
research papers

J. Synchrotron Rad. (2024). 31, 85–94 https://doi.org/10.1107/S1600577523008962 85

Received 31 March 2023

Accepted 12 October 2023

Edited by A. Momose, Tohoku University, Japan

Keywords: X-ray tomography; micro-CT;

synchrotron tomography; GPU; MBIR;

nano-CT; tomographic reconstruction.

tomoCAM: fast model-based iterative
reconstruction via GPU acceleration and
non-uniform fast Fourier transforms

Dinesh Kumar,a,b* Dilworth Y. Parkinsonb,c and Jeffrey J. Donatellia,b

aMathematics Department, Lawrence Berkeley National Laboratory, Berkeley, CA, USA, bCenter for

Advanced Mathematics for Energy Research Applications, Lawrence Berkeley National Laboratory,

Berkeley, CA, USA, and cAdvanced Light Source, Lawrence Berkeley National Laboratory, Berkeley,

CA, USA. *Correspondence e-mail: dkumar@lbl.gov

X-ray-based computed tomography is a well established technique for

determining the three-dimensional structure of an object from its two-

dimensional projections. In the past few decades, there have been significant

advancements in the brightness and detector technology of tomography

instruments at synchrotron sources. These advancements have led to the

emergence of new observations and discoveries, with improved capabilities

such as faster frame rates, larger fields of view, higher resolution and higher

dimensionality. These advancements have enabled the material science

community to expand the scope of tomographic measurements towards

increasingly in situ and in operando measurements. In these new experiments,

samples can be rapidly evolving, have complex geometries and restrictions on

the field of view, limiting the number of projections that can be collected. In such

cases, standard filtered back-projection often results in poor quality reconstruc-

tions. Iterative reconstruction algorithms, such as model-based iterative

reconstructions (MBIR), have demonstrated considerable success in producing

high-quality reconstructions under such restrictions, but typically require high-

performance computing resources with hundreds of compute nodes to solve the

problem in a reasonable time. Here, tomoCAM, is introduced, a new GPU-

accelerated implementation of model-based iterative reconstruction that

leverages non-uniform fast Fourier transforms to efficiently compute Radon

and back-projection operators and asynchronous memory transfers to maximize

the throughput to the GPU memory. The resulting code is significantly faster

than traditional MBIR codes and delivers the reconstructive improvement

offered by MBIR with affordable computing time and resources. tomoCAM has

a Python front-end, allowing access from Jupyter-based frameworks, providing

straightforward integration into existing workflows at synchrotron facilities.

1. Introduction

Micro- and nano-tomography using synchrotron technology is

crucial in uncovering the inner makeup of modern materials,

particularly in dynamic settings. Its diverse applications

include: the investigation of the fractures and deterioration

of ceramic matrix composites, which are novel lightweight

materials used in jet engines that operate under high

temperatures and pressure (Forna-Kreutzer et al., 2021); the

study of the flow of oil, brine and carbon dioxide through

rocks (Walsh et al., 2014); and the analysis of dendrite

formation in batteries, which causes capacity reduction and

eventual failure (Dienemann et al., 2023). Many synchrotron

micro-computed tomography (micro-CT) facilities now have

cameras that can acquire many-megapixel images at thou-
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sands of frames per second (MacDowell et al., 2012; Nikitin et

al., 2022; Ge et al., 2018; Thuering et al., 2011; Mokso et al.,

2017). These advances in instrumentation have encouraged

users to push the boundaries of what can be imaged at

synchrotron beamlines.

An increasing number of investigators are conducting in situ

(Larson & Zok, 2018; French et al., 2022) and in operando

(Kulkarni et al., 2020; Dienemann et al., 2023) measurements.

Typically the initial technique attempted for micro-CT

reconstructions is filtered back-projection (FBP)1, which is

available in tomopy (Gürsoy et al., 2014), tomocupy (Nikitin,

2023), ASTRA (van Aarle et al., 2015, 2016) and TIGRE

(Biguri et al., 2016, 2020). However, in the case of many

dynamic experiments, where the specimen under observation

is changing rapidly, it is generally not possible to capture

sufficient projections to satisfy angular Shannon sampling

conditions (Crowther et al., 1970) and overcome the noise.

FBP is not a suitable option in such situations. The recon-

structions obtained through this method tend to have exces-

sive noise levels and exhibit streaking artifacts, making it

difficult or even impossible to carry out further analysis.

As an alternative, iterative methods, such as the simulta-

neous iterative reconstruction technique (SIRT) (Tarantola

& Valette, 1982) and model-based iterative reconstruction

(MBIR) (Venkatakrishnan et al., 2013; Mohan et al., 2014),

aim to mitigate these shortcomings. In recent years, significant

efforts have been made to develop reconstruction packages

that provide access to iterative reconstruction algorithms with

total variation constraints. This is primarily driven by the

increasing demand for high-quality images in various imaging

modalities, such as computed tomography (CT), magnetic

resonance imaging and optical microscopy. Some of the

prominent efforts include SVMBIR, TIGRE, ASTRA,

ToMoBAR (Kazantsev & Wadeson, 2020) and Core Imaging

Library (CIL) (Jørgensen et al., 2021). SVMBIR is a multi-

threaded implementation of MBIR with a Python front-end

(SVMBIR, 2020). ASTRA and TIGRE provide an array

of CPU- and GPU-based algorithms for direct inversion

and iterative algorithms with total variation constraints.

ToMoBAR and CIL focus primarily on regularized iterative

methods for datasets with sparse projection data.

These iterative algorithms formulate the reconstruction as

an optimization problem. The solution is obtained through an

iterative process that aims to minimize the mismatch between

the measured data and a forward model (Radon transform) of

a digital representation of the sample. This iterative approach

enables the incorporation of prior knowledge, such as total

variation constraints, into the optimization process, as

demonstrated in various studies (Trampert & Leveque, 1990;

Zhang et al., 2014; Venkatakrishnan et al., 2013; Mohan et al.,

2014). However, current CPU-based implementations of

MBIR typically require a large compute cluster to achieve

turnaround times that are comparable with data collection

times. This not only adds extra time to the experiment-to-

analysis loop but also places an additional burden on material

scientists, who must acquire a new set of expertise in using

a compute cluster. This paper introduces tomoCAM, a GPU-

accelerated implementation of MBIR that is based on the non-

uniform fast Fourier transforms (NUFFT) approach (Green-

gard & Lee, 2004; Fessler & Sutton, 2003; Dutt & Rokhlin,

1993), which significantly reduces compute time complexity

while maintaining accuracy. With the computational power

provided by modern GPU devices and the relatively afford-

able cost of computer memory, it has become possible to

perform these reconstructions on a single machine within a

reasonable amount oftime.

To design our GPU-accelerated algorithm and imple-

mentation, we build Radon and back-projection operators

based on NUFFT. We also leverage highly optimized cuFFT

libraries that are native to the CUDA software development

kit (Vingelmann & Fitzek, 2020). We follow the mathematical

outline laid out by Venkatakrishnan et al. (2013) and Mohan et

al. (2014) to add a total variation constraint, which helps in

reducing noise while preserving the sharp edges. An important

feature of our implementation is the flexibility to introduce a

different constraint. The choice of the constraint is not limited

by the algorithm design.

We test our computational framework through a series of

numerical experiments on known phantoms and experimental

data made publicly available through Tomobank (Carlo et al.,

2018). We compare the reconstructions with those obtained

from FBP (Gürsoy et al., 2014) and SVMBIR (SVMBIR,

2020), a publicly available CPU-based package.

In our numerical experiments, we found that: (i) when

compared with FBP, the reconstruction quality produced by

tomoCAM was superior with less noise and required a lower

number of projections, and (ii) additionally, we observed that

tomoCAM was around 15 times faster on a single machine

than SVMBIR and 22 times faster than TIGRE (IRN-TV-

CGLS).

Finally, we provide a Python front-end that exposes

tomoCAM functionality to the widely used NumPy package

(Harris et al., 2020), using pybind11 (Jakob et al., 2017). This

makes it easy to integrate tomoCAM into existing workflows.

The code is freely available at https://github.com/lbl-camera/

tomocam.

2. Radon transform and NUFFT

This section provides a brief overview of the fundamental

concepts related to tomography, including the Radon trans-

form (as well as its adjoint) and its connection to the Fourier

transform. To perform tomographic measurements, a series

of images, referred to as projections, are captured at various

angles by rotating either the camera or the sample under

observation.
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1 Although some authors prefer to distinguish filtered back-projection
computed in real space from gridrec, it is common for gridrec to be considered
a specific implementation of filtered back-projection in Fourier space (e.g.
Barutcu et al., 2021), as they are both based on approximating the inverse
Radon transform through integration of filtered projection data over the
projection angle (Kak & Slaney, 2001). In this work, we take the latter
convention.



2.1. Radon transform

The Radon transform is fundamental to any tomographic

reconstruction. It transforms a function f ðx; zÞ, x 2 R2, z 2 R,

to R f ðt; n̂n; zÞ, t 2 R, n̂n 2 S1 through a line integral (2), see

Fig. 1. Given a set of oriented lines ‘t;n̂n defined as

‘t;n̂n ¼
�

x : hx; n̂ni ¼ t
�
¼
�

tn̂nþ sn̂n? : s 2 R
�
; ð1Þ

where n̂n? is the direction of the X-ray beam, n̂n is perpendicular

to the beam in same plane as ‘, and t is the distance to ‘ from

the origin. The Radon transform Rf of function f is defined as

R f ðt; n̂n; zÞ ¼

Z
‘t;n̂n

f ðx; zÞ ¼

Z 1
�1

f ðtn̂nþ sn̂n?; zÞ ds: ð2Þ

Tomographic measurements can be accurately modeled as the

Radon transform of the sample density represented by f. It is

the inversion of equation (2) that reconstructs f from the data,

and is of primary importance in tomographic reconstruction.

By the central slice theorem, the Fourier transform of Rf in

direction n̂n is equivalent to the slice of the Fourier transform

of f along n̂n, i.e.

F1½R f �ðk; n̂n; zÞ : ¼

Z 1
�1

exp
�
�2�ikt

�
R f ðt; n̂n; zÞ dt

¼
�
F2 f

�
ðkn̂n; zÞ; ð3Þ

where z is the dimension along the axis of rotation and Fd

denotes the d-dimensional Fourier transform. The Radon

transform and its adjoint are two-dimensional operators that

are applied slice-by-slice on three-dimensional data. For

simplification, we will drop the z dependency from the

subsequent notations. Assuming f and F1 f are integrable

everywhere, the inverse of the Radon transform (2) is given by

f ðxÞ ¼

Z �

0

Z 1
�1

exp
�
2�ikhx; n̂nð�Þi

�
ð4Þ

�

Z 1
�1

exp
�
� 2�ikt

�
y
�
t; n̂nð�Þ

�
dt j k j dk d�;

where we denote the � dependency as n̂nð�Þ = ðcos �; sin �Þ.
It is computationally very expensive to exactly compute

equation (4). In practice, (4) is efficiently approximated with

a NUFFT (Gürsoy et al., 2014) or directly estimated in real

space through the use of various filters such as Shepp–Logan

(Shepp & Logan, 1974), Ram–Lak (Ramachandran &

Lakshminarayanan, 1971) and Butterworth (Butterworth,

1930), which approximate and weight by the Fourier sampling

density, hence the name ‘filtered back-projection’ (Epstein,

2007; Jørgensen & Lionheart, 2021; Candes, 2021).

These filters are additionally designed to dampen out the

higher Fourier frequencies. This is the most commonly used

method in the reconstruction of tomographic data, in part

because of the sheer speed by which the inversion can be

performed. However, in cases when the view is partially

blocked, or the specimen is evolving, it may not be possible to

collect enough projections to sufficiently sample the Fourier

space. In such cases, the FBP results in poor image quality.

2.2. NUFFT

On a discrete uniform grid, if a sufficient number of

projections are available, inversion of the Radon transform

entails computing Fourier coefficients along radial lines using

a one-dimensional fast Fourier transform (FFT), followed by

two-dimensional backward Fourier transforms from a non-

uniform polar grid fkj = kjðcos �j; sin �jÞg onto a Cartesian grid

{(xn, yn)}, which can be represented as the summation

fn ¼
XM

j¼ 1

cj exp
�
2�ikjðxn cos �j þ yn sin �jÞ

�
; n 2 ½1;N�; ð5Þ

where cj is the Fourier coefficient at kj , N is the number of

discrete points that represent the sample density f on a

uniform Cartesian grid, and M is the number of polar grid

points representing the projection data. However, directly

computing equation (5) is computationally expensive, as the

complexity is OðMNÞ. Data taken at synchrotron light sources

can usually reach up to M = Oð1010Þ pixels, and the final

reconstructed image size N has a similar order or magnitude

for the final reconstructed image.

NUFFTs offer a precise and efficient method for computing

equation (5). This method involves first computing the Fourier

coefficients on a polar grid using a sequence of one-dimen-

sional FFTs along radial lines. Then, the computed coefficients

are convolved with a compactly supported spreading kernel ’,

and this convolution is evaluated on a uniform grid (see Fig. 2).

Subsequently, an inverse Fourier transformation is performed

on the convolution values on the uniform grid, followed by

division by the Fourier transform ’̂’ of the kernel, i.e.
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Figure 1
The Radon transform of f is its line integral along each line perpendicular
to n̂n.

Figure 2
The NUFFT is used to transform intensity on a uniform grid to its Fourier
transform on a polar grid, and vice versa.



cj ¼
X

t

� t; �j

� �
exp

�
� 2�itkj

�
; ð6Þ

Fr ¼
X

kkc
r�kjk<W

cj’ k c
r � kj

� �
; ð7Þ

fn ’ ’̂’�1
F
�1
2 ðFÞ; ð8Þ

where fk c
r g is a Cartesian grid, F2 is the 2D Fourier transform,

equations (6) and (8) are computed via FFTs, and W is the

spreading width of the convolution in equation (7). For an

appropriately chosen kernel, the NUFFT has an error of � if W

is chosen to span approximately w = log10ð1=�Þ grid points per

dimension. The computational complexity of equations (6)–

(8) is OðM log Mt þ w2N þ N log NÞ, where Mt is the number

of points in the radial direction of the polar grid. Since

w2 � M, this results in a massive speedup compared with the

direct computation of equation (5). The Radon transform

can similarly be computed by performing the above steps

in reverse order. In this work we have used the cuFINUFFT

(Shih et al., 2021) library to compute NUFFTs. For a detailed

discussion on the topic, we refer the reader to Dutt & Rokhlin

(1993), Fessler & Sutton (2003), Greengard & Lee (2004),

Barnett et al. (2019) and Barnett (2021).

3. Model-based iterative reconstruction

An alternate approach to FBP methods is to rely on iterative

methods, such as MBIR. Although these methods have longer

processing times, they produce better quality reconstructions

when compared with FBP methods. This is especially notice-

able when a smaller number of projections are available. This

is because iterative methods are able to incorporate a priori

information as a constraint on the optimization process. We

refer the reader to ASTM (2019) for a more detailed discus-

sion. Iterative methods seek a solution f by minimizing the

difference between its Radon transform and projection data b,

i.e.

f ¼ arg min
f

kRf � bk2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
G

þ gðf Þ|{z}
H

: ð9Þ

Here we set up the objective function as a least-squared

problem. The target is to iteratively search for f that minimizes

the ‘2-norm of difference between Rf and b while penalizing

violation of the constraint by g. Now we differentiate

equation (9) with respect to f and equate the result to 0. The

gradient of the first term is

rG ¼ R� R f � bð Þ ð10Þ

where R� is the adjoint of equation (2),

R��ðxÞ ¼

Z �

0

Z 1
�1

exp
�
2�ikhx; n̂nð�Þi

�

�

Z 1
�1

exp
�
�2�itk

�
�
�
t; n̂nð�Þ

�
dt dk d�; ð11Þ

which is simply equation (4) without the scaling |k |. The

operators R and R� can be efficiently computed using NUFFT.

In the results presented here, we choose H to be a total

variation penalty in equation (9). We follow the mathematical

approach presented by Venkatakrishnan et al. (2013) and

Mohan et al. (2014) to model H as a q-generalized Gaussian

Markov random field (qGGMRF),

gm ¼
X

n

wmnhmn; 8 n 2 fn j km� nk1 � 1g; ð12Þ

hmn ¼
fm � fn

		 		=�� �2

cþ fm � fn

		 		=�� �2� p
; ð13Þ

where h is defined over a 1-hop neighborhood of m, with m

and n being integer coordinates on the three-dimensional

uniform grid. The weights wmn are the Gaussian weights that

partition the unity and are inversely proportional to the

distance between m and n. Hyper-parameters c, p and � are

used to control the strength of the penalty term. The termH is

an algebraic expression, and can easily be differentiated.

In this work, we have used a monotonic accelerated

gradient method with restart detailed by Giselsson & Boyd

(2014), but it is possible to use other optimizers.

4. Implementation

When it comes to implementing software solutions, perfor-

mance is a critical factor. In this section we discuss some of

the important implementation details that have a significant

impact on the performance of tomoCAM. These include

factors such as memory management and hiding PCIe latency

efficient GPU caching. To achieve both high performance

and user-friendliness, we utilize a blend of C++, CUDA and

Python. The data structures of tomoCAM are implemented

in C++, while most of the mathematical functions are coded

using CUDA. To efficiently handle large datasets, a two-tier

partition scheme is employed to seamlessly stream data into

and out of GPU memory. To address the vast number of pixels

in a typical synchrotron micro- or nano-CT sinogram, which

can exceed Oð1010Þ, we have carefully optimized the memory

usage in the implementation of tomoCAM. For instance, to

minimize the memory footprint, we pass large arrays that

contain frequently accessed data such as the most recent

solution, projection data and gradient as references rather

than copies, which is the default behavior in C++. We avoid

allocating two large arrays by updating the values in-place.

This reduces the number of large allocations to six, saving 25%

RAM. We have implemented various strategies to minimize

the memory footprint, including the following:

(i) Quantities are never stored as complex numbers in the

host memory. This additionally helps with the amount of data

copied to and from the GPU memory.

(ii) Instead of duplicating data, partitions contain pointers

to memory locations in the parent array.

(iii) Gradients are updated in place when computing the

total variation constraint.

(iv) Projection data are reordered into sinogram form for

fast contiguous readouts.
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4.1. GPU optimizations

While GPUs are highly efficient in performing complex

calculations, the latency over the PCIe bus remains a signifi-

cant bottleneck for GPU-accelerated software implementa-

tions. To minimize runtime and maximize throughput from

CPU to GPU memory, we employ a combination of techni-

ques. These include asynchronous transfers, OpenMP threads

and a two-tier data partitioning scheme. The partitioning is

done along the axis of rotation, with the data first divided into

as many partitions as there are available GPU devices. Each

partition is then further subdivided into smaller chunks, with

the optimal size depending on the GPU device’s available

memory. The sub-partitions are streamed to GPU memory,

and to minimize the memory footprint they do not create

deep copies of the data. Fig. 3 provides an overview of

this process. By utilizing these techniques, we can significantly

reduce the impact of the PCIe bottleneck and achieve higher

performance in our GPU-accelerated software implementa-

tions. Some of the other optimizations and features of

tomoCAM include the following:

(i) Since the axis of rotation may not be aligned with the

center of the image, we use the Fourier shift property to

efficiently move the rotation axis to the center of the image.

(ii) We use OpenMP threads to parallelly launch level-1

partitions on all the available GPUs, as well as to stream data

into GPU memory.
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Figure 3
Large arrays are partitioned along the axis of rotation using a two-tier
partitioning scheme. Larger, tier-1, partitions are per GPU. Smaller, tier-
2, partitions (orange and green rectangles) are asynchronously streamed
into GPU to overlap data transfers and computations.

Figure 4
A compassion of reconstruction methods for a foam phantom with 128 projections. (a) Ground truth, (b) tomoCAM, (c) SVMBIR, (d) TIGRE (IRN-TV-
CGLS) and (e) gridrec. Panels ( f ), (g), (h), (i) and ( j) are the zoomed-in regions of interest represented by the boxes in (a), (b), (c), (d) and (e),
respectively, and (k) displays the line profiles on ( f ), (g), (h), (i) and ( j). Reconstructions using tomoCAM, SVMBIR and TIGRE (IRN-TV-CGLS) result
in images with low noise when compared with gridrec. The relative root-mean-square error values when compared against the ground truth for gridrec,
SVMBIR, TIGRE and tomoCAM are 0.95, 0.33, 0.53 and 0.47, respectively. Here tomoCAM is about 9� faster than SVMBIR, and 20� faster than
TIGRE (IRN-TV-CGLS).



(iii) To improve the cache efficiency, we utilize GPUs’

shared memory to store data that are accessed multiple

times, such as when computing the ‘total variation’ constraint.

(iv) A Python front-end and NumPy compatibility are

provided via the pybind11 project (Jakob et al., 2017).

5. Numerical experiments

We tested tomoCAM with publicly available phantoms and

measured datasets. Here, we present a comparison of recon-

structed results using tomoCAM, SVMBIR, TIGRE (Biguri et

al., 2016, 2020) and FBP using gridrec available in the Tomopy

package (Gürsoy et al., 2014). Each reconstruction and line

profile (B) is scaled with s and shifted with �, where s;� =

arg mins;�kA� s Bþ�k to the ground truth (A) before

plotting. In the case of experimental data, we rescale recon-

structions from SVMBIR and gridrec with the one obtained

from tomoCAM. The total variation constraint used in

SVMBIR is slightly different from the one used in tomoCAM

[see the theory section of SVMBIR (2020)]. SVMBIR uses

ten nearest neighbors, while tomoCAM uses 26 of them,

to evaluate equation (12). We believe parameters can be fine-

tuned for tomoCAM and SVMBIR to produce equivalent

results. The primary comparison with SVMBIR is to demon-

strate performance gains, rather than comparing two different

constraints or image quality. All the tests were carried out on a

single machine with (i) 2 � Intel(R) Xeon(R) CPU E5-2620

v4 @ 2.10 GHz; (ii) 4 � Tesla P100 GPUs; (iii) 128 GB RAM.

In the first experiment, we compare the reconstruction of a

foam phantom from all three codes. A foam phantom and its

projection data of size (128 � 16 � 2048) was generated using

the foam_ct_phantom package (Pelt et al., 2022). A full slice

from the phantom in Fig. 4(a) is compared with the recon-

struction obtained from each code (SVMBIR, tomoCAM and
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Figure 5
Reconstructions for Tomobank dataset ID 25, micro-CT in situ study of rock permeability with 400 projections, with (a) tomoCAM, (b) SVMBIR,
(c) TIGRE (IRN-TV-CGLS) and (d) gridrec. Panels (e), ( f ), (g) and (h) are zoomed-in regions of interest represented by the boxes in (a), (b), (c) and
(d), respectively. Panel (i) displays the line profiles for (e), ( f ), (g) and (h). A circular mask was applied to all the reconstructions. While tomoCAM,
SVMBIR and TIGRE (IRN-TV-CGLS) do an excellent job at suppressing the noise when compared with gridrec, tomoCAM is approximately 15� faster
than SVMBIR and 22� faster than TIGRE (IRN-TV-CGLS).



gridrec) in Figs. 4(b)–4(e). This is followed by zoomed-in

regions of each image in Figs. 4( f)–4( j). A line profile from

each of the zoomed-in regions is then compared in Fig. 4(k). It

is evident from the results that both tomoCAM and SVMBIR

are effective at suppressing the noise. One major advantage of

tomoCAM is that it can obtain equivalent results in an order-

of-magnitude faster time.

Next, we evaluate the reconstruction of two experimental

datasets obtained from diverse synchrotron light sources that

are accessible through Tomobank (Carlo et al., 2018) (see

Figs. 5 and 6). For each dataset, the available number of

projections is notably lower than what is typically expected,

which follows the general rule of thumb that it should be as

many as the number of pixel columns in the camera sensor.

Using Beer–Lambert’s law (Swinehart, 1962), b in equation

(9) is defined as �logðI=I0Þ, where I is the measured intensity

and I0 is the beam intensity without the sample blocking the

view. The selection of hyper-parameters can influence the

quality of reconstruction. However, in practice p = 1.2 (Mohan

et al., 2014) and c = 0.0001 have shown good performance

across multiple datasets. The strength of the qGGMRF

constraint is controlled by the parameter �. Lower values of

� increase the contribution of the constraint, resulting in

smoother profiles, while higher values decrease the contribu-

tion. We evaluate a spectrum of � values on a small subset of

dataset, in order to ascertain the hyper-parameter value that

yields a desirable quality of data reconstruction, see Fig. 7.

Without a quantitative measure of reconstruction quality,

we rely on a human expert to determine the fitness of the

reconstruction. In order to automate this process, we are

currently working on developing new machine-learning

approaches to recommend optimal hyper-parameters based

on the features of the data.

For gridrec we chose the Butterworth filter with order 2,

and the cutoff frequency was set to 0.25, which is typical

for a synchrotron tomographic reconstruction. For
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Figure 6
Reconstructions for Tomobank dataset ID 86, nano-CT data with sparse projection angles using 202 projections, with (a) tomoCAM, (b) SVMBIR,
(c) TIGRE (IRN-TV-CGLS) and (d) gridrec. Panels (e), ( f ), (g) and (h) are zoomed-in regions of interest represented by the boxes in (a), (b), (c) and
(d), respectively. Panel (i) displays the line profiles for (d), ( e ), (f) and (h). A circular mask was applied to all the reconstructions. While tomoCAM and
SVMBIR both do an excellent job at suppressing the noise when compared with gridrec, tomoCAM is approximately 15� faster. Also, tomoCAM is 22�
faster than TIGRE (IRN-TV-CGLS).



SVMBIR we choose hyper-parameters as T = 1 and �x =

{0.98, 2.1, 1.1} � 10�4 for the phantom, Tomobank dataset id

25 (TB-25) and Tomobank dataset id 86 (TB-86), respectively,

in order to produce similar quality reconstructions as

tomoCAM. Fig. 8 shows the convergence rates of the foam

phantom, TB-25 and TB-86 samples.

We follow a similar pattern to Fig. 4 for plotting images and

line profiles. The first row of images depicts full slices, followed

by zoomed-in regions, and then a line profile is taken from the

middle of each zoomed-in region. Given their mathematical

similarity, we expect that conducting a thorough hyper-para-

meter search would yield comparable outcomes from both

tomoCAM and SVMBIR. Table 1 shows a comparison of

the time taken by each code. Small discrepancies between

tomoCAM and SVMBIR are due to the difference in hyper-

parameters, as well as how each of the packages implements

the qGGMRF constraint. We use

equation (12) directly, whereas

SVMBIR uses a surrogate function to

approximate it. We would also like to

note that TIGRE uses a fundamentally

different approach to enforce the total

variation constraint (Biguri et al., 2016).

We have used the default hyper-para-

meters for reconstructions with TIGRE

(IRN-TV-CGLS). We assume that a

systematic search for hyper-parameters

will produce similar quality results as

tomoCAM and SVMBIR.

We have also implemented a hier-

archical reconstruction method that

iteratively refines the solution by

starting at a low resolution and gradu-

ally increasing the resolution. This

reduces the number of optimization

iterations required at higher resolution, leading to significant

speedups. In the example shown in Fig. 9, for a foam phantom

with 512 projections of 512 � 2048 resolution, we apply this

hierarchical approach. The final reconstruction resolution is

(512� 2048� 2048). We started with projection images down-

sampled to one-quarter of the original resolution, running for

60 iterations. This was followed by two cycles of up-sampling

the solution, with reconstruction at the half resolution running

for 30 iterations; and finally 15 iterations at the full resolution.

The hierarchical method is five times faster than running at

full resolution, i.e. 809 versus 4090 s for similar convergence

values. We are working on making further improvements to

the hierarchical method before it is made publicly available.

6. Conclusions

In this work, we have presented tomoCAM, a new GPU-

accelerated software for reconstructing high-quality tomo-

graphic images. tomoCAM is capable of running model-based

iterative reconstructions for large datasets with relatively

modest hardware requirements, within a reasonable time.

The resulting reconstructed images have lower noise when

compared with the prevalent FBP methods, while being an

order of magnitude faster than CPU-only MBIR imple-

mentations.
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Figure 7
A small subset of slices were reconstructed using a range of hyper-parameters � to determine an
optimal reconstruction quality.

Figure 8
L2 error versus iterations for (a) a foam phantom, (b) TB-25 and (c) TB-86. Although the optimizer converges quickly, the resolution of smaller features
may need extra iterations.

Table 1
A comparison of the time taken to reconstruct various datasets; iterative
methods tomoCAM, SVMBIR and TIGRE were timed for 100 iterations.

Reconstruction time (s)

Data set Size tomoCAM SVMBIR TIGRE gridrec

Phantom (128, 16, 2048) 93 810 1820 0.21
TB-25 (400, 128, 2048) 862 12 730 18 833 2.53
TB-86 (202, 128, 2448) 1210 14 273 26 147 3.73



A Python-based front-end has been created for tomoCAM,

which is specifically designed to receive NumPy arrays as both

input and output for reconstructions. This facilitates seamless

integration of tomoCAM into the existing workflows of

beamline scientists. Although the use of MBIR is particularly

advantageous in cases where there is a scarcity of available

projection data, the current implementation of MBIR is quite

time-consuming. Consequently, this is the primary reason

why beamline scientists do not utilize MBIR even when it

is advantageous. tomoCAM overcomes this problem, thus

making MBIR reconstruction more practical, by the following:

(i) Improving efficiency: the run time has been reduced

by an order of magnitude, making it faster than previous

MBIR versions.

(ii) Reducing hardware requirements: it can run on

machines as small as an individual desktop with a GPU,

making it more accessible.

(iii) Simplifying hyper-parameter search: tomoCAM’s speed

makes it easier to search for hyper-parameters, allowing for

faster and more efficient experimentation.

(iv) Enhancing compatibility: the implementation provides

a Python interface, which makes it easy to integrate with

existing workflows that use FBP.
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Mokso, R., Schlepütz, C. M., Theidel, G., Billich, H., Schmid, E.,
Celcer, T., Mikuljan, G., Sala, L., Marone, F., Schlumpf, N. &
Stampanoni, M. (2017). J. Synchrotron Rad. 24, 1250–1259.

Nikitin, V. (2023). J. Synchrotron Rad. 30, 179–191.

Nikitin, V., Tekawade, A., Duchkov, A., Shevchenko, P. & De Carlo,
F. (2022). J. Synchrotron Rad. 29, 816–828.

Pelt, D. M., Hendriksen, A. A. & Batenburg, K. J. (2022). J.
Synchrotron Rad. 29, 254–265.

Ramachandran, G. N. & Lakshminarayanan, A. V. (1971). Proc. Natl
Acad. Sci. USA, 68, 2236–2240.

Shepp, L. A. & Logan, B. F. (1974). IEEE Trans. Nucl. Sci. 21, 21–43.

Shih, Y., Wright, G., Andén, J., Blaschke, J. & Barnett, A. H. (2021).
arXiv :2102.08463.

SVMBIR (2020). Super-Voxel Model Based Iterative Reconstruction
(SVMBIR), https://github.com/cabouman/svmbir.

Swinehart, D. F. (1962). J. Chem. Educ. 39, 333.

Tarantola, A. & Valette, B. (1982). Rev. Geophys. 20, 219–232.

Thuering, T., Modregger, P., Grund, T., Kenntner, J., David, C. &
Stampanoni, M. (2011). Appl. Phys. Lett. 99, 041111.

Trampert, J. & Leveque, J. (1990). J. Geophys. Res. 95, 12553–12559.

Venkatakrishnan, S. V., Drummy, L. F., Graef, M. D., Simmons, J. P. &
Bouman, C. A. (2013). Proc. SPIE, 8657, 86570A.

Vingelmann, P. & Fitzek, F. H. (2020). CUDA, release 10.2.89.
NVIDIA, CA, USA (https://developer.nvidia.com/cuda-toolkit).

Walsh, S. D., Mason, H. E., Du Frane, W. L. & Carroll, S. A. (2014).
Int. J. Greenhouse Gas Control, 22, 176–188.

Zhang, R., Thibault, J.-B., Bouman, C. A., Sauer, K. D. & Jiang Hsieh,
(2014). IEEE Trans. Med. Imaging, 33, 117–134.

research papers

94 Dinesh Kumar et al. � tomoCAM J. Synchrotron Rad. (2024). 31, 85–94

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB48
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB48
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB44
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB46
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB46
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB48
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5270&bbid=BB48

