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Resonant inelastic X-ray scattering (RIXS) has become an important scientific

tool. Nonetheless, conventional high-resolution (few hundred meV or less)

RIXS measurements, especially in the soft X-ray range, require low-throughput

grating spectrometers, which limits measurement accuracy. Here, the perfor-

mance of a different method for measuring RIXS, i.e. photoelectron spectro-

metry for analysis of X-rays (PAX), is computationally investigated. This

method transforms the X-ray measurement problem of RIXS to an electron

measurement problem, enabling use of high-throughput, compact electron

spectrometers. X-rays to be measured are incident on a converter material and

the energy distribution of the resultant photoelectrons, the PAX spectrum,

is measured with an electron spectrometer. A deconvolution algorithm for

analysis of such PAX data is proposed. It is shown that the deconvolution

algorithm works well on data recorded with �0.5 eV resolution. Additional

simulations show the potential of PAX for estimation of RIXS features with

smaller widths. For simulations using the 3d levels of Ag as a converter material,

and with 105 simulated detected electrons, it is estimated that features with a few

hundred meV width can be accurately estimated in a model RIXS spectrum. For

simulations using a sharp Fermi edge to encode RIXS spectra, it is estimated

that one can accurately distinguish 100 meV FWHM peaks separated by 45 meV

with 105 simulated detected electrons that were photoemitted from within

0.4 eV of the Fermi level.

1. Introduction

Resonant inelastic X-ray scattering (RIXS) has emerged as a

powerful technique to study elementary excitations (Ament et

al., 2011). RIXS probes excitations via core–valence transi-

tions with element-specific energies, which allows one to tune

the elemental locations being probed through the incident

X-ray photon energy. Because of the large momentum of

X-rays, RIXS is able to probe the dispersion of elementary

excitations in solids, unlike lower-energy optical photons.

Further, in contrast to other X-ray-based spectroscopies, the

energy resolution of RIXS is not limited by short core hole

lifetimes. Because of these strengths, much effort has been

devoted to developing RIXS capabilities. In the soft X-ray

range, X-ray grating and synchrotron light source develop-

ment has enabled RIXS measurements with energy resolution

better than 100 meV (Brookes et al., 2018; Dvorak et al., 2016).

Having these high energy resolutions is particularly important

for studies of solids where characteristic energies of many

important excitations are around 100 meV or less (Ament et

al., 2011; Chaix et al., 2017). Leveraging these capabilities,

RIXS studies have given new insights in wide-ranging topics

including solid state physics (Ament et al., 2011; Le Tacon et
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al., 2011; Schlappa et al., 2012; Chaix et al., 2017), nanoparticles

(Liu et al., 2017), interfaces (Rajasekaran et al., 2012),

batteries (House et al., 2020; Firouzi et al., 2018), liquids

(Wernet et al., 2015) and gases (Hennies et al., 2010).

Even more information could be gleaned from RIXS if

one could make faster and more accurate measurements

that maintained hundreds of meV or better resolution. For

example, high-resolution time-resolved RIXS measurements

probe dynamics of elementary excitations and can discrimi-

nate well between different states that occur in sample

evolution (Wernet et al., 2015), but require recording many

accurate spectra. Unfortunately, grating spectrometers detect

only one X-ray photon for every �107 or more scattered

RIXS photons (Qiao et al., 2017; Ghiringhelli & Braicovich,

2013; Dakovski et al., 2017), making such studies very chal-

lenging. Work has been done towards improving this. Transi-

tion edge sensors (Uhlig et al., 2015) and off-axis zone plates

(Marschall et al., 2017) can make more accurate RIXS

measurements than traditional instrumentation in certain

cases, but so-far demonstrated resolutions are significantly

more than 0.5 eV. More information could be gleaned from

RIXS if one could make faster and more accurate measure-

ments that maintained hundreds of meV or better resolution.

Here, we investigate an alternative technique that leverages

electron spectroscopy for RIXS.

Coinciding with the rise and development of RIXS, the

capabilities of electron spectrometers have also greatly

increased (Damascelli et al., 2003). Photoelectron spectro-

meters can now have energy resolutions better than 20 meV

for 500 eV kinetic energy electrons

(Seidel et al., 2017). The collection effi-

ciency, and thus achievable signal-to-

noise ratio with a given number of

particles emitted from a sample, can be

much higher for electron spectrometers

than X-ray spectrometers with compar-

able resolutions. Further, electron

spectrometers are not as sensitive to

the vibrations and movements that

can impact the performance of large

X-ray spectrometers. These features

are largely due to the ease with which

electrons can be manipulated, owing to

their charge, in comparison with neutral

X-rays. Thus if one can transform the

X-ray measurement problem of RIXS

to an electron measurement problem,

then there could be gains in count rates,

and instrumentation simplicity.

Recently, Dakovski et al. (2017)

proposed doing exactly that to measure

RIXS with hundreds of meV or better

resolution through photoelectron spec-

trometry for analysis of X-rays (PAX)

(Krause, 1965; Ebel, 1975). Fig. 1 gives

an overview of this technique, which

makes use of sharp photoemission

features that occur in the photoemission spectra of materials

such as Ag, Au, Pt or Al when measured with monochromatic

incident X-ray radiation. Fig. 1(A) shows an experimental

schematic. X-rays to be measured [Fig. 1(B)] are incident on a

converter system, where absorption of the X-rays generates

photoelectrons. The converter material is assumed to give

some photoemission spectrum when measured with mono-

chromatic X-ray radiation, xps(BE), as a function of binding

energy, BE [Fig. 1(C) shows an example Ag 3d photoemission

spectrum, while Fig. 1(D) shows an example sharp Fermi

edge]. The emitted photoelectrons are then detected with a

photoelectron spectrometer. We call the resultant electron

spectrum the PAX spectrum [Figs. 1(E) or 1(F)]. The expected

shape of the PAX spectrum is given by a convolution with

h(E) = xps(�E) acting as an impulse response function.

Convolving the spectrum of X-rays incident on the converter

material [Fig. 1(B)] with h(E) [Figs. 1(C) or 1(D)] approxi-

mately gives the expected value of the PAX spectrum

[Fig. 1(E) or 1(F)],

EfmðkEÞg ¼

Z1

0

sðh- !Þ hðkE� h- !Þ dh- !; ð1Þ

where we only integrate over physically realistic positive

photon energies. Here, kE is the electron kinetic energy, s(h- !)

is the X-ray spectrum incident on the converter material as a

function of photon energy, h- !, and m(kE) is a measured PAX

spectrum.
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Figure 1
Concept of PAX for estimating RIXS spectra. (A) Experimental schematic. Monochromatic X-rays
are incident on a sample which emits RIXS photons. These photons are directed onto a converter
material resulting in photoemission. The energy distribution of these photoelectrons is detected
with an electron spectrometer giving a PAX spectrum. We estimate the RIXS spectrum from the
measured PAX spectrum and knowledge of the converter material photoemission spectrum.
(B) Example model ground truth RIXS spectrum at the Co L3-edge (778 eV incident photon
energy). (C) Ag 3d-like model photoemission spectrum. (D) Sharp Fermi edge model
photoemission spectrum, such as for Au. (E) Resultant PAX spectrum without noise for the
X-ray spectrum in (B) and the photoemission spectrum in (C). (F) Resultant PAX spectrum without
noise for the X-ray spectrum in (B) and the photoemission spectrum in (D).



Given a PAX spectrum, the ground truth X-ray spectrum,

s(h- !), can be estimated directly through deconvolution or in a

parameterized form such as a sum of peaks. (The ground truth

X-ray spectrum is the X-ray spectrum that would be measured

without noise and with perfect resolution.) The decomposition

of RIXS spectra into a sum of peaks is a natural method

already widely used for traditionally recorded RIXS spectra

as the parameters of these peaks can be directly linked to

physical characteristics of the matter under study (Ament et

al., 2011). For more complex RIXS spectra, or cases where

less is known about the form of a RIXS spectrum before

measurement, the more general case of deconvolution may be

more appropriate or would be a first step in further decom-

position of a RIXS spectrum into elementary features.

While Dakovski et al. (2017) demonstrated the possibility of

recording PAX spectra for RIXS with moderate resolution

and estimating the corresponding RIXS spectra as a sum of

peaks, further development is required for PAX to be a proven

high-resolution RIXS technique. First, a general algorithm for

faithfully reconstructing X-ray spectra from PAX measure-

ments is needed. The algorithm proposed by Dakovski et al.

(2017) works when spectral line shapes and their photon

energy distribution are priorly known in order to estimate the

spectra as a sum of Gaussian functions. Without this infor-

mation, spectral features will be poorly deconvoluted. Second,

a quantitative assessment of the potential of PAX for

measurement of X-ray spectra would show where PAX could

be most useful. Finally, an experimental demonstration of the

ability of PAX to perform a high-resolution RIXS study is

needed. Here, we fill the first two of these gaps by proposing

an algorithm for analyzing PAX data, then showing the

capability of this algorithm on the data from Dakovski et al.

(2017) and finally showing the potential of PAX for estimating

finer RIXS features through simulations. The algorithm

we propose is a regularized maximum-likelihood estimation

algorithm where the optimal regularization strength is esti-

mated in a self-supervised manner from PAX data (summar-

ized later in Algorithms 1 and 2).

The rest of this report is organized as follows. In Section 2,

we discuss the considerations for choosing a converter mate-

rial for PAX, and explain why the Ag 3d lines and a sharp

Fermi edge are compelling cases. In Section 3, we describe

the deconvolution algorithm we propose for estimating RIXS

spectra from PAX data. In Section 4 we show the performance

of this algorithm on the experimental data of Dakovski et al.

(2017) as well as the simulated performance of PAX in esti-

mating hundreds of meV or finer model RIXS features. The

results on the data from Dakovski et al. (2017) demonstrate

the capability of PAX to estimate RIXS structure on the �eV

scale with a general deconvolution algorithm. Further, we find

that, in simulations under reasonable experimental conditions

using the Ag 3d levels as a photoemission converter, PAX can

accurately estimate the width of few hundred meV features

when 105 electrons are simulated to be detected in the

measured PAX spectrum. Under more challenging to realize

conditions, simulations using a sharp Fermi edge photoemis-

sion converter show potential for PAX in estimating finer

features. Finally, in Section 5 we conclude and give an outlook

for future investigations.

2. Choice of converter material

The converter material plays a key role in PAX measurements.

Converter materials with high conversion efficiency and

narrow photoemission lines are desirable. Higher conversion

efficiencies give higher numbers of detected electrons and,

thus, higher signal-to-noise ratios. Narrow photoemission lines

enable retrieval of narrow X-ray spectral features with a

reasonable number of detected electrons. For thick converter

materials with near normal incidence of X-rays and emission

of photoelectrons, the conversion efficiency of X-rays to

photoelectrons can be approximated as (Henke, 1972)

� ¼ �q��e ð2Þ

where �q is the effective ionization cross-section for the

creation of photoelectrons from subshell q, � is the number

per unit volume of atoms within the sample which can emit

photoelectrons from the subshell used for PAX, and �e is the

electron mean free path at the kinetic energy of the relevant

photoelectrons.

In Fig. 2 we show the conversion efficiency estimated with

equation (2) for some promising cases. For these calculations

subshell photoemission cross sections were taken from Yeh &

Lindau (1985), electron mean free paths for Ag and Au from

Tanuma et al. (2002), electron mean free paths for Al and

Pt from Shinotsuka et al. (2015), and atoms per unit volume

calculated from values from Rumble (2019). From Fig. 2, we

see that, in the soft X-ray range, conversion efficiencies of

nearly 10% with photoemission linewidths of a few hundred

meV are possible using the Au 4f or Ag 3d lines. Narrower

photoemission features are available at the expense of a

reduced conversion efficiency (such as Al 2p and Pt Fermi

level photoemission shown in Fig. 2 and Table 1.

Photoemission feature widths are intrinsic properties of

potential PAX converter materials. With perfectly accurate
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Figure 2
Photoemission quantum efficiency of some electronic subshells with
potential for PAX.



measurements, the width of features can be deconvoluted

independently from the photoemission feature width. In

practice, a measurement detects only a finite number of

electrons. Therefore, the narrowest of photoemission feature

widths set fundamental limits on the widths of spectral

features that can be robustly estimated through PAX for a

given number of detected electrons. For core level photo-

emission features, the natural width of the level gives a lower

limit. This reaches the small value of 10 meV for the L-shell

of Na (Riffe et al., 1991). Widths are broadened from that

fundamental limit in real matter though. The Al 2p levels have

very small measured core level widths of �60 meV FWHM

(Borg et al., 2004). Thus, the fundamental limit of PAX reso-

lution using core level photoemission is a maximum of 60 meV

and minimum of 10 meV. Valence levels can have even smaller

widths. The Xe 5p3/2 levels are widely used for characterizing

the resolution of electron instrumentation due to their having

a measured width as small as 3.4 meV (Mårtensson et al.,

1994). Thus, the maximum fundamental limit of PAX resolu-

tion using valence photoemission is 3.4 meV. This, however,

comes at the expense of lower conversion efficiency than for

core levels.

3. An algorithm for deconvolving PAX spectra

In principle, a similar convolution equation to equation (1)

describes the measured signal in many X-ray spectroscopies.

The signal of interest, such as a RIXS spectrum or X-ray

absorption spectrum, is convolved with an instrument

response function and an intrinsic broadening function to give

the measured spectrum. Thus, more accurate X-ray spectra

can often be retrieved through deconvolution of measured

results (Ebel & Gurker, 1975; Fister et al., 2007; Laverock et

al., 2011). It is not typical to analyze such spectra using

deconvolution, however. This is because these convolutions

only broaden the measured spectra, and measured spectra are

still interpretable as a simple blurring of the true spectrum.

For PAX, however, the measured spectrum is typically

convolved with a more complicated function than a single

peak. The converter material photoelectron spectrum could

consist of, for example, two narrow peaks and a non-uniform

background, as is common for core levels. It may not be easy

to infer the original X-ray spectrum from the measured PAX

spectrum in these cases. Thus, while deconvolution is an

optional step in traditional X-ray spectroscopies, it is impor-

tant for PAX measurements.

3.1. Model of PAX spectra

Equation (1) gives the expected value of a PAX measure-

ment in the case that the PAX spectrum is measured at every

electron kinetic energy. In reality, the measured PAX spec-

trum, m[kE] is discrete with each measured point integrating

over a range of electron kinetic energies. Thus, the expected

value of the measured PAX spectrum is approximately given

by a discrete convolution,

Efm½kE�g ¼
X1

ðh=2�Þ!¼ 0

s½h- !� h½kE� h- !�; ð3Þ

where s[h- !] and h[�BE] are the discretized versions of the

X-ray spectrum incident on the converter material and the

photoemission spectrum of the converter material.

Equation (3) extends over an infinite range, but, fortunately,

experimental circumstances can be chosen so that the

summation is non-negligible only over a finite and experi-

mentally tractable range. We assume that we want to estimate

a RIXS spectrum from h- !min to h- !max and that we want to use

photoemission features extending from at least BEmin to

BEmax in the measurement. These ranges give a PAX spectrum

extending from kEmin = h- !min � BEmax through kEmax =

h- !max � BEmin. In order to accurately model this PAX spec-

trum we must keep all X-ray photon energies in equation (3)

that contribute non-negligibly to the PAX spectrum over this

range. X-rays with energies higher than some cutoff h- !+ give

negligible contributions (a typical cutoff may be a few

hundred meV above the incident X-ray energy). The lower

limit of photon energies that contribute to the PAX spectrum

is set through the lowest binding energy that contributes

significantly to the PAX spectrum, BE�. For example, if one is

using valence photoemission features, this limit on binding

energies is set by the typical restriction of significant photo-

emission intensity to positive binding energies. This sets the

lower limit h- !� = kEmin + BE� on the photon energies of

X-rays that will contribute to the PAX spectrum.

With these range limitations, equation (3) is simplified to

Efm½kE�g ¼
Xðh=2�Þ!þ

ðh=2�Þ! ¼ ðh=2�Þ!�

s½h- !� h½kE� h- !�; ð4Þ

which is practical to analyze for PAX. It is convenient to write

this as

Efmg ¼ Hs; ð5Þ

where m is a column vector whose entries are the measured

PAX spectrum, s is another column vector whose entries are

the desired X-ray spectrum, and H is a Toeplitz matrix

such that the entries of Hs are the same as the discrete

convolution h * s.

We assume we are in a regime where shot noise is the

dominant noise. In this case, the measured PAX spectrum

can be approximated by a Poisson process. The probability of

measuring b counts for a kinetic energy bin with expected

value a is
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Table 1
Description of photoemission from some electronic subshells of solids.

Subshell Description

Ag 3d Two 233 meV FWHM peaks (Panaccione et al., 2005)
Au 4f Two 335 meV FWHM peaks (Takata et al., 2005)
Al 2p Two 60 meV FWHM peaks (Borg et al., 2004)
Pt valence Sharp Fermi edge



pðbÞ ¼
expð�aÞ ab

b!
: ð6Þ

The probability of measuring a PAX spectrum m is then

pðmÞ ¼
Y

i

expð�HsÞi ðHsÞ
m i
i

m i !
; ð7Þ

where xi denotes the ith element of x.

We note that a matrix equation like equation (5) holds as a

description of the expected value of a PAX spectrum even

when the photoemission spectrum of the converter material is

dependent on the incident photon energy. Thus, the methods

we describe below can still be used to estimate a RIXS spec-

trum in such cases, albeit with likely less computational effi-

ciency.

3.2. Regularized maximum-likelihood estimation for
estimating RIXS with PAX

We now describe how we estimate a ground truth RIXS

spectrum given a PAX data set. We assume that we have a set

of PAX spectra recorded under statistically identical condi-

tions as well as a high-accuracy measurement of the photo-

emission spectrum of the converter material recorded with

monochromatic incident X-ray radiation. Neglecting noise of

the photoemission spectrum is an acceptable approximation

because the photoemission spectrum can be measured with

direct photoemission which has orders of magnitude higher

count rate than a PAX measurement. We estimate the ground

truth RIXS spectrum from these data using regularized

maximum-likelihood estimation. The maximum-likelihood

estimate of the ground truth RIXS spectrum is the spectrum

which maximizes the probability of measuring the actually

measured PAX spectrum. Regularization prevents the esti-

mate from having finer structure than is warranted for the

quality of the data.

For the probability given in equation (7), the negative log-

likelihood of s is

LðsÞ ¼
X

i

ðHsÞi �mi log
�
ðHsÞi

�
þ logðm i !Þ: ð8Þ

The gradient of this with respect to s is

rLðsÞ ¼ HT1�HT m

Hs
; ð9Þ

where 1 is a vector where all the entries are 1 and with

dimension such that the equation it appears in is valid, and

xT denotes the transpose of x. Having this gradient, we can

iteratively minimize the negative log-likelihood (maximizing

the likelihood) with the scaled gradient iteration (Bertero et

al., 2009)

ŝs ðnþ1Þ
¼ ŝs ðnÞ � ŝs ðnÞ rL

�
ŝs ðnÞ
�
; ð10Þ

where ŝs ðnÞ is the estimate of s after n iterations. This gives the

iteration

ŝs ðnþ1Þ ¼ ŝs ðnÞ 1�HT1þHT m

Hs

h i
: ð11Þ

This is equivalent to

ŝs ðnþ1Þ ¼ ŝs ðnÞ 1½h- !� � h� � 1½h- !� þ h� �
m

h � ŝs ðnÞ

h i
; ð12Þ

where h* is the photoemission impulse response function with

the order of the entries reversed and all the entries of 1[h- !]

are 1. This iteration requires a starting point, ŝs ð0Þ. For this, we

used a smoothed version of the measured PAX spectrum.

If h* * 1[h- !] = 1[h- !], then equation (12) simplifies to the

well known Lucy–Richardson algorithm (Richardson, 1972;

Lucy, 1974; Shepp & Vardi, 1982). The Lucy–Richardson

algorithm and its variants have been widely used in imaging

(Bertero et al., 2009; Dey et al., 2006; Starck et al., 2002) and

spectroscopy (Fister et al., 2007). For PAX, however, we often

will not be able to reduce equation (12) to the Lucy–

Richardson algorithm as photoemission spectra used for PAX

can be non-negligible over a wide range.

It is a well known problem that algorithms like equation

(12) amplify high-frequency noise when they are used without

regularization (White, 1994; Bertero et al., 2009). This is

essentially a result of the reduction in strength of high-

frequency components relative to low-frequency components

after convolution with an extended function. Accurately

inferring the pre-convolution strength of these high-frequency

components requires a more accurate measure of their

strength in the post-convolution data then their lower-

frequency counterparts.

Various regularization schemes have been proposed to

avoid the amplification of high-frequency noise encountered

in such algorithms. This is typically achieved by enforcing

some degree of smoothness of the deconvolved result.

Regularization by stopping iterations after certain criteria

have been met (Reeves, 1995), damping the effect of iterations

that do not improve the reconstruction (White, 1994), and

total variation regularization (Dey et al., 2006) has been

proposed. A method of regularization well suited to our case

was proposed by Fister et al. (2007) for application to Lucy–

Richardson deconvolution of X-ray absorption and inelastic

X-ray scattering spectra. In this algorithm, the iterative

deconvolution is stabilized against high-frequency noise

amplification by convolution with a Gaussian function after

each iteration. Applying this to our algorithm gives a regu-

larized version of equation (12),

ŝs ðnþ1Þ
¼ f � ŝs ðnÞ 1½h- !� � h� � 1½h- !� þ h� �

m

h � ŝs ðnÞ

h i
; ð13Þ

where f(x) is a Gaussian function with unit integrated ampli-

tude,

f ðxÞ ¼
1

�
ffiffiffiffiffiffi
2�
p exp �

1

2
ðx=�Þ2

� �
: ð14Þ

The width of the Gaussian, �, constrains the maximum

roughness of deconvolved spectra and thus sets the regular-

ization strength (it acts as a hyperparameter in the deconvo-

lution algorithm). Smaller regularization strengths allow for

more roughness in the deconvolved spectra than larger regu-

larization strengths.
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Fig. 3 shows the effect of regularization strength on the

deconvolved spectra for simulations using the model ground

truth spectrum shown in Fig. 1(a), and model Ag 3d photo-

emission spectrum shown in Fig. 1(b). We used an energy

separation of 10 meV between points for all simulations using

the Ag 3d levels as a photoemission converter. Part A of Fig. 3

shows results for 104 simulated detected electrons, while part

B shows analogous results for 107 simulated detected elec-

trons. In each case, deconvolved and ground truth spectra are

shown with regularization strength decreasing from top to

bottom. As the regularization strength decreases, the decon-

volved spectra attain more detail and increasingly finer

structure is seen. This comes at the expense, however, of more

statistical variation in the deconvolved spectra. For the case

with 104 simulated detected electrons, the deconvolved spectra

accurately estimate increasingly fine spectral features with

smaller regularization strengths except for the smallest regu-

larization strength of � = 2.8 meV. For that case, the decon-

volved spectrum has fine features, but they do not accurately

reflect the ground truth spectrum on this scale. In contrast,

with 107 simulated detected electrons, as shown in Fig. 3(B),

the deconvolved spectra accurately reflect the ground truth

spectrum smoothed to an extent given by the particular

regularization strength even for the smallest regularization

strength shown. Thus, the optimal regularization strength is

smaller for 107 simulated detected electrons than for 104

simulated detected electrons. More generally, the best regu-

larization strength decreases with increasing numbers of

simulated detected electrons, but also depends on the

converter material photoemission spectrum and the ground

truth X-ray spectrum.

3.3. Estimating the optimal regularization strength

We now show how we can estimate the optimal regular-

ization strength. Fister et al. (2007) proposed one method of

choosing the regularization based on the smallest expected

feature in the ground truth spectrum. Since we do not always

know this before measurements, we use a more general

procedure here. We define the optimal regularization strength

as that which minimizes the root mean squared error (RMSE)

of a deconvolved spectrum with respect to the ground truth it

estimates,

�̂� ¼ arg min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjŝs� sjj2

q� �
: ð15Þ

Fig. 4 shows the dependence of different statistics on the

regularization strength and number of simulated detected

electrons. These simulations were carried out using the Ag 3d

photoemission spectrum shown in Fig. 1(C) as a model

photoemission converter and the model RIXS spectrum of

Fig. 1(A) as a ground truth spectrum to estimate. The results

shown in Fig. 4 can be used to assess the potential of the

different statistics in estimating the optimal regularization

strength.

Fig. 4(A) shows an example ground truth spectrum and a

deconvolved estimate of it from simulated PAX data. Calcu-

lating the RMSE of such deconvolved spectra as a function of

the regularization strength and number of simulated detected

electrons results in the curves shown in Fig. 4(B). This

deconvolved RMSE decreases with increasing regularization

strength down to the minimum at the optimal regularization

strength, where it then gradually increases with increasing

regularization strength. The optimal regularization strength is

smaller for higher numbers of simulated detected electrons.

Unfortunately, this deconvolved RMSE is not experimentally

accessible as the ground truth spectrum is generally unknown.

Instead of trying to determine the optimal regularization

strength through direct assessment of deconvolved error, we

can assess how well our model reconstructs PAX spectra from

deconvolved spectra as a proxy for the accuracy of decon-

volved spectra. In other words, we can compare the convo-

lution of a deconvolved spectrum with the corresponding

photoemission impulse response function with recorded PAX

data. If the deconvolution is perfect and there is no noise,

these spectra should be the same. It has been shown in

previous deconvolution studies that such a comparison can

allow one to estimate the optimal regularization strength

(Reeves, 1992; Wahba & Wang, 1990). In making these

assessments, we distinguish between two cases. In the first

case, we compare a reconstruction of PAX data with a training

PAX spectrum (the same spectrum that was used as input

for deconvolution). In the second case, we compare a recon-

struction of PAX data with a validation PAX spectrum (a

spectrum simulated with statistically identical conditions as

the training spectrum, but that was not used as part of that

deconvolution).

Fig. 4(C) shows a comparison of a reconstruction of a PAX

spectrum with a training PAX spectrum. Fig. 4(D) shows the
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Figure 3
Effect of regularization strength on deconvolved PAX spectra. (Spectra
with different regularization strengths are vertically offset for clarity.)
(A) Ground truth and deconvolved spectra for different regularization
strengths and 104 simulated detected electrons. (B) Same as part A,
except for 107 simulated detected electrons.



RMSE of such reconstructions as a function of regularization

strength and number of detected electrons. Unfortunately, as

seen there, this statistic only decreases with decreasing regu-

larization strength and is not minimized at the same locations

as the deconvolved RMSE. Thus we cannot use the minimum

of this statistic to estimate the optimal regularization para-

meter. Deconvolutions with too small regularization strengths

closely fit fine features of the recorded PAX spectrum even

though fitting so closely is not warranted given the noise in the

data. This is an example of overfitting. To avoid this problem,

we can assess the performance of the deconvolution on data

that were not used as input to the deconvolution (James et

al., 2013).

Fig. 4(E) compares the PAX reconstruction with a valida-

tion PAX spectrum. Fig. 4(F) shows the dependence of the

RMSE of the reconstruction with respect to the validation

PAX spectrum on the regularization strength and the number

of simulated detected electrons. In each case, this statistic is

minimized near the optimal regularization strengths. Unlike

the RMSE of deconvolved data shown in Fig. 4(B), this

statistic is experimentally accessible, and thus we use it to

estimate the optimal regularization strength.

3.4. Stopping criterion

To perform iterative deconvolution, it is necessary to decide

when a sufficient number of iterations have been completed.

To choose such a stopping criterion, we recognized that (1) we

wanted to perform sufficient iterations for the deconvolution

with the optimal regularization strength to converge to near its

asymptotic values, and (2) we wanted the number of iterations

to be high enough for the optimal regularization strength to be

closely approximated by that which minimizes the validation

reconstruction RMSE.

Fig. 5 illustrates the stopping criterion we used for this

study. This uses data simulated with the same conditions as

Fig. 3(A). For smaller regularization strengths, the decon-

volved and validation reconstruction mean squared errors

reach minima with increasing iterations before increasing

again. For larger regularization strengths, the deconvolved and

validation reconstruction mean squared error decrease to near

their asymptotic value quickly without overshooting. We see

that, for these data, to fulfill the above conditions, it is

necessary to complete iterations at least a few times more than

that where the errors for the smallest regularization strength
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Figure 4
Illustration of how the quality of reconstruction of PAX spectra from deconvolved spectra can be used to estimate the optimal regularization strength.
The panels on the left show example simulated data with 105 simulated detected electrons and a regularization strength of 7.7 meV. (A) Example ground
truth spectrum and an estimate of it obtained by deconvolving simulated data. (B) Corresponding root mean squared error (RMSE) of the deconvolved
spectrum as a function of the regularization strength and the number of simulated detected electrons. (C) PAX spectrum obtained by averaging a training
set of data (data that were used in deconvolution) and its reconstruction from the deconvolved result. The incident photon energy of 778 eV (Co L3)
combined with the Ag 3d binding energies near 370 eV (Panaccione et al., 2005) give electron kinetic energies near 405 eV in the PAX spectrum.
(D) Corresponding RMSE of the reconstruction of the training data for the same parameters as (A). (E) PAX spectrum obtained by averaging a
validation set of data (data that were not used in deconvolution) and its reconstruction from the deconvolved result. (F) Corresponding RMSE of the
validation data for the same parameters as (A). The data of panel (F) are shown with the minimum of each curve subtracted and a small offset added in
order to highlight the locations of minima. Since the validation reconstruction error is minimized at similar regularization strengths as the deconvolved
error, we can estimate the optimal regularization strength from the validation reconstruction error.



are minimized. In our case we chose to conduct iterations at

least equal to four times that where the validation RMSE for

the smallest regularization strength reaches a minimum. We

note that it can still be beneficial to perform more iterations

where possible to better fulfill the above priorities.

We have now finished describing an algorithm for esti-

mating a ground truth X-ray spectrum from PAX data. We

summarize this procedure in Algorithms 1 and 2 shown in

Figs. 6 and 7. The code used to perform the deconvolution

analysis described in this report can be found at github.com/

dhigley6/PAX2.

4. Performance of PAX

Now that we have described an algorithm for estimating RIXS

spectra from PAX data, in this section we evaluate the

performance of this algorithm on the experimental data of

Dakovski et al. (2017) and higher-resolution simulated data.

In the simulations, we assume that the bandwidth of X-rays

incident on a sample as well as electron analyzer resolution

are significantly smaller than the width of the photoemission

features used for PAX and thus neglect broadening of spectra

from these factors. Real photoemission spectra can have non-

uniform backgrounds and satellite photoemission features, but

for simplicity these were not included in the simulations we

show. Similarly, the model RIXS spectra in the simulations do

not include non-uniform backgrounds. We also only included

Poisson noise from X-ray counting in the simulation, assuming

that this was the dominant noise source. We note, however,

that the experimental data have a non-uniform photoemission

background and could have other sources of noise, but the

RIXS estimation algorithm worked well for it. We simulated

PAX measurements using the Ag 3d photoemission lines to

estimate features with structure on a 100 meV scale as well

as a sharp Fermi edge such as seen in Au to estimate finer

features.

4.1. Experimental data with �0.5 eV resolution

Fig. 8 shows the performance of the algorithm we proposed

here on the �0.5 eV resolution experimental data of

Dakovski et al. (2017) recorded at the Linac Coherent Light

Source (LCLS). These data used the Au 4f lines to convert

RIXS photons to electrons and estimated RIXS at the Co L3-

edge of a CoO sample. The regularization strength for the

entire data set was chosen by applying the procedure

described above to two spectra recorded with 780 eV incident

photon energy. The reconstructed PAX spectra of Fig. 8(B)

approximate a smoothed version of the measured PAX

spectra. This shows that the deconvolution algorithm accu-

rately estimates the true RIXS spectra within the resolution

and electron count limits of the experiment. We note that this

performance is achieved even with the non-uniform back-

ground of the Au 4f photoemission. The estimated RIXS
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Figure 5
Illustration of the stopping criterion for the same data set as Fig. 3(A).
(A) Dependence of the deconvolved mean squared error (MSE) on
iteration number and regularization strength. (B) Dependence of MSE of
the reconstruction of validation data on iterations. The stopping criterion
is four times the number of iterations required for the validation error to
reach a minimum with the smallest tested regularization strength.

Figure 6
Algorithm 1: regularized deconvolution of PAX data.

Figure 7
Algorithm 2: estimate optimal regularization strength for regularized
deconvolution.



spectra (deconvolved PAX spectra) of Fig. 8(C) show the

expected dependence of RIXS on incident photon energy

(van Schooneveld et al., 2012). The scattering is largely elastic

below the absorption resonance (below 778 eV), then transi-

tions to having inelastic loss features that increase in promi-

nence and extend to larger energy losses as the photon

energy continues to increase. The data do not reveal the finer

structure of the RIXS spectra though, due to the �0.5 eV

resolution.

4.2. Simulated performance estimating features with few
hundred mev scale using the Ag 3d levels

The Ag 3d levels have similar quantum efficiency as the Au

4f levels, but narrower intrinsic width. Under such conditions,

Dakovski et al. (2017) showed that �104 electrons could be

collected in 30 minutes at LCLS and estimated that 106 elec-

trons could be collected in a similar amount of time by

improving photoemitter surface quality and using a different

electron analyzer. The incident X-ray flux would be about an

order of magnitude less than Dakovski et al. (2017) for our

assumption of both the bandwidth of incident X-rays and

electron analyzer resolution being small in comparison with

photoemission features to hold, however [Dakovski et al.

(2017) estimated 260 meV incident X-ray bandwidth and

295 meV analyzer resolution for the experiments described

therein.] At modern synchrotron light sources though, the

photon flux per unit bandwidth on a sample can be at least

40 times higher and the count rate correspondingly higher

(Strocov et al., 2010; Dakovski et al., 2017). Higher number of

counts could be obtained by integrating longer (two days of

integration for two orders of magnitude more counts than

30 minutes, for example). Thus, here, we simulate the expected

performance of PAX using the Ag 3d levels for electron

counts extending from 103, a count that should be easily

achievable in less than 30 minutes even for an experimental

setup without improvements from Dakovski et al. (2017), to

107, a count that we expect would currently require integrating

for a few hours at a well optimized setup.

Fig. 9 shows the simulated performance of PAX with the Ag

3d lines as a photoemission converter in estimating the model

RIXS spectrum shown in Fig. 1(A). As the number of simu-

lated detected electrons increases, finer details of the X-ray

spectrum are accurately estimated. Features with a few

hundred meV width are already estimated well with �105
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Figure 8
Results of the algorithm described in this report on the �0.5 eV
resolution experimental data from Dakovski et al. (2017). These data use
PAX with the Au 4f levels as a photoemission converter to look at RIXS
from a CoO sample near the Co L3-edge. (A) Experimentally measured
Au 4f photoemission spectrum. (B) Raw PAX data (black) as well as the
reconstruction of that data from the deconvolved results (red) as a
function of incident X-ray photon energy. (C) RIXS spectra that result
from deconvolving the PAX spectra shown in (B).

Figure 9
Simulated performance of PAX in estimating a model RIXS spectrum
using a model Ag 3d photoemission converter. (A) Model Ag 3d
photoemission spectrum with 233 meV FWHM Lorentzian peaks
(Panaccione et al., 2005). (B) Simulated PAX spectra as well as the
reconstruction of that data from the deconvolved results as a function of
number of simulated detected electrons in the PAX spectra (Ne).
(C) RIXS spectra estimated through deconvolution of the simulated PAX
data. The ground truth spectrum is also shown for each case.



simulated detected electrons, and the width of well estimated

features decreases further with increasing number of simu-

lated detected electrons.

Fig. 10 quantifies how well the RIXS spectra estimated from

simulated PAX data correspond to the ground truth spectrum

as a function of the number of simulated detected electrons.

The normalized RMSE of the deconvolved spectrum, defined

as the RMSE of the deconvolved spectrum divided by the

maximum value of the ground truth spectrum, decreases as the

number of simulated detected electrons increases, as shown in

Fig. 10(A). Fig. 10(B) quantifies the ability of the method to

accurately estimate fine features through the FWHM of the

lowest energy loss peak of the deconvolved spectrum as a

function of the number of simulated detected electrons.

(Points are not displayed for numbers of detected electrons

not sufficiently high to retrieve an estimate of the lowest

energy loss peak.) This FWHM decreases as the number of

simulated detected electrons increases, and, after 106.5 elec-

trons have been simulated to be detected, the width of the

feature in the deconvolved spectrum is within 20% of its true

83 meV width. We note that the integrated intensity of this

first loss feature is only 2.4% of the total integrated intensity

of the entire model RIXS spectrum. Thus one only needs to

have less than 104 photoelectrons simulated to be detected

that were emitted from RIXS photons originating from this

feature in order to accurately estimate the shape of this

feature. We accurately estimated this feature from simulated

data despite it being much sharper than the the 233 meV

FWHM widths of the Ag 3d photoemission peaks of the model

impulse response function.

4.3. Simulated performance estimating features with tens
of meV scale using a sharp Fermi edge

For many interesting cases, particularly for solids (Ament et

al., 2011), it is important to characterize the structure of RIXS

spectra on scales finer than 100 meV. For such cases, one

can consider using sharper photoemission features to convert

X-rays to electrons, although these sharper features usually

come at the expense of reduced quantum efficiency. Here, we

consider using the Pt valence electrons within 0.5 eV of the

Fermi edge, which we model as a sharp edge. The efficiency

of photoemission from these states, however, is about three

orders of magnitude less than that of the Ag 3d or Au 4f levels.

This, combined with the reduction in incident X-ray band-

width and electron analyzer resolution (from �100 meV to

�10 meV each) means that the PAX count rate for these

electrons can be expected to be about five orders of magnitude

lower for the Ag 3d or Au 4f levels. We simulate 105 simulated

detected electrons, which is a count total that would likely take

a prohibitively long time to collect at a source like LCLS. At

new high-repetition sources like LCLS-II though, the photon

throughput is anticipated to increase by three to four orders

of magnitude, and such a count total could be realistically

reached. We note, however, that this increase in source photon

throughput is also expected to improve the count rate of

grating-based RIXS studies. Nonetheless, the compactness

and relative portability of a PAX setup means it could be used

in some cases where a tens of meV resolution grating-based

spectrometer could not.

Fig. 11 shows the results of simulations assessing the

potential of PAX in estimating spectra with structure on scales

finer than 100 meV by using a sharp Fermi edge. For this

analysis we used an energy separation of 2 meV between

points. The photoemission spectrum was modeled with a

constant density of states near the Fermi level and a

temperature of 4 K (boiling point of He). PAX spectra were

simulated for 105 electrons detected from photoemission

within 0.4 eV of the Fermi level and variable separation of the

X-ray doublet peaks.

As the peak separation decreases from top to bottom in

Fig. 11, our ability to tell that the ground truth spectrum is two

peaks rather than a single peak decreases. With the 70 meV

peak separation (top) as well as the 45 meV peak separation

(middle), it is clear that the deconvolved spectra are not well

represented by a single peak. In contrast, for the 25 meV peak

separation (bottom), it is no longer clear that the ground truth

spectrum consists of more than one Gaussian peak, and a

measurement with better statistics would be required to tell

this. To obtain an even better idea for experimental data of

whether features in an estimated RIXS spectrum are true

features and not due to random noise, one could use the

bootstrap method (Efron & Tibshirani, 1986; James et al.,

2013).

5. Conclusions and outlook

We have proposed and validated an algorithm for estimating

RIXS spectra from PAX data. The algorithm successfully

analyzed �0.5 eV resolution data originally reported by

Dakovski et al. (2017) and performs well on simulated data

sets with high resolution. For simuated data using the Ag 3d

levels as a photoemission converter for PAX, few hundred

meV FWHM features could be accurately estimated with 105

simulated detected electrons. Even finer features can be
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Figure 10
Quantification of the performance of PAX on the simulated data of Fig. 9.
(A) Normalized RMS error (RMSE) of the estimated RIXS spectra
versus the number of simulated detected electrons. (B) FWHM of the
lowest energy loss peak in the estimated RIXS spectra as a function of the
number of simulated detected electrons.



accurately estimated with higher numbers of simulated

detected electrons. Details with aspects much smaller than

100 meV could be estimated when a sharp Fermi edge

photoemission converter was used in simulations, but at

the expense of greatly reduced conversion efficiency of

RIXS photons to electrons, and experimentally attaining a

useful electron count total for such a measurement will be

challenging.

Our proposed PAX deconvolution algorithm is simple and

closely linked to the classic Lucy–Richardson algorithm.

Recently, however, more sophisticated algorithms have shown

promise on achieving more accurate deconvolution results and

reducing computational time (Ikoma et al., 2018; Zhang et al.,

2017). Applying such techniques to PAX could improve on the

performance described here. In addition, using uncertainty

quantification methods would enable more robust inter-

pretation of X-ray spectra estimated from PAX data. This has

been done for similar problems by assessing the sensitivity of

deconvolved spectra to artificially added noise (Fister et al.,

2007) as well as more sophisticated methods (Kaipio &

Somersalo, 2006).

Modifications of the experimental setup we propose here

could also push the capability of PAX further. The model

photoemission converters that we highlighted were chosen

based on a survey of literature photoemission data. A

systematic investigation of other materials may provide

photoemission features better suited for PAX measurements.

Finally, the PAX measurement method could be applied to

other situations where high signal-to-noise ratio estimates of

X-ray spectra are desired without using traditional grating-

based technology. An example could be transmissive soft

X-ray spectrometers.
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Figure 11
Simulated performance of PAX using a sharp Fermi edge photoemission
converter in estimating model doublet RIXS spectra with different peak
separations (�E). For each case, �105 electrons were simulated to be
detected from photoemission within 0.4 eV of the Fermi level. The
doublets consisted of two Gaussian peaks with 100 meV FWHM each and
variable peak separation. The shape of the Fermi edge was determined
by a Fermi–Dirac distribution at 4 K (boiling point of helium). (A) Model
Fermi edge photoemission spectrum for a metal at 4 K (boiling point
of helium). (B) Simulated PAX data (black) as well as the reconstruction
of that data from the deconvolved results as a function of the peak
separation in the doublet (�E). (C) RIXS spectra estimated through
deconvolution of the simulated PAX data and corresponding ground
truth spectra.
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