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In X-ray diffraction measurements, the angular resolution has a detection limit

due to the receiving size of the detector. In many cases this detection limit is too

large and must be breached to obtain the desired information. A novel method

is proposed here by making the detector simultaneously measuring and moving.

Using the deconvolution algorithm to remove the convolution effect, the pixel

size limitation is finally broken. The algorithm used is not a common one, and

suppresses signals at high frequencies, ensuring the reliability of the peak shape

after restoration. The feasibility of this method is verified by successfully

measuring the crystal truncation rod signal of SrTiO3 single crystal, and the

resolution is nearly ten times higher than that of a single pixel. Moreover, this

method greatly reduces the noise and improves the signal-to-noise ratio.

1. Introduction

In X-ray diffraction measurements, there are several para-

meters that will affect the angular resolution of the tested

data, for example the size of the sample and the receiving size

of the detector. The receiving size has an intuitive impact on

the angular resolution and leads to a detection limit. For point

detectors the size of the receiving slit determines this limit,

while for line detectors it is the width of the channel, and for

area detectors the influencing factor is the pixel size. Larger

pixel sizes cause lower resolution, which means that the

detector’s ability to capture the spatial distribution of X-ray

information is poorer. This will lead to blur and distortion of

X-ray images, and affect the quality and reliability of the data.

Common solutions are reducing the size of the receiving slit,

using crystal analyzers (for point detectors) and increasing the

distance between the detector and the sample (Habib et al.,

2018; Egan et al., 2010; Thanakitivirul et al., 2019; Disselhorst-

Klug et al., 1997; Sprigg et al., 2016; Gozzo et al., 2004).

However, reducing the size of the receiving slit will reduce the

intensity of the signal, extend the measurement time and

reduce the quality of the signal. On the one hand, adjusting the

distance between the detector and sample is determined by

the spatial layout of the facility and cannot be adjusted arbi-

trarily. On the other hand, due to the limited adjustment

distance, the enhancement in resolution usually cannot

meet the requirements. An alternative method is moving the

detector and reducing the motion step of the detector so that

the angle of a single step is less than the angle occupied by the

pixel/channel. In this case, the theoretical minimum resolution

will depend on the mechanical minimum motion step size.

Moreover, the obtained result contains the physical signal and

geometric broadening of the pixel/channel, and deconvolution
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is necessary to obtain the accurate physical signal. However,

for hybrid pixel detectors, the pixel/channel geometric

broadening is a box filter, and its Fourier transform corre-

sponds to a sinc function whose modulus will be close to zero

in many places. If the inverse filter is calculated directly

according to the convolution theorem, the result will be

corrupted by noise. In a word, this deconvolution process is

complex and needs to be carried out in a suitable way.

2. Related works

In the presence of convolution, the X-ray detection signal has

the following relationship with the physical signal,

b ¼ a � iþ n; ð1Þ

where i is the physical signal of the structure of the tested

material, a is the convolution kernel, n is the noise, b is the

signal obtained by the detector, and the symbol * represents

the convolution operation. If there is no noise term, then,

according to the convolution theorem,

B ¼ A I; ð2Þ

where B, A and I are the Fourier transforms of b, a and i,

respectively. In theory, I = B /A, and I can be obtained directly

with the inverse Fourier transform of I, and then the physical

signal representing the material structure can be obtained; this

method is called direct inverse filtering. However, due to the

existence of noise, according to the linear property of the

Fourier transform, the Fourier transform term of the noise N

must also be included in B; the Fourier transform term of the

noise has high intensity at both low and high frequencies,

whereas the signal commonly only has high intensity at low

frequencies. Direct inverse filtering will cause the final result

to be dominated by noise and cannot reconstruct the original

signal i reliably. In order to solve this problem, a variety of

algorithms have been developed, including the Wiener

filtering algorithm (Reddy & Jayaraman, 2019; Olivo et al.,

2000), least-squares filtering algorithm (Shruthi & Satheesh-

kumar, 2017), geometric mean-square filtering algorithm

(Suman et al., 2014), total variational algorithm (Perrone &

Favaro, 2014) and continuous Fourier transform algorithm

(Wang et al., 2023). The basic principle of these algorithms is

to suppress degraded signals at high frequencies, but there are

also some problems with these algorithms. Because the high-

frequency signal is directly suppressed, the final signal is

mainly dominated by the low-frequency signal, so there are

oscillations in some areas where the signal intensity changes

rapidly, called ringing artifacts in 2D results and Gibbs oscil-

lations in 1D results. In traditional image processing, such

artifacts are sometimes acceptable, having limited impact on

the overall result. In spectroscopy, however, which concerns

the intensity of rays, such oscillations are of course unac-

ceptable. When Gibbs oscillations occur on both sides of the

X-ray diffraction peak, the intensity of the diffraction peak

will decrease, resulting in a loss of relevant important infor-

mation, and the Gibbs oscillations on both sides can easily be

confused with nearby weak peaks. In order to better restore

the original signal, many iterative algorithms have been

developed.

The golden deconvolution algorithm (Zhou et al., 2017;

Morháč et al., 1997, 2002) is a nonlinear iterative algorithm

based on matrix formulas, originally developed for nuclear

physics counting experiments. It performs denoising proces-

sing on restored signals to improve the quality of the final

result, and has made some advancements compared with

previous methods: firstly, it ensures the non-negativity of the

computed results; additionally, it greatly reduces oscillations,

particularly around sharp peaks.

The Richardson–Lucy algorithm (Zhang et al., 2019; Li et

al., 2008; Zha et al., 2014) is an iterative technique for image

restoration under a Poisson noise background. It is designed

to maximize the likelihood of recovered images by using an

expectation maximization algorithm. The algorithm needs to

estimate the process of image degradation well in order to

achieve accurate restoration. Therefore, many acceleration

algorithms have appeared, among them the method based

on the vector extrapolation principle proposed by Biggs &

Andrews (1997), showing important improvements in speed

and stability.

The basic idea of the MAP algorithm (Shen et al., 2004; Ng

& Yip, 2001) is to use the Bayesian formula to calculate the

posterior probability distribution of the original image of a

given fuzzy image. It then uses this distribution to calculate the

most likely original image.

Compared with the above algorithms, the results of these

kinds of iterative algorithm are often better, but the simula-

tion data results show that there are still oscillations near the

diffraction peak. In addition, because of the use of iteration,

the convergence rate will be slower. Other traditional algo-

rithms and artificial intelligence algorithms (Xu et al., 2021;

Yang & Ji, 2019; Ren et al., 2020; Li et al., 2022) are also

developing vigorously, but their availability and effectiveness

remain to be tested.

Faced with the above problems, researchers have put

forward some solutions. Raskar et al. (2006) proposed that the

shutter can be encoded so that the convolution window is no

longer a box filter but a series of box filters of varying widths,

so that the Fourier transformation of such filter is no longer a

sinc function. They designed a code where the modulus of the

corresponding filter’s Fourier transformation does not show

deep dips or zeros, as often exists for box filters, and the whole

Fourier transformation modulus curve is above that of the box

filters. Finally, a good result is obtained. However, this tech-

nique is not very suitable for transplanting to XRD experi-

ments.

Agrawal et al. (2009) proposed an algorithm to reconstruct

the original signal with several box filters of different widths.

Although the Fourier transform of each box filter is a sinc

function, with spikes whose amplitudes are close to zero, the

effect of the combined three box filters is much more stable,

and does not have any zeros. This algorithm requires that

there is no integer multiple relationship between the width of

these box filters. This algorithm has achieved very good results

and also eliminates oscillations. Although it cannot be directly
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transplanted to XRD experiments, it provides a way of

combining different filters to remove the zero points that exist

after Fourier transformation.

3. Proposed algorithm

3.1. A detector moving at constant speed while collecting at

high frequency is equivalent to a trapezoidal filter

Firstly, the spatial orientation of the sample is adjusted, and

then the Eiger 500K detector is adjusted to a certain position

of the reciprocal rod. The maximum sampling frequency of

the Eiger 500K detector at BL02U2 at Shanghai Radiation

Synchrotron Facility (SSRF) can reach up to 3000 frames s� 1,

so the scattered signal will sweep through a set of pixels on the

detector when rotating the arm of the diffractometer while

collecting the signal at high frequency. For each frame an

angle–intensity curve can be calculated, so many angle–

intensity curves can be obtained from these frames. The final

angle–intensity curve can be obtained by adding the intensities

at the same scattering angle of these curves together, which

can play the role of noise suppression in the first step. After

the noise-suppressed signal is obtained, subsequent recon-

struction processing can begin. As shown in Fig. 1, the width of

the yellow area represents the width of a pixel, and the height

represents the time of pixel movement. When combined with

the original signal, it can be seen that the result obtained is

equivalent to the convolution of the original scattered signal

with a trapezoidal filter (red region in Fig. 1). The upper and

lower width of this trapezoid is determined by the pixel size

and the spatial range of the pixel movement during the

acquisition time. By changing the rotational velocity of the

arm of the diffractometer, different trapezoidal filters can

be obtained.

3.2. Three-trapezoidal filter deconvolution

In order to enable the deconvolution algorithm to be

performed through multiple filters, the following requirement

must be met: the modulus values of these filters after Fourier

transform cannot have common zero-points. It is calculated

that when tuning the rotation speed of the diffractometer’s

arm and the collection frequency of the detector, the obtained

trapezoidal filter upper and lower ratio can be set to 29:31, 7 :8

and 9:11. The Fourier transform amplitude results of the three

filters are shown in Fig. 2. Compared with the Fourier trans-

form results of the red box filter, the spike positions

approaching zero in the Fourier transform results of the three

trapezoids do not coincide, and there is no situation in which

the three Fourier transforms approach zero at the same time.

For each measurement,

bk ¼ Ak i þ nk; ð3Þ

where Ak is the convolution kernel of the kth experiment,

i is the signal result from the physical structure of the tested

material, nk is the noise of the kth measurement and bk

represents the result obtained by the kth measurement. Ak is

an m � n matrix, i is a column vector of dimension n, and

nk and bk are column vectors of dimension m. For a single

measurement, if the noise term is ignored, by multiplying A T
k

on both sides of the equation the estimated value of i can be

obtained by solving the following equation,

ASID i ¼ b: ð4Þ

Here,

ASID ¼ A T
k Ak; b ¼ A T

k ik: ð5Þ

To suppress ringing artifacts and noise, some smoothing terms

can be added,

ASID ¼ A T
k Ak þ wC T

g Cg; ð6Þ

where Cg is the convolution matrix corresponding to the

differential filter g = [1 � 1] and w is the weight parameter. The

value of the weight parameter should be chosen carefully and

will be discussed later. For multiple images, the corresponding

equation becomes AMID i = b, where

AMID ¼
Xn

k¼ 1

AT
k Ak þ wCT

g Cg; b ¼
Xn

k¼ 1

AT
k ik: ð7Þ

The deconvolved signal i can be obtained by directly solving

the linear algebra equation

i ¼ A� 1
MIDb: ð8Þ
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Figure 1
Schematic diagram of equivalent filtering of signals collected while the
detector is moving.

Figure 2
The modulus of the Fourier transform of three trapezoidal filters and
a box filter.



4. Experimental result and discussion

4.1. Experimental details

The experiment was carried out at beamline BL02U2 of

SSRF. A Huber5021 diffractometer was used, and an Eiger

500k detector with pixel size of 75 mm. The X-ray energy was

9.85 keV, the distance between the sample and the center of

the detector was 0.5 m, and the angle corresponding to the

side length of the pixels was about 0.008�.

A single-crystal SrTiO3 (STO) substrate was chosen – the

substrate surface was corroded, and this pre-treatment caused

miscut on the substrate surface. This means that some sub-

rods will appear in reciprocal space, and the angular distri-

bution of these sub-rods is very narrow. Then the crystal

truncation rod (CTR) signal of the substrate was measured.

First, the sample orientation was adjusted, and then the

position of the diffractometer’s sample stage and detector

arm, so that the surface detector receives the STO substrate at

the reciprocal space (0, 0, 1.9). Fig. 3 shows a typical result of

received signals at this position, where the intensity is shown

on a log scale. The coordinates have been transformed into

reciprocal space. The sample mainly has three truncated rods

signals at this position, marked by the red squares. The peak

signal in the middle is slightly stronger, although it has been

logarithmically processed; the upper and lower signals are still

weak, especially the bottom one, whose existence is even

difficult to determine.

The detector moved while collecting a series of scattered

signals at high frequency. The acquisition frequency of the

detector was set to 200 frames s� 1, and the rotation speed

of the arm was set to 0.028� s� 1, 0.057� s� 1 and 0.086� s� 1,

corresponding to the three kinds of trapezoidal filters

discussed in Section 3.2. When the diffractometer’s arm moves

from one position to another, the arm undergoes a process

of acceleration from static to moving-at-constant-speed to

deceleration to static. The subsequent procedure of data

processing will discard the data from the initial and final parts

and only select the data collected during the moving-at-

constant-speed process in the middle. Because the collected

CTR section signals are spots rather than rings, only the

channels near the spots contribute to the final result, so only

the channels in several columns near the spots are selected for

the final angle calculation.

4.2. Discussion

As shown in Fig. 3, for the upper and lower rod sections, the

distribution of the scattered X-ray signal is very narrow,

resulting in a severe ‘mosaic’ pattern, with very few pixels on

each peak. Such a series of images are captured for each filter.

The integral of each image is converted into an angle–intensity

curve, and the step of the curve is set to 0.001�, which is much

smaller than the angle corresponding to the side length of a

single pixel. Fig. 4 shows the result of angle conversion of

different images. The horizontal coordinate is the scattering

angle and the vertical coordinate is the index of the image

serial number. It can be seen that, for each image (located at

the same ordinate), the angle range only contains certain

specific positions (where the bright lines exist), with many of

the other angles not having corresponding pixels, meaning that

the detector cannot obtain such a high-resolution result

without the motion of the detector. Also, the strongest value

of the scattered signal (deep red color) has the same interval

on the vertical axis, indicating the constancy of the detector’s

movement speed. It appears at the same position on the

horizontal axis, indicating the accuracy of the movement

speed. The results from images of all angles are aligned and

superimposed. On the one hand, pixels will appear at all

angles; on the other hand, thanks to the huge collection

(thousands to tens of thousands of images), many pixels will

be superimposed at each angle, which ultimately plays a role in

data noise reduction.
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Figure 3
A typical result of receiving signals at the reciprocal space (0, 0, 1.9)
position.

Figure 4
The result of angle conversion of different tested images.



Fig. 5 shows a comparison between the preliminary results

of this method and the results of ordinary measurements; it

can be seen that the signal quality is greatly improved. As

mentioned above, the commonly measured angle conversion

step is just slightly less than 0.01�, due to the limitation of the

pixel size; if the conversion step size is reduced more, there

will be many angle ranges having no pixels, thus it is impos-

sible to achieve a very high angle resolution, so the conversion

step can only be set at 0.01�. As the upper part of Fig. 5 shows,

the weaker peaks in the front and back are difficult to see

clearly, and it is even difficult to determine their existence,

while the stronger peaks in the middle are visible. Their shape

has changed greatly, caused by too few pixels at the corre-

sponding angles. The lower part of Fig. 5 shows the final results

for the three filters used in this method. It can be seen that, in

addition to the strong peak in the middle, the shape of the

front and back peaks is also clearly displayed. The upper part

has a collection time of 5 s, while the three curves on the lower

part have longer total collection times, approximately 60 s, 30 s

and 20 s. This may have a certain impact on the final signal-to-

noise ratio, but it can be seen that the curves of the three

different acquisition times on the lower part only differ

slightly. Combined with the huge difference between the

upper and lower parts, it shows that the method used here may

still play a certain role in noise reduction.

Fig. 6 shows the result of further deconvolution with the

formula, and makes a comparison with the results without the

convolution. The orange curve is obtained by averaging and

interpolating the results of the three filters, and is uncon-

volved. The blue curve is the result of deconvolution using the

previously mentioned algorithm. It can be seen that, compared

with the results without deconvolution, the signal peak
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Figure 5
Top: results of conventional measurement methods. Bottom: results using
the methodology introduced in this article.

Figure 6
Comparison of the peak shapes of three peaks before and after decon-
volution.



intensity after deconvolution is higher, and the lower trailing

width is smaller, indicating that the full width at half-maximum

(FWHM) will be narrower, which shows the role played by

the deconvolution algorithm. In addition, the final result also

shows a smoother curve, and the noise is further suppressed.

All the above are calculated according to the experimental

conditions. What will happen if one does not use the filter

kernel with the calculated size should be discussed. As shown

in Fig. 7, when the filter kernel is selected too large or too

small, the result will not be ideal. When the filter kernel is too

small, the result after deconvolution is very close to that

before deconvolution, and it is difficult to see the deconvo-

lution effect. When the filter kernel is selected too large, the

obtained result will contain many oscillations. Only when the

filter kernel is selected to match the experimental conditions

are the results in good agreement. It can be proved that the

selected filter kernel is reliable.

The purpose of using filter kernels of different lengths is to

prevent the modulus of the Fourier transform from these

filters having near-zero points, which will cause strong oscil-

lations after the deconvolution operation. Fig. 8 shows the

calculation result when the three filter kernels are set to the

same length. It can be seen that the result will also have large

oscillations when other parameters are the same. This also

justified that using just one filter to obtain the deconvolved

signal is impossible, and that using filters with different lengths

is necessary.

Since smoothing terms are introduced into the formula,

which will change the final results, the reliability of the results

needs to be discussed. Taking the third peak as an example, it

can be seen from Fig. 9 that, when the smoothing coefficient is

too large (blue curve), the intensity of the curve becomes too

low, whereas, when the smoothing coefficient is too small

(green curve), the curve oscillation increases. When the

smoothing coefficient is chosen in a certain range, the curve

oscillation is neglectable, and the intensity will remain

unchanged at a certain value. When the coefficient continues

to decrease, the curve oscillations will increase, but the

intensity does not change much, indicating that the intensity

should be at a more reasonable value.

It can be seen from the discussions above that the results

obtained from these filters are reasonable. In addition, using

the method described in Section 3, a reasonable smoothing

term coefficient can also be found to make the final result

more reliable.

research papers

40 X. M. Zhang et al. � Ultra-high angular resolution for XRD J. Synchrotron Rad. (2024). 31, 35–41

Figure 7
Results when the kernel size is too small (top) and too large (bottom).

Figure 8
Result when the kernel size of the three filters is the same.

Figure 9
Comparison of results calculated with different smoothing coefficients.



It is worth mentioning that in the method of collecting the

signal while at the same time rotating the detector, as used

here, the angular interval between two acquisitions can be far

less than the motion precision limited by the diffractometer

motors (one thousandth of a degree), so in theory it is hoped

that the accuracy can be improved to be even better than the

motion precision of the diffractometer motors.

5. Conclusion

We propose a method of acquiring X-ray scattered signals at a

high frequency while the detector is moving. The algorithm

provided in this paper can break through the limitation caused

by the pixel size of the detector. The algorithm is not a

common one that suppresses signals at high frequencies,

ensuring the reliability of the peak shape after restoration.

The feasibility of this method is verified by successfully

measuring CTR signals of STO single crystal, and the reso-

lution is improved by nearly ten times compared with that of a

single pixel. In addition, this method can also suppress noise

and improve the signal-to-noise ratio.
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