
research papers

1448 https://doi.org/10.1107/S1600577519006696 J. Synchrotron Rad. (2019). 26, 1448–1461

Received 24 October 2018

Accepted 9 May 2019

Edited by P. Fuoss, SLAC National Accelerator

Laboratory, USA

1This article will form part of a virtual special

issue on X-ray free-electron lasers.

‡ These authors contributed equally to this

work.

Keywords: Karabo; control system; physics

facility; experiment control; data analysis.

Supporting information: this article has

supporting information at journals.iucr.org/s

The Karabo distributed control system1

Steffen Hauf,a‡ Burkhard Heisen,a,b‡ Steve Aplin,c Marijan Beg,a

Martin Bergemann,a Valerii Bondar,a Djelloul Boukhelef,a Cyril Danilevsky,a

Wajid Ehsan,a Sergey Essenov,a Riccardo Fabbri,a Gero Flucke,a

Daniel Fulla Marsa,a Dennis Göries,a Gabriele Giovanetti,a David Hickin,a

Tobiasz Jarosiewicz,a Ebad Kamil,a Dmitry Khakhulin,a Anna Klimovskaia,a

Thomas Kluyver,a Yury Kirienko,a Manuela Kuhn,c Luis Maia,a Denys Mamchyk,a

Valerio Mariani,c Leonce Mekinda,a Thomas Michelat,a Astrid Münnich,a

Anna Padee,a Andrea Parenti,a Hugo Santos,a Alessandro Silenzi,a

Martin Teichmann,a Kerstin Weger,a John Wiggins,a Krzysztof Wrona,a Chen Xu,a

Christopher Youngman,a Jun Zhu,a Hans Fangohra,d and Sandor Brockhausera,e*

aEuropean X-ray Free Electron Laser Facility GmbH, Holzkoppel 4, Schenefeld, Germany, bCybus GmbH,

Herlingsburg 16, 22529 Hamburg, Germany, cCentre for Free Electron Laser Science, DESY, Notkestrasse 85,

22607 Hamburg, Germany, dUniversity of Southampton, Southampton SO17 1BJ, UK, and eBiological Research

Centre (BRC), Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary.

*Correspondence e-mail: sandor.brockhauser@xfel.eu

The Karabo distributed control system has been developed to address the

challenging requirements of the European X-ray Free Electron Laser facility,

including complex and custom-made hardware, high data rates and volumes, and

close integration of data analysis for distributed processing and rapid feedback.

Karabo is a pluggable, distributed application management system forming a

supervisory control and data acquisition environment as part of a distributed

control system. Karabo provides integrated control of hardware, monitoring,

data acquisition and data analysis on distributed hardware, allowing rapid

control feedback based on complex algorithms. Services exist for access control,

data logging, configuration management and situational awareness through

alarm indicators. The flexible framework enables quick response to the changing

requirements in control and analysis, and provides an efficient environment for

development, and a single interface to make all changes immediately available

to operators and experimentalists.

1. Introduction

1.1. EuXFEL characteristics

The European XFEL is a research facility with diverse and

somewhat unusual requirements including a pulse structure

(up to 27000 photon pulses per second) arranged into 10 Hz

trains of pulses at 4.5 MHz (Altarelli et al., 2006; Altarelli,

2011) and the use of state-of-the-art, high-repetition-rate,

large-area 2D imaging detectors capable of detecting images

of scattered photons produced by a single XFEL photon pulse.

These result in very high data rates which must also be

subsequently calibrated before further analysis (Kuster et al.,

2014). Custom detectors and instruments require dedicated

interfaces between control software and complex analysis

routines that provide calibrated detector data for online

analysis and subsequent near-real-time feedback into the

experiment control.

Given this set of requirements (Esenov et al., 2009) and a

review of relevant existing control and analysis systems

ISSN 1600-5775

http://crossmark.crossref.org/dialog/?doi=10.1107/S1600577519006696&domain=pdf&date_stamp=2019-08-09


available at the time [such as DOOCS (Grygiel et al., 1996),

EPICS (Dalesio et al., 1994) and Tango (Götz et al., 2003)], it

was decided that a new distributed control system, Karabo,

with integrated data acquisition and workflow capabilities

should be designed and developed on top of a standardized

electronics controller layer implemented by Beckhoff term-

inals and programmable logic controllers (PLCs).

This decision was supported by the DAQ-and-Controls

section of the Detector Advisory Committee (DAC) which is

the responsible international advisory body for the European

XFEL.

The Karabo distributed control system has been and is still

being developed since early 2012 (Heisen et al., 2013), and

has been in use since September 2017 to enable first scientific

user experiments at the European XFEL. The intention is to

release Karabo to the public using an open source software

licence in the future.

1.2. Karabo

Karabo is a distributed control system that interfaces to

hardware devices through software counterparts (called

Karabo driver devices). While driver devices mirror the status

and settings of the hardware equipment within the Karabo

system, so-called middlelayer devices – and Karabo devices in

general – can interact with other Karabo devices. Subsystems

controlled with other control systems may be integrated into

the Karabo system via gateway devices. Karabo enables

centralized and peer-to-peer communication between devices.

The use and control of the system is facilitated by a generic

graphical user interface (GUI) and a command line interface

(CLI): iKarabo. CLI commands can be combined to form

reusable macros which are also accessible via the GUI. There

is a range of basic services provided for managing configura-

tions, raising alarms and the logging of system events.

Karabo driver devices represent hardware devices such as

pumps, motors and cameras. Other Karabo devices may not be

associated with hardware, but may carry out other roles, such

as data analysis operations or coordination or composition of

multiple other devices.

To represent a set of devices working together, for example

as (part of) a beamline, a scientific instrument or an experi-

ment, a Karabo project can be used.

Karabo projects allow groups of devices to be defined and

project-specific configurations of the devices to be stored.

Users can define multiple projects to be able to configure

devices for respective use cases. Projects can be enriched

through the creation of multiple graphical arrangements of

display elements – so-called Karabo scenes – to provide

customized views covering all the diagnostic or control

elements from any device in compact and comprehensive

views as is required for convenient operation. Karabo macros

can also be stored as part of a project to support carrying out

repetitive tasks associated with the project programmatically.

A Karabo project can contain other Karabo projects as

subprojects, and thus it is possible to build hierarchical

projects and organize complex operation configurations and

views in a modular manner. Subprojects can thus be inde-

pendently created and (re-)used in multiple projects, allowing

compartmentalization of a complex system of devices, e.g. a

detector component, for use in different experiments.

Beyond their use in static operation, Karabo projects also

aid commissioning and such experiments where flexible

changes of settings and devices need to be supported.

The interface used most commonly by operators is the

GUI. For simple monitoring, Karabo is designed to support a

cinema mode in which previously customized GUI scenes are

quickly launched and displayed for immediate use.

To conduct parameter space exploration effectively, the

Karabo Scan Tool can be used. It integrates into the GUI and

the command line interface for custom configurations. The

scan tool allows varying single or multiple independent

parameters – such as motor positions or any other control

parameter – automatically, while for each new parameter

combination synchronously recording detector and sensor

data, as well as other predefined observables that are derived

from these data via analysis pipelines. The scan tool addi-

tionally provides a plotting widget for rapid assessment of scan

progress and result quality.

When collecting data, specific Karabo devices gather and

subsequently store entries into HDF5 files (Boukhelef et al.,

2013). Karabo also provides for the streaming of this high

volume data through Karabo pipelines between devices

possibly running on distributed hardware. Data acquisition

onto disk and the parallel feeding of real-time data streams to

be used by online analysis devices is tightly integrated into the

Karabo system.

Control feedback loops can involve any number of Karabo

devices. Due to the close integration of streamed data

processing and control, this may include feedback from

complex data analysis operations. In this way automation and

stabilization of procedures and experimental protocols are

supported. A specific Karabo device, the Karabo bridge,

provides data streaming to applications outside of the Karabo

ecosystem, thus integrating non-Karabo user tools into the

control loop.

Karabo control system is installed at the European XFEL

on hosts registered in a separate control network, as well as on

desktop computers, in the control hutches of the instruments

and the central accelerator control room. Users of the

European XFEL are provided with access to an online cluster

during their beam time which is connected to Karabo, so user-

specific real-time analysis can be plugged into the system. A

data analysis toolbox, Karabo data (European XFEL GmbH,

2018a), provides convenient access to the data collected.

Additionally, in this document, we provide details on

Karabo’s design (Section 2), Karabo’s client environment

(Section 3) and data analysis (Section 4) support. We describe

usage examples of Karabo (Section 5), comment on our

software engineering methods (Section 6), and close with a

summary (Section 7) of the achievements and a discussion on

future outlook.

research papers

J. Synchrotron Rad. (2019). 26, 1448–1461 Steffen Hauf et al. � Karabo 1449



2. Karabo design

We distinguish between the Karabo framework and Karabo

devices; where devices realize a particular functionality

through use of the Karabo framework. The object oriented

Karabo framework is implemented in C++ (Stroustrup, 1995)

and Python 3 (Van Rossum & Drake, 2011). Similarly, devices

may be implemented using application programming inter-

faces (APIs) in Python or C++.

2.1. Devices

Karabo devices are the smallest significant part in the

Karabo system. A Karabo device may mirror a hardware

device, and thus act as the interface from the control system

to the hardware. Karabo devices can also be independent

of hardware, and provide for example logic or arithmetic

processing.

There is a set of API-specific base device classes from which

all Karabo devices inherit. These Karabo-provided base

classes implement the standardized communication with the

distributed system. Other than the need for deriving from such

a class, no further requirements on inheritance or composition

are exerted by Karabo. Device objects, i.e. instances of the

different types of device classes, are identified in the distrib-

uted system through unique string identifiers. At the

European XFEL these identifiers follow a naming convention,

encoding location, device type and instance. For example,

FXE DET LPD1M�1=FPGA=FEM Q1M2 refers to the

1 Mpixel Large Pixel Detector (LPD, see Section 5.3),

installed in the FXE hutch, and there to a sub-component

which is an FPGA board acting as the control interface to the

second module of the first detector quadrant.

2.2. Device properties

Devices have properties resembling their configuration

and current status. These include hardware-specific read-only

parameters such as a temperature measured by a hardware

sensor or the current position of a motor. Other common

parameters such as a device’s state (see Section 2.4), its unique

identifier or the device server hosting the device are also

exposed to the distributed system as properties.

Device properties can have specifiable access levels, for

example to hide expert options from facility users and lay

operators.

Table 1 in Section S1 of the supporting information lists the

currently supported property data types. Properties may be

hierarchically organized into a node-leaf structure, which is

reflected in Karabo’s fundamental data type, the Karabo hash

(Section 2.8).

In addition to the plain data types listed in the table, Karabo

natively supports composite data types. A data type for images

for example combines all the relevant image properties like

the region of interest, binning information and encoding into a

data container. The actual pixel data is represented therein

using another composite type that maps to Python’s ndarray

class (Walt et al., 2011) for multidimensional arrays.

2.3. Messaging in the distributed system

Intercomponent communication is a defining aspect of

distributed control systems. In Karabo the distributed

components are the devices, hosted on device servers

(Section 2.9), macros and the CLI. Messages are routed via a

central broker. Currently, Karabo uses the Java Messaging

Service (JMS) broker (Hapner et al., 2002), and the message

layer is implemented using the Open Message Queue,

OpenMQ(C) interface. Similarly to most communication

brokers on the market, multiple JMS brokers can be clustered

to share the communication load across different machines.

Message routing is unaffected by configuration of the broker

cluster. The Karabo design foresees that its servers are

configured to reconnect to another broker of their cluster if

the connection to their broker is lost.

Messages may either inform the distributed system about

the change of a state or property (Section 2.2) on a device or

request an action to be performed thereon. System messages

additionally inform about new device (Section 2.1) and server

instances (Section 2.9) in the system, track all running

instances, and give notification of devices which have been

shut down.

Communication between components is implemented in the

fashion of signals and slots (Qt, 2018), which is a design

construct introduced by the Qt framework (Dalheimer, 2002)

to support the effective implementation of the observer

pattern. This concept – of signals being sent from a device to

other devices via the broker, and slots being called from other

devices to trigger an activity – has been integrated into

Karabo.

Broker-based messaging has been measured to cope with

multiple kHz data-rates at EuXFEL production installations

consisting of thousands of distributed devices (see Section 5).

A single device can reliably consume 2 kHz of messages as

measured in distributed tests. The message latencies seen at

GUI server devices (Section 3.2) are monitored in production.

The latency averages over 5 s periods are below 10 ms in

normal operating conditions. To allow further scaling in the

future, an effort is on the way to switch to a different broker

architecture.

In addition to broker-based communication, Karabo

supports peer-to-peer messaging between devices. Commu-

nication paths to the data-logging system, as well as within

data-processing pipelines, are implemented in this way and

allow higher data transfer rates than those possible over

a broker.

The system has been shown to be capable of digesting

for example the Gigabyte per second data-rates from the

European XFEL’s MHz-rate detectors over multiple infini-

band and 10 G-ethernet channels as part of online detector

calibration (Kuster et al., 2014). Up to 256 Mpixel images

per second have been processed, and experiments using

the Adaptive Gain Imaging Pixel Detector (AGIPD; see

research papers

1450 Steffen Hauf et al. � Karabo J. Synchrotron Rad. (2019). 26, 1448–1461



Section 5.3) and LPD detectors routinely generate multiple

tens of Terabytes of data during a five day user beam time.

Broker communication is generally used for scalar and

vector data which are updated at slow rates (e.g. once per

XFEL train). All image or multi-dimensional data as well as

pulse-resolved data are transferred using peer-to-peer pipe-

line communication. While switching from one communica-

tion model to another is not supported on-the-fly, it requires

only a small change in the code.

2.4. Karabo states

State is an important concept in most distributed control

systems, as it represents the most essential information on a

component’s status to a supervising operator. Frequently, state

is exposed to the user as a short but descriptive text.

For Karabo a fixed set of hierarchically organized states

has been chosen to provide a condensed context-sensitive

description of a hardware or software component via its

Karabo device. More descriptive states derive from three basic

states: UNKNOWN, KNOWN and INIT. Here, the UNKNOWN

state is reserved for when the software cannot establish a

connection to the hardware it is to monitor and control, or is

otherwise functioning abnormally such that it cannot guar-

antee an accurate representation of the hardware’s state. The

ERROR state should be entered in case of a known hardware

error. Most of the time the device will be in its NORMAL state,

i.e. it will be correctly reading and reporting the hardware

state. As is indicated in Fig. 1, the NORMAL state is the base

state for many more specific states.

Depending on the device requirements, a finite state

machine can be used to define possible transitions from one

device state to another formally.

2.5. Alarms and notification system

Karabo is provided with integrated alarm notification,

implemented as a service device. So-called alarm conditions

are evaluated on a per-property and per-device level. Three

alarm levels are supported: WARN, ALARM and INTERLOCK;

each visually identified in a triply redundant fashion by shape,

colour and lettering as indicated in Fig. 2. Property-related

alarm thresholds Ti may be hard-coded or configured at

initialization time for scalar values. These are evaluated at

each property update on the device, resulting in a new value

vðtÞ, such that for normal operations

Talarm low � Twarn low � vðtÞ � Twarn high � Talarm high:

If the quantity vðtÞ goes beyond the low or high warning

thresholds, the distributed control system notifies of the

warning condition, indicating to the operator that an abnormal

condition is imminent and alarm thresholds might soon be

exceeded if no action is taken. Should this happen an alarm

indication is sent.

The INTERLOCK alarm-type can only be triggered from

interlocking hardware, as it is a policy for Karabo usage at

European XFEL to not implement any software-based inter-

locks as part of machine-, equipment- or personal protection

systems. The INTERLOCK alarm-type can be set only at

device level.

In addition to property-related alarms, devices have a

global alarm condition, which can be explicitly assigned

through device logic. It will automatically evaluate to the

highest alarm condition out of all property-related alarms and

any explicit manual assignment.

Alarms can be defined to require acknowledgment, i.e. their

notifications will not silently disappear if the condition trig-

gering the alarm passes.

2.6. Karabo projects

Karabo projects allow associating sets of devices, scenes and

macros while also supporting multiple device configurations

for specififc use cases. Projects can be opened, saved, dupli-

cated and marked as trashed through the Karabo GUI

(Section 3.1) or CLI. Trashing a project will remove it from the

standard overview of available projects; however, trashing is a

revertible operation, therefore accidental deletion by the user

is not possible. A Karabo device (and an associated hardware

device) can be a part of multiple projects; this enables storing

multiple configurations of a device depending on the required

use case.

Each Karabo GUI client can open one project at a time.

Projects can contain other projects (as a sub-project), to avoid

duplication of effort and configurations.

Projects are stored in a central NoSQL (eXist-db) database

but also simultaneously cached on the local hard drive for

offline access. The persistance layer is well abstracted and its

backend implementation can easily be changed.

research papers

J. Synchrotron Rad. (2019). 26, 1448–1461 Steffen Hauf et al. � Karabo 1451

Figure 1
Overview of Karabo’s basic unified states and their relation to one
another. Not shown are more application-specific derived states. The
colours shown in this diagram are the colour-codes Karabo uses for each
state in its GUI.

Figure 2
Indicators used by Karabo for, from left to right, warning, alarm and
interlock alarm types.



2.7. Karabo APIs

Karabo devices can be implemented using one of the three

application programming interfaces (APIs) including a C++

and two Python implementations.

The C++ API allows implementation of devices in the C++

programming language [using the C++11 standard (ISO,

2011)]. The C++ API is the suggested API for low-level

interaction with hardware or performance critical devices.

Most of the bundled devices that implement tasks essential

for the core system – so-called Karabo service devices – are

implemented using this API. Interdevice communication on

the same server using the C++ API supports a direct message

passing shortcut instead of involving a message broker.

The bound Python API exposes the C++ API functionality

via the Boost C++ libraries (Schäling, 2011) and its

boost :: python bindings to the Python programming

language. Its feature set and function signatures mirror those

of the C++ API, allowing programmers to easily transition

between APIs. The API name reflects that each Python

routine is bound to the corresponding C++ routine. Asyn-

chronous execution is achieved by using an event loop, which

works with multiple threads.

This bound Python API is suggested for implementation of

devices interacting with hardware, as well as computational

devices, implementing numerically demanding algorithms,

since any bound C++ Karabo calls, e.g. input, output and

serialization, can be done in parallel in a multi-threaded

environment.

The middlelayer API is purely implemented in Python, with

no dependencies on the other two APIs, and with the intention

of being a pythonic interface, following Python conventions

and standards [such as PEP8 (Van Rossum et al., 2001)]. This

API offers device proxies to comfortably control other soft-

ware components and is the recommended API for imple-

menting composition and aggregation of multiple devices.

Cooperative multi-tasking is implemented using Python’s

asyncio library providing a central event loop ensuring in-

order execution of tasks. Karabo’s macro scripting has been

developed on top of this API.

Examples of how a Hello World device can be implemented

in these three APIs are given in Section S2 of the supporting

information. In addition, a more complex macro for an

absolute scan is provided in Section S4 of the supporting

information showing the orchestration of a motor and a

detector device and it briefly illustrates a few synchronization

routines, e.g. ‘waitUntil’ or ‘waitWhile’. These conditional

functions are asynchronously evaluated every time event-

driven changes are registered.

2.8. The Karabo hash

Karabo’s basic data structure is the so-called Karabo hash.

It is a hierarchical key/value container supporting element-

specific attribute assignment (also as key/value pairs) and

preserving insertion order. Keys are unique strings that may

contain a separator character, indicating nodes in the hier-

archy. The default separator is the dot (.), and thus a key

‘this.is.karabo’ would refer to a leaf ‘karabo’ located under the

subnode ‘is’ of the top-level node ‘this’. The values can take

any type, but serialization of a Karabo hash is restricted to the

types listed in Table 1 in Section S1 of the supporting infor-

mation, as well as composite data types such as image and

ndarray data. An extended toy example is shown in Fig. S4

in Section S3 of the supporting information.

The Karabo hash is used as the central data structure to

communicate information between components of the system,

both for communication via the broker and direct peer-to-peer

messages. For example, a bunch of 64 photon pulses captured

by a module of a fast detector, e.g. the LPD, with a resolution

of 256 by 256, is sent as a Karabo hash that contains an

ndarray with shape (64, 256, 256) and some additional

metadata.

The Karabo hash is available in all three APIs. Serialization

is supported to XML (Bray et al., 1997), HDF5 (Folk et al.,

2011) and ZeroMQ (Fangohr et al., 2018) as well as to a

proprietary binary format to be used for communication

within Karabo.

2.9. Device servers

Karabo devices are hosted by Karabo device servers specific

to their API flavour. Due to the nature of the programming

languages the implementation for each API is different.

The C++ device server runs a central event loop with many

threads. It starts devices as part of its single process and the

tasks of the devices are processed in parallel on the central

event loop. This allows optimization of inter-device commu-

nication on the same server by bypassing the broker.

In Python bound the global interpreter lock (GIL) prevents

true multi-threading. Hence, a separate process with a central

event loop is started for each device, and short-cut commu-

nication is not possible. In the middlelayer API the device

server is started as a single-threaded process with a central

event loop. Each Karabo device can be subsequently started

as a task on this event loop, similarly to C++.

2.10. Control feedback loop

A particular strength of the integration of control and

scientific data into Karabo is that control feedback to the

experiment based on data analysis outcomes is possible. Data

from the detectors and sensors can be analysed within Karabo

or with external tools (that can connect to the data stream via

the Karabo bridge, Section 4.4) and the output of that real-

time analysis can be used to instruct control elements such as

motors and delay elements to optimize the experiment.

For example, such a feedback loop is used to improve the

spatial stability of the X-ray beam: we utilize intensity position

monitors (IPMs) which are analyzing the measured current

from a quadrant detector. The X-ray beam is continuously

steered to the centre point of the detector with piezo motors

mounted on Kirkpatrick–Baez mirror systems to guarantee

spatial stability.

While other control systems may require external tools

for integrating more complex workflows (Brockhauser et al.,

research papers

1452 Steffen Hauf et al. � Karabo J. Synchrotron Rad. (2019). 26, 1448–1461



2012), Karabo has been designed to support them natively and

to provide built-in GUI tools to facilitate creating them.

3. The Karabo client environment

We define a Karabo ecosystem as the set of Karabo software

components interconnected via a central message broker, and

communicating within a common Karabo message topic. The

Karabo message topic represents a dedicated session on the

broker limiting the message distribution to those software

components belonging to this namespace.

A Karabo ecosystem consists of C++ and bound Python

devices that interact with the hardware, the middlelayer

devices and macros orchestrating them, the device servers

hosting them, various service devices (logging service, alarm

service, GUI servers, project data base service) and a client

environment.

The user interface to the Karabo ecosystem is the Karabo

Client Environment. It encompasses the Karabo Graphical

User Interface (Karabo GUI, Section 3.1) and a command line

interface (Karabo CLI, Section 3.3) named iKarabo. These

tools allow users and experts to control and monitor the

supervisory control and data acquisition (SCADA) infra-

structure. Many control tasks can be equally performed from

the GUI or the CLI, depending on requirements (e.g. scrip-

table access) or personal preference.

3.1. The Karabo GUI

Karabo’s Graphical User Interface (Fig. 3) is a multi-

purpose application. The GUI is composed of detachable

panels. For most operators it is the preferred entry point to the

Karabo ecosystem, and commonly displayed on the control

screens of the beamlines and instruments.

The Karabo GUI is an executable that needs to be pointed

to the network host and port of a Karabo GUI server on start

up. At the same time authentication allows different operator

levels (administrator, expert, operator, user, observer) which

differentiate in the amount of detail the Karabo GUI presents

to the user. When this connection is established, a window

similar to the one shown in Fig. 3 opens.

The navigation panel [Fig. 3(a)] offers an overview of the

Karabo ecosystem topology as a tree view whose top-level

nodes are the physical computer hosts on which the device

servers are run. The latter are depicted as second-level nodes

and can be expanded to reveal the device classes they are

capable of instantiating. These device classes and the instan-

tiated devices form the third and fourth levels in this hier-

archical view of the SCADA topology.

As thousands of devices are needed to support beamlines

and instruments at the European XFEL, the navigation panel

allows textual filtering to allow operators to limit the displayed

devices. More complex filters can be expressed as regular

expressions.

research papers

J. Synchrotron Rad. (2019). 26, 1448–1461 Steffen Hauf et al. � Karabo 1453

Figure 3
Karabo’s graphical user interface.



The project panel provides access to the database of avail-

able projects. Once a project has been selected and loaded, the

panel [Fig. 3(d)] shows the components of a project: subpro-

jects (in bold face), macros, scenes, device servers, and one

level down devices and device configurations. Every project

can be opened stand-alone or is loaded as a subproject to

another project.

The notification panel [Fig. 3(e)] is subdivided into a number

of tabs:

(i) The logging tab shows information, warning and error

messages issued by devices or servers. They can be filtered or

sorted by date, type, device server or description. This list can

be exported and cleared.

(ii) The alarm tab lists messages from the alarm system

(Section 2.5), and allows eventual acknowledgement. On

selection, the reporting device configuration can be displayed

in the configuration panel [Fig. 3(c)] to help investigate the

problem effectively.

(iii) The console tab provides access to a remote iKarabo

session, allowing for client independent scripting access.

Section 3.3 gives an overview of this Command Line Interface.

The configuration editor panel [Fig. 3(c)] displays and

monitors the properties and commands of a selected device.

A device can be selected either in the Navigation panel

[Fig. 3(a)], in the project panel [Fig. 3(d)] or from any scene

hosting a widget referring to a property of the device. A

contextual help describes each of the device’s properties,

detailing their type, default value, timestamp of last update, as

well as alarm and warning thresholds. Property displays are

updated when properties change on the device. Reconfigur-

able properties can be set from the configuration editor panel.

In a similar way, the initial configurations of devices, as stored

in the project database, can be edited.

The central panel [Fig. 3(b)] is where scenes and macros

can be displayed.

(i) A Karabo scene is a collection of graphical elements to

intuitively display and if desired also modify properties. A rich

set of widgets are provided by Karabo, including state-aware

coloured icons, trend lines, spark lines, bit fields, XY-plots,

analogue gauges, knobs, sliders and image displays.

A scene can be created by dragging-and-dropping proper-

ties and commands from the configuration panel into the

desired locations. This is called the design mode. When the

design of a scene is completed, a scene can be locked so that

type, position and geometry of widgets cannot be modified any

further. This is referred to as the control mode and is the

default mode for all SCADA operations.

Any panel and tab in the GUI can be detached, displayed

and moved as a stand-alone window on the desktop of the

computer displaying the GUI. This allows arranging sets of

scenes (or other panels) for viewing in the most beneficial way

for the task at hand.

(ii) The macro editor is displayed in the central panel as

well. Macros are meant for automation of recurring tasks. A

field in the bottom part of the macro panel captures the

standard output of the macro, which runs remotely on a

dedicated macro server. Hence, macro execution follows the

policy edit local – run central and each macro appears as a

device in the system topology. A macro’s properties and

commands are rendered in the configuration editor and may

be used in scenes.

3.2. Karabo GUI implementation details

The Karabo GUI is developed in PyQt. GUI clients do not

communicate directly with devices via the central broker, but

instead interface with a so-called GUI server. The GUI client/

server protocol is a Karabo hash-based signal and slot

exchange, conveyed over a single TCP connection. One

benefit of this design choice is the portability of GUI clients.

They run on Windows and Linux as well as OS X and binding

to a Java Messaging Service (JMS) client library is not a

requirement for implementation. The approach also provides

convenient remote access to a Karabo ecosystem via SSH

tunnelling. Additionally, the GUI server can filter out redun-

dant requests to the same resource originating from multiple

clients, thus decreasing broker traffic. Similarly, a GUI server

can throttle the transmitted data rate (relevant especially for

2D image data) if a GUI client cannot sustain it.

3.3. The Karabo CLI

The Karabo Command Line Interface (Karabo CLI) is a

tool for swift investigation and scripting. It is a light custo-

mization of the Interactive Python (IPython) shell (Pérez &

Granger, 2007). As such it was named iKarabo, and benefits

from the convenience that IPython provides, including auto-

completion and contextual help. Operators can easily invoke

the concise middlelayer and macro APIs on this interface.

Domain-level operations such as stepwise or continuous

sample scans can be carried out in a comprehensive way.

The iKarabo shell allows users to benefit from the general

purpose language Python: arbitrarily complex control tasks

can be expressed to provide automation and convenience in

using the control system. Embedding Karabo – as a domain

specific language – in an existing general purpose language

Python is a better approach than defining a new domain

specific language (Beg et al., 2017).

3.4. Security

While Karabo is implemented with an open communication

between the devices, basic security aspects are addressed

during the installation at EuXFEL by separating the control

network hosting the Karabo servers from the generic office

network of the company (du Boulay et al., 2008). Karabo

services are made available to GUI clients via a single port in

which the Karabo GUI server is listening. Command Line

Interface use from external clients is only possible via the

open port of the GUI server which enables macros sent to the

Karabo macro server where they are interpreted and/or

filtered and subsequently executed. Furthermore, the GUI

implements an authentication system with different access

levels which is used to hide different subsets of device para-

research papers

1454 Steffen Hauf et al. � Karabo J. Synchrotron Rad. (2019). 26, 1448–1461



meters. As the control software is a key component for the

optimal use of the facility, its security is also considered as an

important aspect. Hence, a more comprehensive solution for

securing Karabo has been designed (Mekinda et al., 2018).

4. Data analysis in Karabo

4.1. Introduction

Data analysis is important (i) during the experiment to

ensure most effective use of the beam time, and (ii) subse-

quently to convert the investment of the experiment into the

best research value possible.

The design of the data storage and analysis provision at the

European XFEL aims to allow a comprehensive, state-of-the-

art analysis of each experiment conducted, allowing for

improvements in calibration routines and data analysis algo-

rithms in the future. By recording all parameters and software

versions of components in the process, we aim to provide full

reproducibility of any data extraction and processing.

We distinguish between (i) rapid feedback data analysis,

(ii) online data analysis and (iii) offline data analysis (Fangohr

et al., 2018): rapid feedback data analysis at European XFEL

– with latencies of the order of seconds – is dominated by live

processing of data streams on a dedicated compute resource

(known locally as the online cluster). For online data analysis,

i.e. data analysis carried out during the experiment but with

higher latencies, and offline data analysis, i.e. data analysis

carried out after the experiment, the Maxwell cluster (DESY,

2017) is available as a compute resource. This analysis is

driven by the processing of data files (Section 4.5).

Fig. 4 shows a simplified view of the data flow in the Karabo

system.

The facility aims to provide long-term storage (at least five

years, aiming for ten years) for raw detector data (European

XFEL GmbH, 2017) and reduced data sets. A major part

of the stored data are uncalibrated images from the (2D)

detectors.

4.2. Calibration

Before any analysis is carried out, detector-specific pecu-

liarities and artefacts need to be removed from the data set,

through application of appropriate corrections and calibration

to the data. The data pipelines and calibration routines have

been designed so that this calibration can take place on-the-fly,

and can be regarded as a processing tool that is applied to the

raw data. Facility users are not expected to access the raw data

directly, and if data are retrieved from the EuXFEL’s raw data

archive then the calibration is applied to the raw data auto-

matically before data are passed on to the user. This approach

allows the use of a different calibration at a later point, which

is needed if detector characteristics have changed during the

experiment, or an improved calibration becomes available

after the experiment (Kuster et al., 2014). It is, of course,

crucial to record which calibration routine has been applied

for all later stages of the data analysis.

4.3. Streaming of data through pipelines

During an experiment, Karabo’s integrated data handling

capabilities support streaming of data from detectors and

sensors to HDF5 files and simultaneously to rapid-feedback

calibration and online analysis devices. Karabo’s peer-to-peer

pipeline communication is essential in providing the necessary

data throughput for these workflows. Data associated with

pulses in an XFEL train are transferred through the pipeline,

using the Karabo hash (Section 2.8) which provides a hier-

archical structure and enables efficient serialization. The

distributed nature of Karabo foresees data processing paral-

lelization by spreading data analysis activities, e.g. detector

image calibration, over many servers.

The (calibrated) streaming data can be used for:

(i) Near real-time analysis in Karabo devices, providing for

example the latest set of detector image data and crucial

control parameters as input to scenes in the Karabo graphical

user interface. The same data can also be sent to the first stage

of further data analysis tools that give rapid feedback on

research papers

J. Synchrotron Rad. (2019). 26, 1448–1461 Steffen Hauf et al. � Karabo 1455

Figure 4
Simplified overview of data flow in Karabo: during the experiment, data
from the detector goes via the data acquisition (DAQ), and through the
appropriate detector calibration. It can then be used for real-time data
display and analysis, for storage to HDF5 files, and be sent to further
analysis tools through the Karabo bridge interface device. For offline
analysis, data is read from EuXFEL’s data archive and injected into the
same data flow pipeline: first calibrated, and then offered to users for
subsequent data analysis, either as files or through the Karabo bridge.
The online cluster (bottom right, bordered by thick dark-red frame)
is separated from the control network (see Section 4.4). Elements of
the pipeline that are only applicable to real-time analysis during the
experiment are rendered with a grey background.



whether images contain X-ray signatures of sample hits, i.e. are

interesting for scientific analysis.

(ii) Further data analysis using existing tools: we provide a

network interface which allows sending data from any Karabo

pipeline to external applications through a network connec-

tion (see Section 4.4, Karabo bridge).

4.4. Karabo bridge

The Karabo bridge (see Fig. 4) allows external data

processing pipelines to connect to Karabo for real-time data

processing without being implemented directly within Karabo.

The Karabo bridge translates the Karabo data stream into

a well defined protocol, and makes it available outside the

control network so that external applications can request and

process the data on the online cluster. The division of

networks increases the protection of the control network and

isolates Karabo from being influenced by external programs,

thereby enhancing the performance and security of Karabo.

The bridge allows calibrated data to be processed a few

seconds after collection without having to be read from the file

system. Applications can then provide near real-time feedback

to the experiment control room for quick decision-making.

The Karabo bridge currently sends data over a ZeroMQ

(Hintjens, 2013) connection using MessagePack (Furuhashi,

2008–2013) serialization as the preferred protocol (European

XFEL GmbH, 2018b).

Client programs that read data from the Karabo bridge

can be relatively short and need only few (rather common)

dependencies to connect to the Karabo pipeline and translate

the Karabo bridge data stream into the appropriate form for

each application. Example clients are currently available in

Python and C++ (European XFEL GmbH, 2018c) and have

enabled tools such as CASS (Foucar, 2016), Dozor (Zander et

al., 2015), Hummingbird (Daurer et al., 2016), OnDA (Mariani

et al., 2016) and pyFAI (Ashiotis et al., 2015) to connect to the

Karabo pipeline. These tools are typically established appli-

cations that have already been used during experiments at

other facilities and provide online data analysis routines such

as for example azimuthal integration and crystallography

hit-finding.

The Karabo bridge can also be used to feed information

from external data analysis tools back into the control system

(hollow arrowhead in Fig. 4) so that the output of near-real-

time analysis from external application can be used as input

for control feedback, for example to automate aspects of the

experiment that otherwise would have to be adjusted manu-

ally by scientists (Fangohr et al., 2018).

4.5. Karabo-data

For offline analysis, science users generally retrieve data

from the file-based raw data archive. Where required the

appropriate calibration and other processing for the detector

and experiment is applied automatically before the processed

files are made available to the user for a limited period of time.

The Karabo-data tool (European XFEL GmbH, 2018a)

provides a (Python-based) library to extract data from these

files more conveniently. The library can extract selected data

sources of interest from the files associated with one run

without the user needing to know which file contains which

data source and which trains. Data can be converted into other

formats such as, for example, pandas DataFrame objects

(McKinney, 2011), comma-separated value files and others, so

that the growing data science ecosystem with tools such as

Jupyter (Kluyver et al., 2016), matplotlib (Hunter, 2007),

pandas, xarrays (Hoyer & Hamman, 2017), seaborn (Waskom,

2012–2018) etc. can be used to extract insight from the saved

experimental data.

Karabo-data can also stream files so that the stream appears

to come from the Karabo bridge interface, thus mimicking the

data streaming that would take place during an experiment.

This allows reuse of the same interface by other data analysis

tools as well as those used during the experiment (see Fig. 4),

and helps in developing and testing data analysis components

before the experiment.

Fangohr et al. (2018) provide further details on data analysis

with Karabo.

5. Achievements and examples

5.1. Karabo installation at the European XFEL

The European XFEL user operation has started with the

experiments on the SASE1 (self-amplified spontaneous

emission) beamline: the Femtosecond X-ray Experiment

(FXE) (Bressler, 2011; Bressler et al., 2012) and the Single

Particles, Clusters and Biomolecules and Serial Femtosecond

X-ray experiment (SPB/SFX) (Mancuso, 2011; Mancuso et al.,

2013).

The beamline and experiments entered their commissioning

phase in the first half of 2017, with early user operation

starting in September 2017. Throughout these phases, SASE1

has been controlled by Karabo.

As of September 2018, the Karabo control system instal-

lation at European XFEL is distributed over 250 dedicated

control computers, hosting more than 7500 Karabo devices,

with over a million control points (i.e. device properties).

5.2. Photon transport and vacuum systems in SASE1

Karabo has played an essential role in the commissioning

and control of the SASE1 beamline, offering a system/

subsystem view of the thousands of deployed devices needed

to drive the vacuum and photon transport systems as well as

beam diagnostics.

Fig. 5 shows an overview of the beam transport and vacuum

systems alongside detailed panels for mirror and vacuum

section control. The indicated GUI panels were created

through the scene-builder functionality alone, requiring no

custom GUI coding. They use icons from the standardized

icon set. The indicator colours are those assigned to the

unified states.

The electron accelerator and the undulator systems are

controlled using the DOOCS control system on DESY side.

A Karabo client providing a wrapper to the DOOCS system

research papers

1456 Steffen Hauf et al. � Karabo J. Synchrotron Rad. (2019). 26, 1448–1461



allows integration with the Karabo ecosystem by sharing the

configuration of the electron beam as well as the beam diag-

nostics elements. Similarly to what has been done for DOOCS,

Karabo client wrapper libraries for other control systems such

as EPICS, TANGO and TINE have been developed and are

used for interacting with those control systems.

5.3. MHz-rate detector control and data acquisition

Karabo is used for control and data acquisition from

European XFEL’s MHz-rate 2D X-ray detectors: the Large

Pixel Detector (LPD), the Adaptive Gain Imaging Pixel

Detector (AGIPD) as well as the DepFET Sensor with Signal

Compression (DSSC). LPD and AGIPD are in user operation

at the FXE and SPB experiments, respectively, and have been

designed to acquire images of 4.5 MHz bursts at 10 Hz,

needed to match the XFEL pulse timing structure. The

detectors currently produce up to 5080 Mpixel images per

second, and DSSC will produce up to 8000, which requires

the Karabo-based data acquisition (DAQ) system to digest

rates between 10 and 15 Gigabytes s�1 (Kuster et al., 2014).

Subsequently, the detector raw data are calibrated using GPU-

and CPU-based algorithms implemented using Karabo pipe-

line technology (Hauf, 2017).

Fig. 6 (background) shows a Karabo control and online

preview panel for an LPD prototype consisting of two of the

megapixel detector’s 256 sensor tiles. The detector is imaging,

for the first time, diffraction at a 4.5 MHz repetition rate from

an XFEL beam at the FXE hutch (July 2017), resolving the

222 ns FEL pulse separation. The online preview displays raw

and offset-corrected data. The intensity scale is inverted. Two

months later the full megapixel detector had been commis-

sioned and used for first user experiments. The foreground

image in the figure shows a current (September 2018)

screenshot of the online preview for corrected and geometry-

assembled data from the LPD Megapixel system.

In online processing, data rates of up to 128 corrected

megapixel images per second, with a latency to user processing

of below 2 s, are routinely achieved, and 256 images s�1

(i.e. 1.792 Gigabytes s�1) have been stably processed, as is

shown in Fig. 7. This latency is measured from acquisition of

a train on the detector to output to the Karabo bridge and

research papers

J. Synchrotron Rad. (2019). 26, 1448–1461 Steffen Hauf et al. � Karabo 1457

Figure 5
Karabo GUI panel examples: (a) beam transport overview, (b) mirror control, (c) status of equipment and machine protection system, (d) vacuum
system overview, (e) vacuum section control. The panels use Karabo’s standardized icon set, and the colour indicators reflect the unified state system as
shown in Fig. 1. Each panel is a scene. The scenes are associated with Karabo projects.



includes offset and gain corrections, as well as train-matched

combination of the 16 independent data streams for the

detector modules into a single array.

5.4. Instrument and detector simulation

Karabo pipelines are also used for instrument and detector

simulation activities at the European XFEL. Using pipe-

lined inter-device communication, the SIMEX framework

(Fortmann-Grote et al., 2016, 2017) simulating SPB experi-

ments and the X-ray Detector Simulation Pipelines (XDSPs)

have been combined for start-to-end simulations of an XFEL

beamline (Rüter et al., 2015; Joy et al., 2015).

5.5. Lessons learned

In early versions of Karabo development, serious delays of

up to minutes were sometimes experienced when working

with C++ servers hosting many devices. The most relevant

development to overcome this was the replacement of func-

tion calls that block programme threads by, for example,

asynchronous patterns with callback handlers for inter-device

communication.

Furthermore, broadcasting system messages to inform, for

example, about new devices caused delays on servers that run

many devices within their processes. The problem was over-

come by sending broadcasts only once to each server and then

distributing them internally.

research papers

1458 Steffen Hauf et al. � Karabo J. Synchrotron Rad. (2019). 26, 1448–1461

Figure 7
Latency for providing raw (blue) and corrected (orange) LPD megapixel images to user processing. Latency is measured from acquisition on the
detector to output to the Karabo bridge. Steps in data are due to individual acquisition runs.

Figure 6
Karabo control and online preview scenes used during the first beam data acquisition with the LPD detector prototype at the FXE instrument.
Diffraction images captured at 4.5 MHz are displayed. Panels on the background scene contain widgets for detector configuration, status and control,
DAQ status and control, operating procedures, online previews of raw (top) and offset-corrected data (with visible diffraction rings), and calibration
pipeline control and status. The foreground scene shows a corrected online preview of the LPD megapixel system.



Another important pitfall was the loss of the order of

messages when posting them to the central event loop without

further care.

6. Software engineering observations

The control and analysis software group at the European

XFEL follows modern software engineering procedures: the

group of 20+ software engineers is supported by an agile

manager, coordinates work in daily stand-up meetings and

uses a public backlog of activities. Requirements are captured

and projects are carried out with iterative refinement and

regular feedback from stakeholders.

Standard tools such as version control, unit, integration and

system tests, regression tests, automatic test execution and

continuous integration are used. Release cycles are planned

and a dedicated test team ensures a high quality of new

releases; installation of software and updates is automated by

centralized deployment tools.

The demands of a research facility that provides services for

users are diverse and often unpredictable, in particular during

the start-up phase: operational requirements to support the

first experiments compete with the build up and commis-

sioning of new beamlines and instruments. The agile approach

provides a flexible way of prioritizing requests and resolving

them. However, prioritization of resource allocation to ensure

operational service means that there are important parts of

Karabo that are not completed yet or have accumulated

technical debt and may need significant attention in the future.

7. Summary

Karabo is the main user interface for European XFEL staff

supporting experiments and for visiting scientists carrying out

their experiments. The system has been of central importance

in commissioning and supporting early user experiments,

resulting in the first publications of scientific results from the

European XFEL (Grünbein et al., 2018; Wiedorn et al., 2018).

The decision to create a new distributed control system

– Karabo – instead of re-using and attempting to modify an

existing one to fulfil the facility’s requirements has important

implications: the flexible design of the framework, the unified

treatment of control data and ‘scientific’ data within Karabo,

and the ability to parallelize data analysis across distributed

hardware opens opportunities to run facilities more effec-

tively. On the other hand, developing such a software from

scratch is a very significant task, and stabilizing any new

software, in particular distributed software working with

custom hardware, requires time.

Great progress has been made in the last two years, and

Karabo is stable and used throughout the facility to enable

beam transport, control, diagnostics, data acquisition, cali-

bration and data analysis.

The focus now is on commissioning and supporting opera-

tion of a growing number of beamlines and instruments,

supporting an increasing number of pulses per train, and,

simultaneously, to continue improving the core of the Karabo

software to best support users and the facility in the medium

and long term.

Acknowledgements

The Control and Software Analysis (CAS) group and authors

of this paper worked closely with other European XFEL

scientific support groups and acknowledge their continuous

efforts, input and cooperation. We thank the X-Ray Optics

(XRO) led by Harald Sinn, the Vacuum (VAC) group led

by Martin Dommach, the X-Ray Photon Diagnostics (XPD)

group led by Jan Grünert, the Sample Environment (SE)

group led by Joachim Schulz, the Undulator (UNSYS) group

led by Joachim Pflüger, the Advanced Electronics (AE) group

led by Patrick Gessler, the Information Technology and Data

Management (ITDM) group led by Krzysztof Wrona, and the

Detector Development (DET) group led by Markus Kuster,

and the Laser (LAS) group led by Maximilian Lederer, as well

as the scientific instruments FXE led by Christian Bressler,

SPB led by Adrian Mancuso, SCS led by Andreas Scherz,

SQS led by Michael Meyer, MID led by Anders Madsen, and

HED led by Ulf Zastrau. We equally acknowledge the

contributions from the Accelerator control group at DESY

led by Tim Wilksen. All figures and pictures by the author(s)

are published under a CC-BY 4.0 license (https://creative

commons.org/licenses/by/4.0/).

References

Altarelli, M. (2011). Nucl. Instrum. Methods Phys. Res. B, 269, 2845–
2849.

Altarelli, M., Brinkmann, R., Chergui, M., Decking, W., Dobson, B.,
Düsterer, S., Grübel, G., Graeff, W., Graafsma, H., Janos Hajdu,
Jonathan Marangos, J. P., Redlin, H., Riley, D., Robinson, I.,
Rossbach, J., Schwarz, A., Tiedtke, K., Tschentscher, T., Varta-
niants, I., Wabnitz, H., Weise, H., Wichmann, R., Karl Witte, A. W.,
Wulff, M. & Yurkov, M. (2006). The European X-ray Free-Electron
Laser. Technical Design Report DESY 2006-097. DESY, Hamburg,
Germany.

Ashiotis, G., Deschildre, A., Nawaz, Z., Wright, J. P., Karkoulis, D.,
Picca, F. E. & Kieffer, J. (2015). J. Appl. Cryst. 48, 510–519.

Beg, M., Pepper, R. A. & Fangohr, H. (2017). Am. Inst. Phys. Adv. 7,
056025.

Boukhelef, D., Szuba, J., Wrona, K. & Youngman, C. (2013).
Proceedings of the 14th International Conference on Accelerator
and Large Experimental Physics Control Systems (ICALEPCS
2013), 6–11 October 2013, San Francisco, CA, USA, pp. 665–668.
TUPPC045.

Boulay, D. du, Brockhauser, S., Chee, C., Chiu, K., Devadithya, T.,
Leow, R., McMullen, D. F., Quilici, R. & Turner, P. (2008). Intl J.
Online Eng. 4, 5–11.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E. & Yergeau, F.
(1997). World Wide Web J. 2(4), 27–66.

Bressler, C. (2011). FXE Conceptual Design Report. XFEL.EU TR-
2011-005. European XFEL, Hamburg, Germany.

Bressler, C., Galler, A. & Gawelda, W. (2012). Technical Design
Report XFEL EU TR-2012-008. European XFEl, Hamburg,
Germany.

Brockhauser, S., Svensson, O., Bowler, M. W., Nanao, M., Gordon, E.,
Leal, R. M. F., Popov, A., Gerring, M., McCarthy, A. A. & Gotz, A.
(2012). Acta Cryst. D68, 975–984.

research papers

J. Synchrotron Rad. (2019). 26, 1448–1461 Steffen Hauf et al. � Karabo 1459

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB10


Dalesio, L. R., Hill, J. O., Kraimer, M., Lewis, S., Murray, D., Hunt, S.,
Watson, W., Clausen, M. & Dalesio, J. (1994). Nucl. Instrum.
Methods Phys. Res. A, 352, 179–184.

Dalheimer, M. (2002). Programming with QT: Writing portable GUI
applications on Unix and Win32. Sebastopol: O’Reilly Media.

Daurer, B. J., Hantke, M. F., Nettelblad, C. & Maia, F. R. N. C. (2016).
J. Appl. Cryst. 49, 1042–1047.

DESY (2017). Maxwell cluster, https://confluence.desy.de/display/IS/
Maxwell.

Esenov, S., Wrona, K. & Youngman, C. (2009). European XFEL
DAQ and DM Computing. Technical Design Report – 2009 Public
Version. European XFEL, Hamburg, Germany.

European XFEL(2017). Scientific data policy, http://www.xfel.eu/
users/experiment_support/policies/scientific_data_policy/index_
eng.html.

European XFEL (2018a). Karabo-data: Python library and tools to
process euxfel hdf5 files, https://github.com/European-XFEL/
karabo_data.

European XFEL (2018b). Karabo Bridge protocol, https://in.xfel.
eu/readthedocs/docs/data-analysis-user-documentation/en/latest/
karabo_bridge/protocol.html.

European XFEL (2018c). Open source tools to support data analysis
at European XFEL GmbH, https://github.com/European-XFEL.

Fangohr, H., Beg, M., Bondar, V., Boukhelef, D., Brockhauser, S.,
Danilevski, C., Ehsan, W., Esenov, S. G., Flucke, G., Giovanetti, G.,
Goeries, D., Hauf, S., Heisen, B., Hickin, D. G., Khakhulin, D.,
Klimovskaia, A., Kuster, M., Lang, P. M., Maia, L., Mekinda, T.,
Michelat, A., Parenti, G., Previtali, H., Santos, A., Silenzi, J., Sztuk-
Dambietz, J., Szuba, M., Teichmann, K., Weger, J., Wiggins, K.,
Wrona, L., Xu, C., Aplin, S., Barty, A., Kuhn, M., Mariani, V. &
Kluyver, T. (2018). Proceedings of the 16th International Confer-
ence on Accelerator and Large Experimental Control Systems
(ICALEPCS2017), 8–13 October 2017, Barcelona, Spain, pp. 245–
252. TUCPA01.

Folk, M., Heber, G., Koziol, Q., Pourmal, E. & Robinson, D. (2011).
Proceedings of the EDBT/ICDT 2011 Workshop on Array
Databases (AD’11), 21–25 March 2011, Uppsala, Sweden, pp. 36–
47.

Fortmann-Grote, C., Andreev, A., Appel, K., Branco, J., Briggs, R.,
Bussmann, M., Buzmakov, A., Garten, M., Grund, A., Huebl, A.,
Jurek, Z., Loh, N. D., Nakatsutsumi, M., Samoylova, L., Santra, R.,
Schneidmiller, E. A., Sharma, A., Steiniger, K., Yakubov, S., Yoon,
C. H., Yurkov, M. V., Zastrau, U., Ziaja-Motyka, B. & Mancuso,
A. P. (2017). Proc. SPIE, 10237, 102370S.

Fortmann-Grote, C., Andreev, A. A., Briggs, R., Bussmann, M.,
Buzmakov, A., Garten, M., Grund, A., Hübl, A., Hauff, S., Joy, A.,
Jurek, Z., Loh, N. D., Rüter, T., Samoylova, L., Santra, R.,
Schneidmiller, E. A., Sharma, A., Wing, M., Yakubov, S., Yoon,
C. H., Yurkov, M. V., Ziaja, B. & Mancuso, A. P. (2016).
arXiv: 1610.05980.

Foucar, L. (2016). J. Appl. Cryst. 49, 1336–1346.
Furuhashi, S. (2008–2013). Messagepack, https://msgpack.org/.
Götz, A., Taurel, E., Pons, J., Verdier, P., Chaize, J., Meyer, J., Poncet,

F., Heunen, G., Götz, E., Buteau, A., et al. (2003). Proceedings
of the 2003 International Conference on Accelerator and Large
Experimental Physics Control Systems (ICALEPCS2003),
Gyeongju, Korea, pp. 220–222. MP705.

Grünbein, M. L., Bielecki, J., Gorel, A., Stricker, M., Bean, R.,
Cammarata, M., Dörner, K., Fröhlich, L., Hartmann, E., Hauf, S.,
Hilpert, M., Kim, Y., Kloos, M., Letrun, R., Messerschmidt, M.,
Mills, G., Kovacs, G. N., Ramilli, M., Roome, C. M., Sato, T., Scholz,
M., Sliwa, M., Sztuk-Dambietz, J., Weik, M., Weinhausen, B., Al-
Qudami, N., Boukhelef, D., Brockhauser, S., Ehsan, W., Emons, M.,
Esenov, S., Fangohr, H., Kaukher, A., Kluyver, T., Lederer, M.,
Maia, L., Manetti, M., Michelat, T., Münnich, A., Pallas, F., Palmer,
G., Previtali, G., Raab, N., Silenzi, A., Szuba, J., Venkatesan, S.,
Wrona, K., Zhu, J., Doak, R. B., Shoeman, R. L., Foucar, L.,

Colletier, J.-P., Mancuso, A. P., Barends, T. R. M., Stan, C. A. &
Schlichting, I. (2018). Nat. Commun. 9, 3487.

Grygiel, G., Hensler, O. & Rehlich, K. (1996). Proceedings of the
1st International Workshop on Emerging Technologies and
Scientific Facilities Controls (PCaPAC96), DESY, Hamburg,
Germany.

Hapner, M., Burridge, R., Sharma, R., Fialli, J. & Stout, K. (2002).
Java Message Service, p. 9. Sun Microsystems Inc., Santa Clara, CA,
USA.

Hauf, S. (2017). XFEL detector tools documentation, https://in.xfel.eu/
readthedocs/docs/pydetlib/en/latest/.

Heisen, B., Boukhelef, D., Esenov, S., Hauf, S., Kozlova, I., Maia, L.,
Parenti, A., Szuba, J., Weger, K., Wrona, K. & Youngman, C.
(2013). Proceedings of the 14th International Conference on
Accelerator and Large Experimental Physics Control Systems
(ICALEPCS2013), 6–11 October 2013, San Francisco, CA, USA,
pp. 1465–1468. FRCOAAB02.

Hintjens, P. (2013). ZeroMQ: Messaging for Many Applications.
Sebastopol: O’Reilley Media.

Hoyer, S. & Hamman, J. (2017). J. Open Res. Softw. 5, 10.
Hunter, J. D. (2007). Comput. Sci. Eng. 9, 90–95.
ISO (2011). Technical Committee: ISO/IEC JTC 1/SC 22 Program-

ming languages, t. e. & system software interfaces, (2011). Iso/iec
14882:2011 information technology – programming languages –
c++, https://www.iso.org/standard/50372.html.

Joy, A., Wing, M., Hauf, S., Kuster, M. & Rüter, T. (2015). J. Instrum.
10, C04022.

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B. E., Bussonnier,
M., Frederic, J., Kelley, K., Hamrick, J. B., Grout, J., Corlay, S.,
Ivanov, P., Avila, D., Abdalla, S., Willing, C. & Jupyter Develop-
ment Team (2016). Proceedings of the 20th International Confer-
ence on Electronic Publishing (ELPUB), pp. 87–90. Göttingen,
Germany.

Kuster, M., Boukhelef, D., Donato, M., Dambietz, J.-S., Hauf, S.,
Maia, L., Raab, N., Szuba, J., Turcato, M., Wrona, K. & Youngman,
C. (2014). Synchrotron Radiat. News, 27(4), 35–38.

Mancuso, A. (2011). Conceptual Design Report: Scientific Instrument
Single Particles, Clusters, and Biomolecules (SPB). Report TR-
2011-007. European XFEL, Hamburg, Germany.

Mancuso, A. P., Reimers, N., Borchers, G., Aquila, A. & Gieweke-
meyer, K. (2013). Technical Design Report: Scientific Instrument
Single Particles, Clusters and Biomolecules (SPB). Technical
Report. European XFEL GmbH, Hamburg, Germany.

Mariani, V., Morgan, A., Yoon, C. H., Lane, T. J., White, T. A.,
O’Grady, C., Kuhn, M., Aplin, S., Koglin, J., Barty, A. & Chapman,
H. N. (2016). J. Appl. Cryst. 49, 1073–1080.

McKinney, W. (2011). Python for High Performance and Scientic
Computing pp. 1–9. Sebastopol: O’Reilly Media.

Mekinda, L., Bondar, V., Brockhauser, S., Danilevski, C., Ehsan, W.,
Esenov, S., Fangohr, H., Flucke, G., Giovanetti, G., Hauf, S., Hickin,
D., Klimovskaia, A., Maia, L., Michelat, T., Muennich, A., Parenti,
A., Santos, H., Weger, K. & Xu, C. (2018). Proceedings of the 16th
International Conference on Accelerator and Large Experimental
Control Systems (ICALEPCS2017), 8–13 October 2017, Barcelona,
Spain, pp. 1142–1148. THBPA02.

Pérez, F. & Granger, B. E. (2007). Comput. Sci. Eng. 9, 21–29.
Qt (2018). Qt, http://Doc.qt.io/qt-5/signalsandslots.html. [Accessed

12/09/2018.]
Rüter, T., Hauf, S., Kuster, M., Joy, A., Ayers, R., Wing, M., Yoon,

C. H. & Mancuso, A. P. (2015). 2015 IEEE Nuclear Science
Symposium and Medical Imaging Conference (NSS/MIC), pp. 1–4.
IEEE.

Schäling, B. (2011). The Boost C++ Libraries. XML Press.
Stroustrup, B. (1995). The C++ programming language. Pearson

Education India.
Van Rossum, G. & Drake, F. L. (2011). The Python language reference

manual. Godalming: Network Theory Ltd.

research papers

1460 Steffen Hauf et al. � Karabo J. Synchrotron Rad. (2019). 26, 1448–1461

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB48
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB48
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB44
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB44
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB44
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB44
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB46
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB46
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB49


Van Rossum, G., Warsaw, B. & Coghlan, N. (2001). Python, http://
www.python.org.

Walt, S. van der, Colbert, S. C. & Varoquaux, G. (2011). Comput. Sci.
Eng. 13, 22–30.

Waskom, M. (2012–2018). Seaborn plotting library in Python, https://
seaborn.pydata.org/.

Wiedorn, M. O., Oberthür, D., Bean, R., Schubert, R., Werner, N.,
Abbey, B., Aepfelbacher, M., Adriano, L., Allahgholi, A., Al-
Qudami, N., Andreasson, J., Aplin, S., Awel, S., Ayyer, K., Bajt, S.,
Barák, I., Bari, S., Bielecki, J., Botha, S., Boukhelef, D., Brehm, W.,
Brockhauser, S., Cheviakov, I., Coleman, M. A., Cruz-Mazo, F.,
Danilevski, C., Darmanin, C., Doak, R. B., Domaracky, M., Dörner,
K., Du, Y., Fangohr, H., Fleckenstein, H., Frank, M., Fromme, P.,
Gaňán-Calvo, A. M., Gevorkov, Y., Giewekemeyer, K., Ginn,
H. M., Graafsma, H., Graceffa, R., Greiffenberg, D., Gumprecht,
L., Güttlicher, P., Hajdu, J., Hauf, S., Heymann, M., Holmes, S.,
Horke, D. A., Hunter, M. S., Imlau, S., Kaukher, A., Kim, Y.,
Klyuev, A., Knoška, J., Kobe, B., Kuhn, M., Kupitz, C., Küpper, J.,

Lahey-Rudolph, J. M., Laurus, T., Le Cong, K., Letrun, R., Xavier,
P. L., Maia, L., Maia, F. R. N. C., Mariani, V., Messerschmidt, M.,
Metz, M., Mezza, D., Michelat, T., Mills, G., Monteiro, D. C. F.,
Morgan, A., Mühlig, K., Munke, A., Munnich, A., Nette, J., Nugent,
K. A., Nuguid, T., Orville, A. M., Pandey, S., Pena, G., Villanueva-
Perez, P., Poehlsen, J., Previtali, G., Redecke, L., Riekehr,
W. M., Rohde, H., Round, A., Safenreiter, T., Sarrou, I., Sato, T.,
Schmidt, M., Schmitt, B., Schönherr, R., Schulz, J., Sellberg,
J. A., Seibert, M. M., Seuring, C., Shelby, M. L., Shoeman, R. L.,
Sikorski, M., Silenzi, A., Stan, C. A., Shi, X. T., Stern, S., Sztuk-
Dambietz, J., Szuba, J., Tolstikova, A., Trebbin, M., Trunk, U.,
Vagovic, P., Ve, T., Weinhausen, B., White, T. A., Wrona, K., Xu, C.,
Yefanov, O., Zatsepin, N., Zhang, J. G., Perbandt, M., Mancuso, A.
P., Betzel, C., Chapman, H. & Barty, A. (2018). Nat. Commun. 9,
4025.

Zander, U., Bourenkov, G., Popov, A. N., de Sanctis, D., Svensson, O.,
McCarthy, A. A., Round, E., Gordeliy, V., Mueller-Dieckmann, C.
& Leonard, G. A. (2015). Acta Cryst. D71, 2328–2343.

research papers

J. Synchrotron Rad. (2019). 26, 1448–1461 Steffen Hauf et al. � Karabo 1461

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB54
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB54
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB52
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB52
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB54
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB54
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xq5007&bbid=BB54

