Dal Forno, M., Danailov, M., De Monte, R., De Ninno,
G., Delgiusto, P., Demidovich, A., Di Mitri, S., Diviacco, B., Fabris,

A., Fabris, R., Fawley, W., Ferianis, M., Ferrari, E., Ferry, S.,
Froehlich, L., Furlan, P., Gaio, G., Gelmetti, F., Giannessi, L.,
Giannini, M., Gobessi, R., Ivanov, R., Karantzoulis, E., Lonza, M.,
Lutman, A., Mahieu, B., Milloch, M., Milton, S., Musardo, M.,
Nikolov, I., Noe, S., Parmigiani, F., Penco, G., Petronio, M., Pivetta,
L., Predonzani, M., Rossi, F., Rumiz, L., Salom, A., Scafuri, C.,
Serpico, C., Sigalotti, P., Spampinati, S., Spezzani, C., Svandrlik, M.,
Svetina, C., Tazzari, S., Trovo, M., Umer, R., Vascotto, A.,
Veronese, M., Visintini, R., Zaccaria, M., Zangrando, D. &
Zangrando, M. (2012). Nat. Photon. 6, 699–704.

Allaria, E., Badano, L., Bassanese, S., Capotondi, F., Castronovo, D.,
Cinquegrana, P., Danailov, M. B., D’Auria, G., Demidovich, A., De
Monte, R., De Ninno, G., Di Mitri, S., Diviacco, B., Fawley, W. M.,
Ferianis, M., Ferrari, E., Gaio, G., Gauthier, D., Giannessi, L.,
Iazzourene, F., Kurdi, G., Mahne, N., Nikolov, I., Parmigiani, F.,
Penco, G., Raimondi, L., Rebernik, P., Rossi, F., Roussel, E.,
Scafuri, C., Serpico, C., Sigalotti, P., Spezzani, C., Svandrlik, M.,
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