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Bone material contains a hierarchical network of micro- and nano-cavities and

channels, known as the lacuna-canalicular network (LCN), that is thought to

play an important role in mechanobiology and turnover. The LCN comprises

micrometer-sized lacunae, voids that house osteocytes, and submicrometer-sized

canaliculi that connect bone cells. Characterization of this network in three

dimensions is crucial for many bone studies. To quantify X-ray Zernike phase-

contrast nanotomography data, deep learning is used to isolate and assess

porosity in artifact-laden tomographies of zebrafish bones. A technical solution

is proposed to overcome the halo and shade-off domains in order to reliably

obtain the distribution and morphology of the LCN in the tomographic data.

Convolutional neural network (CNN) models are utilized with increasing

numbers of images, repeatedly validated by ‘error loss’ and ‘accuracy’ metrics.

U-Net and Sensor3D CNN models were trained on data obtained from two

different synchrotron Zernike phase-contrast transmission X-ray microscopes,

the ANATOMIX beamline at SOLEIL (Paris, France) and the P05 beamline at

PETRA III (Hamburg, Germany). The Sensor3D CNN model with a smaller

batch size of 32 and a training data size of 70 images showed the best perfor-

mance (accuracy 0.983 and error loss 0.032). The analysis procedures, validated

by comparison with human-identified ground-truth images, correctly identified

the voids within the bone matrix. This proposed approach may have further

application to classify structures in volumetric images that contain non-linear

artifacts that degrade image quality and hinder feature identification.

1. Introduction

X-ray computed tomography (CT) bone research aims to non-

destructively provide volumetric data with high resolution and

contrast in order to reveal details of the internal structures of

samples. This is particularly interesting for bony tissues, where

the micro-geometry and internal porosity of blood vessels and

cells are of paramount importance for disease investigation.

Modern X-ray imaging systems have made significant progress

since the first devices were developed half a century ago

(Chen et al., 2012; Ou et al., 2021). They routinely provide

valuable information about tissue density, morphology and

sometimes dynamics, e.g. response to mechanical load

(Kherlopian et al., 2008; Weissleder & Nahrendorf, 2015).

X-ray images (radiographs) can now achieve a spatial reso-

lution better than �50 nm at high-flux synchrotron radiation

facilities (Leake et al., 2019; Martı́nez-Criado et al., 2016;
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Quinn et al., 2021). However, revealing details with sub-

micrometer resolution usually requires some form of contrast

enhancement since simple absorption differences and

projection contrast are often poor (e.g. when differences in

local composition are small) (Varga et al., 2015; Zeller-

Plumhoff et al., 2021).

Phase-contrast enhancement (PCE) methods have been

successfully implemented at many synchrotron facilities for

some time now, taking advantage of the high X-ray photon

flux as well as coherence (Wilkins et al., 2014). Methods such

as Zernike phase contrast shift the phase in parts of the

incident light. Overlaps of non-shifted and shifted regions of

the illuminated field yield constructive or destructive inter-

ference patterns that result in easy-to-detect intensity distri-

butions (Momose, 2017; Pfeiffer et al., 2006; Tao et al., 2021).

The result is that the contrast near structural inhomogeneities

increases significantly (Holzner et al., 2010; Zernike, 1942).

This differs from standard X-ray absorption radiography,

which is mainly sensitive to absorption of the transmitted

X-rays that pass through the sample, where the contrast

depends on the differences encoded in the imaginary part of

the refractive indices. PCE methods merge the values for the

real and imaginary parts of the refractive indices of sample

components (Nave, 2018; Tao et al., 2021). They are much

more sensitive to internal defects and interfaces, but they yield

data that have a non-trivial relationship to the density.

Complementing other PCE nanotomography methods (e.g.

Holo-CT) (Hesse et al., 2015; Yu et al., 2018), Zernike phase

contrast overcomes the limitation of absorption contrast and

achieves a very high resolution in rapid time by use of a

transmission X-ray microscopy (TXM) configuration. Unfor-

tunately, differences in the propagation paths across the field

of view induce non-uniform gradients in the phase shift that

produce extensive bright and dark distortions known as halo

and shade-off artifacts (Kim & Lim, 2022). The size and

intensity of these artifacts are both sample- and setup-

dependent. For example, they are modulated by the char-

acteristics (e.g. the width) of the phase ring that shifts parts of

the phase of the diffracted wave (Yang et al., 2014; Vartiainen

et al., 2014a; Yin et al., 2012). There have been proposals for

software- and hardware-based approaches to eliminate these

halo and shade-off artifacts in specific cases (Allan et al., 2020;

Kumar et al., 2015; Vartiainen et al., 2014b; Yang et al., 2014).

However, no phase retrieval nor other generalizable solution

has been found so far, in particular when attempting to resolve

fine structural details such as the sub-micrometer pores found

in tissue.

Sub-micrometer imaging is fundamental for assessing bone

micro-morphology and understanding bone geometry and

density changes over time (Müller, 2009; Akhter & Recker,

2021; Garnero et al., 1996). Detailed three-dimensional (3D)

information about the internal architecture is routinely

collected by a range of methods sensitive to micro- and nano-

porosity, including advanced optical techniques such as 3D-

confocal imaging with fluorescent stains, focused ion beam

electron microscopy (FIB-SEM) and micro- and nanoCT (van

Tol et al., 2020; Repp et al., 2017; Hasegawa et al., 2018;

Palacio-Mancheno et al., 2014; Goff et al., 2021). Bone struc-

ture is characterized by interconnected porosities: in the

vascular system, cavities are 20–40 mm in diameter and mainly

include blood vessels. The lacuna-canalicular network (LCN)

consists of a range of different voids (Cardoso et al., 2013;

Hesse et al., 2015; McCreadie et al., 2004; Currey & Shahar,

2013). The larger features of the LCN comprise ellipsoid

lacuna, voids 5–20 mm in diameter in which osteocyte cells

reside in the living bone. Cells are interconnected by 0.2–

0.5 mm-diameter channels known as canaliculi. They establish

communication paths between the bone cells (Robling et al.,

2006; Goodship, 1987) and, in fact, the entire LCN archi-

tecture is an open porosity structure, important for many

functions of bone homeostasis. Osteocyte cells in the lacuna

cavities of bone are thought to sense load and translate it into

biochemical signals for bone remodeling (Bonewald, 2011).

Studying the LCN architecture and porosity is therefore key

to bone research, especially at the nanoscale (Silveira et al.,

2022), for which methods such as Zernike phase contrast show

great potential.

Synchrotron nanoCT has been popularized by its power to

reveal the architecture of the inner porosity of bone at very

high resolutions without the need for staining while providing

volumes spanning tens of micrometers (Akhter & Recker,

2021; Stockhausen et al., 2021; Larsson et al., 2019; Takeuchi &

Suzuki, 2020; Yuan et al., 2012; Langer et al., 2012). Coupling

Zernike phase contrast (Zernike, 1942) to nanoCT provides

rapid single scans of high-contrast images with spatial reso-

lutions down to �100 nm (Flenner et al., 2020; Longo et al.,

2020; Weon et al., 2006). Figs. 1(a) and 1(b) illustrate the

advantages and limitations of Zernike phase-contrast nano-

tomography (Zernike-nanoCT) by comparing it with PCE-

microCT. Due to the enhanced contrast, Zernike-nanoCT

[Fig. 1(c)] reveals features that are not visible in the PCE-

microCT data [Figs. 1(a) and 1(b)], such as canaliculi (iden-

tified by circles). However, halo and shade-off artifacts also

emerge, particularly near interfaces within the sample, intro-

ducing artificial gradients and ghost features (Vartiainen et al.,

2015; Yin et al., 2012). Transforming such data into quantita-

tive descriptors of the LCN architecture is challenging because

classical segmentation/thresholding approaches to classify

and separate bone material from air and cavities are not

straightforward. Therefore, to maximize the benefit of

Zernike-nanoCT imaging at fast acquisition rates, there is a

need for automation approaches to analyze and successfully

classify and process large quantities of such data.

The ideal automatic 3D image classification method should

objectively identify voids and channels within the bone matrix.

Objective, observer-independent protocols are needed to

reach a reproducible quantitative and systematic assessment

of the 3D morphology and topological attributes of the LCN.

Emerging artificial intelligence approaches have the potential

for performing automated segmentation and classification

within variable contrast data. Deep learning (DL) models

using convolutional neural networks (CNNs) provide new

ways for the identification of visible features by means of

trained image segmentation (LeCun et al., 2015; Krizhevsky et
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al., 2012). CNNs are important machine-learning models with

internal architectures inspired by the biological process of

neural networks and synapse formation (Alzubaidi et al., 2021;

LeCun et al., 2015) and have many applications such as

enhancing the visual quality of low-contrast images (Shel-

hamer et al., 2017; Krizhevsky et al., 2012; Liu & Zhang, 2018).

Of the different architectures (Allan et al., 2020; Sarvamangala

& Kulkarni, 2022), the U-Net CNN is widely accepted as a

standard for biomedical image classification due to the ability

to recognize both large and small features under varied

imaging conditions (Ronneberger et al., 2015). Based on the

U-Net architecture, the Sensor3D CNN model was designed

to better segment organs in CT scans by making use of

information in 3D (Novikov et al., 2019). Importantly, the

Sensor3D network is able to glean information from inter-slice

correlations of the volume without requiring large amounts of

memory. Both CNNs have a simple architecture and appear to

reach high accuracy (Shen et al., 2017; Brosch et al., 2016;

Zhang et al., 2015; Horwath et al., 2020; Wu et al., 2013).

To use DL to identify features in tomographies, CNN

models need first to be trained and then validated on

reasonably large amounts of data (Alzubaidi et al., 2021;

LeCun et al., 2015). Training requires human guidance to

specify features of interest that must be correctly labeled. If

multiple labeled images are made available for the CNN to

classify different image regions, the model ‘learns’ features

that match the corresponding labeled images (Bharadwaj,

Prakash & Kanagachidambaresan, 2021; Krizhevsky et al.,

2012). It is convenient to train features of interest in 2D slices

extracted from the 3D data, provided that, during ‘learning’,

sufficient amounts of data are available to create internal

maps that represent typical features of interest. The result of

‘learning’ is thus a series of weights (that convey ‘significance’

to recurring patterns) that can be tuned to outline defined

features in a given dataset (Bharadwaj et al., 2021; LeCun et

al., 2015; Shin et al., 2016). Importantly, the data selected for

training must be representative and contain all features to be

identified in the tomography (Fang et al., 2021; Gao & Zhong,

2020). It is common to name images in which a human

operator identified features as ‘ground truth’, the term used

for reference classification, that is considered to represent the

ideal outcome (Zhou et al., 2018). During training cycles,

classification predictions are repeatedly compared with the

ground truth, adding details that are needed to reach correct

feature matching. The degree of match between classification

predictions and the ground truth is evaluated by quantitative

measures of error and accuracy (Kofler et al., 2021; Setiawan,

2020). Error can be measured through ‘error loss’ functions of

which the categorical cross-entropy is a widely used approach

to measure the discrepancy between model predictions and

ground truth (Bharadwaj et al., 2021; Chen et al., 2020). To

evaluate the accuracy of the classification, a frequently used

metric is the Dice coefficient, where a similarity metric is

computed between model predictions and ground-truth

images (Dice, 1945; Zou et al., 2004). Model training ends after

completion of a sufficient number of iterative cycles (epochs)

so that low error loss is achieved. Dice coefficient and cate-

gorical cross-entropy can then be used to evaluate how good

the training is and, in a second phase, to also validate the

quality of the trained model by checking the classification on

not-yet-analyzed images, for which additional ground-truth

data are provided (Ali et al., 2021; Ding & Möller, 2022).

Training takes place by assessing small image regions, known

as ‘patches’. Groups of patches from ‘batches’ of image

regions are used as input to the neural network during

training. The batch size refers to the number of patches

processed in parallel during training. A larger batch size is

able to achieve faster training with similar error loss as

compared with smaller batch sizes; however, it tends to be less

precise (Kandel & Castelli, 2020). Thus, a batch size of 64

results in faster training but with lower accuracy than a batch

size of 32. Both batch and training data size (number of images

to analyze) have an impact on the speed of model generation

as well as on the accuracy of its prediction capacity (Kandel &

Castelli, 2020; Kofler et al., 2021). Typical CNN training

uses 80% of the labeled ground-truth data for training, and

20% are later used for model validation. Since ground-truth

data may be limited, computational approaches using data

augmentation as well as transfer learning from pre-trained
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Figure 1
Examples of PCE reconstruction slices of zebrafish bones (a, b) propa-
gation-based PCE-microCT versus Zernike-nanoCT (c). Both data types
reveal the bone architecture (orange arrows) and micrometer-sized voids
(white arrows). The Zernike-nanoCT reconstruction slice (c) unveils both
the larger voids (white arrows) and smaller nano-porosity (white circles).
Despite the increased contrast, Zernike-nanoCT becomes degraded by
the appearance of halo and shade-off artifacts that are clearly identifiable
at the edges of the sample (bright streaks and darker orange arrows).
Some glue used for sample mounting is also visible on the outer bone
surface on the right.



models are often used. Data augmentation techniques

increase the variability and include random cropping, rotation,

flipping and distortion (Mikołajczyk & Grochowski, 2018;

Takahashi et al., 2020). For transfer learning, a model that was

trained on some previous, different dataset is reused and re-

trained using a small dataset of new ground-truth images to

perform a different classification task (Mustafa et al., 2021;

Yosinski et al., 2014). Typically, a smaller data size is sufficient

to reach robust learning, thus recycling the knowledge

and resources (time, data) needed to train the CNN in the

first place.

In this work, we describe and demonstrate a complete

procedure for generating sufficient amounts of human-vali-

dated ground-truth images, for DL-assisted segmentation of

internal bone porosity in noisy high-resolution Zernike-

nanoCT data. Our proposed approach combines available

libraries and image-processing tools to analyze LCN porosity

in zebrafish bone, a popular animal model often used to study

skeletal growth, bone disorders and drug development (Lin et

al., 2016). We explore the benefits of DL to find reasonable

training parameters for the segmentation accuracy of U-Net

and Sensor3D CNN models. Based on data obtained in two

different Zernike-nanoCT synchrotron TXM setups and

tested by transfer learning, we propose a detailed procedure

that overcomes the inherent halo and shade-off artifacts in

osteocyte-containing bone tomography data.

2. Methods

2.1. Materials

To train DL models to identify bone porosity, data from two

synchrotron beamlines in France and Germany were used to

generate Zernike-nanoCT reconstructions of zebrafish spine

bones, known to contain an LCN. Cryopreserved vertebral

columns of zebrafish were available from carcasses discarded

as part of a previous study (Ofer et al., 2019) with ethical

approval from the Hebrew University of Jerusalem (permit

MD-16-14844-3). Following removal of the soft tissue, the fifth

caudal vertebra and spines (counted from the tail) were

dehydrated in an ascending series of ethanol solutions (50%,

75%, 100%) followed by immersion in 100% acetone. Fig. 1 of

the supporting information shows an example image of a

typical caudal vertebra of a zebrafish skeleton.

2.2. Data generation: Zernike-nanoCT imaging and

reconstruction

The hemal spine of each vertebra was mounted upright on

a pin holder, fixed using light-curing transparent polymer.

Multiple spine samples were imaged on the TXM branch of

the ANATOMIX beamline at Synchrotron SOLEIL (French

national synchrotron facility, Saint-Aubin, France). Other

spine samples were imaged at the TXM endstation of the P05

imaging beamline of DESY, PETRA III (German national

synchrotron radiation facility, Hamburg, Germany; operated

by Helmholtz-Zentrum Hereon). The experimental setup

of Zernike-nanoCT imaging beamlines comprises a beam-

shaping condenser lens before the sample, a Fresnel zone plate

behind the sample, a set of concentric Zernike phase rings to

induce phase contrast, and a beam stop behind the beam-

shaper to protect the detector. For detailed descriptions of

each of the beamlines used, see Flenner et al. (2020), Longo et

al. (2020) and Scheel et al. (2022). A schematic of a typical

experimental setup is given in Fig. 2 of the supporting infor-

mation. For both beamlines, the true resolution of the images

was 130–150 nm. The imaging conditions on the two setups

were similar, with measurements on ANATOMIX performed

at 10 keV and 1 s exposures, with a Hamamatsu Orca Flash 4

V2 2048�2048 CMOS-based camera, coupled via commercial

microscope optics to a lutetium aluminium garnet single-

crystal scintillator, whereas on P05 an energy of 11 keV and

86 ms exposure times were used with a Hamamatsu C12849-

101U 2048�2048 pixel detector.

To unify data processing, the tomographic scans were

normalized by flat-field correction (division by average empty

beam images acquired at the beginning and the end of each

scan) using a median filter with a radius of 2 pixels, applied

to reduce noise. All tomographic reconstructions were

performed using the back-projection method implemented

in the Nrecon software (NRecon 1.7.1.0; Bruker micro-CT,

Kontich, Belgium). Due to memory limitations of 3D DL data

processing, the reconstructed volumes were cropped and

binned with Fiji (Schindelin et al., 2012), resulting in similar

effective pixel sizes of 94 nm for ANATOMIX and 88 nm for

P05. Each 3D dataset, therefore, comprised a total of �420

images (512�512 pixels), making it possible for the DL tools

to reliably process the data within the available memory of

256 GB. Further analysis was performed employing the stan-

dard libraries of the Dragonfly 3D processing package

(Dragonfly 2021.3; Object Research Systems, Montreal,

Quebec, Canada) (Provencher et al., 2019).

Examples of reconstructions of spine scans revealing bone,

pores and edge-enhancing halo and shade-off artifacts are

shown in Fig. 2. The variations of the contrast due to different

interference effects observed when the sample rotates within

the illumination field of the Zernike phase-contrast setup are

demonstrated in example slices taken from scans on both P05

and ANATOMIX. The cause of such artifacts is the varying

contrast of the same regions in different radiographs, as

demonstrated in Figs. 2(d)–2(e), showing radiograms of the

sample obtained at 0� and 180�. The same features are seen to

appear with noticeably different contrasts. The white asterisks

in Fig. 2(d) highlight regions with lower contrast in the 0�

radiogram and higher contrast in the 180� radiogram, whereas

Fig. 2(e) shows the opposite trend. Subsequently, reconstruc-

tion integrates all contrast variations so that the tomographic

data exhibit, in addition to the true representation of the

sample geometry, strong halo and shade-off artifacts that

produce ghost features. In native bone samples, the shade-off

artifacts are stronger in concave-shaped samples [Figs. 2(b)

and 2(c)] than in broad sample geometries [Fig. 2(a)], and they

are enhanced at interfaces with air. This differs from bone

regions covered by polymer [black asterisks in Figs. 2(a) and

2(c)] due to reduced scattering and attenuated shade-off
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darker contrasts. The micro- and sub-micro-voids of the LCN

are easily discernible to the human eye in the cross-sectional

slices of the zebrafish bone material [Fig. 2(a)], though they do

not have a unique gray shade.

2.3. Reference segmentation – ground-truth data

Usually, ground-truth data are carefully and painstakingly

classified manually in 2D slices taken from the tomographic

reconstructions, and they form the basis for CNN training.

Therefore, 20 ground-truth images (5% of the entire dataset)

were initially annotated by manually labeling multiple slices

using the brush tools of Dragonfly. Different features were

identified and assigned to one of several classes (bone, LCN,

shade-off and background classes). The shade-off class

corresponded to the darker region around the edges of the

bone [blue arrows in Figs. 2(b) and 2(c)] for which an indivi-

dual class was needed to identify the bone geometry properly.

Though present throughout the data [Fig. 2(a) and 2(b)], halos

do not prevent successful DL model training for pore identi-

fication. As halos do not affect the bone or pore size estima-

tions, they were not classified as an individual class for model

training. To create a larger cohort of 50 ground-truth slices

(12% of the dataset volume), a Sensor3D model, trained on

the annotated 20 ground-truth data images, was used to clas-

sify and generate ground-truth data. Each slice was inspected,

and falsely identified regions were manually corrected by

adding or removing badly identified domains using the

Dragonfly brush tools. The process was repeated to create a

larger training size of 70 slices (16% of the whole dataset). In

total, three training data groups of increasing amounts of

ground-truth data were used for testing the different DL

parameters, as described below. The same data were also

segmented conventionally using standard Otsu thresholding

libraries (the background class was set to 0, the LCN class was

defined in the range from 0.05 to 0.42, the shade-off class was

defined from 0.43 to 0.53, and the bone class was defined for

the range 0.54 to 0.89 based on visual inspection).

2.4. Deep-learning model training and segmentation

Two CNN model architectures and several training para-

meters were tested to segment reconstructed data, using

established tools. The DL models were trained to identify

small and large internal pores as well as the outer geometry of

the bone, in order to separate them from overlapping shade-

off and halo artifacts. To achieve this, multiple U-Net and

Sensor3D CNN models were trained on the three ground-

truth (training data) sets using batches of 32 or 64 (batch size).

Figs. 3 and 4 of the supporting information show schematic

diagrams of the U-Net and Sensor3D architecture, respec-

tively.

The annotated ground-truth data were used to both train

and later evaluate the accuracy of classification in each of the

models. Each model was trained on 80% of the total number

of ground-truth images, with the remaining 20% used for

model validation, checking the correspondence between

prediction images with ground-truth images. All experiments
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Figure 2
(a–c) Examples of reconstructed slices and (d–e) typical raw-data 0� and 180� radiogram images obtained from Zernike-nanoCT scans of zebrafish
spines. Reconstructed slices in 3D data from P05 (a) and from ANATOMIX (b, c) beamlines contain prominent halo and shade-off artifacts (indicated
by blue arrows). All reconstructions reveal the bone spine (large structure in the center), micro-voids and internal porosity (white arrows) that
corresponds to the LCN typical of osteocytic bone. Black asterisks (*) indicate polymer-covered regions near the edges of samples (a) and (c). Halo and
shade-off artifacts arise from a mixture of strong bright streaks or shadows due to interference effects at boundaries between different material densities
mixed with variations in the contrast of such boundaries. The size and intensity of these artifacts emerge from a summation of different contrasts when
the sample is radiographed from different perspectives. The 180� opposite (horizontally flipped) radiograms extracted from tomographic scans of two
samples demonstrate how the contrast of identical features varies. White asterisks highlight regions that differ in contrast at 0� and 180� angles.
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were conducted using standard Adadelta optimization, a

stochastic gradient descent method that adapts learning rates,

and were computed on an NVIDIA GeForce RTX 2080 Ti

graphic card with 4352 CUDA cores. Each model was trained

for up to 100 epochs (number of data training computation

cycles) until the cross-entropy loss function did not decrease

by more than 0.01% for ten consecutive epochs. Each of the

trained Sensor3D and U-Net models was used to segment the

whole 3D dataset into the four defined classes (schematically

outlined in Fig. 3).

To reveal the trend between training data size and the

evaluation metrics, two intermediate, additional data sizes of

10 and 30 ground-truth images were used to train U-Net and

Sensor3D models. In total, ten U-Net and ten Sensor3D

models were trained on the five ground-truth sets using two

batch sizes. The model trained with ANATOMIX data scoring

the highest accuracy (Dice coefficient metric) and lowest error

loss (categorical cross-entropy error loss function) was also

used to segment the P05 dataset. This CNN was then also used

as a pre-trained model, one that already has weights and

‘previous knowledge’ from the ANATOMIX data, for transfer

learning. Consequently, it was trained to analyze the P05 data

on 20 ground-truth images that refined the pre-trained model.

2.5. Image analysis

The segmented data were further processed using the

‘remove islands and closing’ morphometric operations to

remove the �2% remaining mislabeled pixels. The shade-off

and bone classes were merged in 3D since the shade-off class

overlapped with the bone class. The background class that

defines the outer bone geometry was used to crop the volume

prior to further bone porosity analysis. Volume quantification

of both the bone and LCN classes was performed using the

Dragonfly ‘multi-ROI analysis’ module. Bone porosity was

determined from the ratio of the LCN and bone volumes. LCN

thickness was computed in 3D using the ‘Volume thickness

map’ function. The LCN was then further analyzed by

separating lacuna along connected canaliculi. Each cell and its

respective connected units/voxels were converted into isolated

regions of interest (ROI) using the ‘new multi-roi (26-

connected)’ function in which units smaller than 100 voxels

were discarded, assuming they arise from noise or are far

smaller than typical lacunae and canaliculi. The volume of

each isolated cell was then computed in 3D using the ‘multi-

ROI analysis’ function.

2.6. Statistical analysis

Statistical analyses were performed using RStudio (RStudio

Version 1.3, RStudio, PBC, Boston, MA, USA) to evaluate

correlations between the trained CNN models, batch and

training data sizes. The Wilcoxon signed-rank test was applied

to compare the accuracy and error loss metrics between the

Sensor3D and U-Net models. P-values < 0.05 were considered

statistically significant. Correlations between the batch size

and training data size parameters and the accuracy of the

models were quantified using Spearman’s rank correlation

method.
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Figure 3
(Left) Typical process for ground-truth labeling then training of a CNN model for DL segmentation of Zernike-nanoCT imaged osteocytic bone. (Right)
Flow chart of the generation of increasing numbers of ground-truth data. Stage 1 includes manual segmentation of 20 labeled images (ground-truth data)
from the input 3D dataset, used to train and validate each of the Sensor3D and U-Net models. In stage 2, the trained Sensor3D model was used to
segment 50 images from 3D data. These roughly segmented images were corrected for mislabeled pixels and used as new data to train and validate new
Sensor3D and U-Net models. In stage 3, the trained Sensor3D model was used to segment 70 images from 3D data. These labeled images were corrected
and selected as ground-truth images, used to train and validate new models. The final labeled results including bone, shade-off and LCN classes were
filtered using the ‘remove islands and closing’ morphometrics operations.



3. Results

3.1. Non-linear intensity contrasts of similar structures

The 3D reconstructions of Zernike-nanoCT of zebrafish

bone spines exquisitely reveal bone porosity including lacunae

and canaliculi, though with variable local contrasts (Figs. 1, 2).

Numerous lacunae are visible within the scanned regions that

exceed 48 mm3. Examples of different cross-sectional slices

within a single reconstructed tomographic dataset imaged on

ANATOMIX (Fig. 4) illustrate the typical bone features

including osteocytic lacunae and canaliculi. The line profiles in

Fig. 4 exemplify the non-linear gray values corresponding to

distinct features of interest. The contrast enhancement created

by the Zernike configuration comes at the price of creating

significantly visible artifacts. Patterns of halos are seen on the

sample edges (indicated on the line profiles by a yellow

region) and they also overlap the bone material surrounding

voids. Line profiles, indicated in orange and plotted on the

right (of panels a and b), reveal that no single range of gray

values can be used to uniquely identify a particular material

(bone, void/air), as seen by comparison within and between

virtual slices of the 3D data. The line profiles reveal a sharp

peak in intensity (halos, yellow shaded regions in the plot) on

the outer bone rim (orange arrows) and near voids. Shade-off

effects produce a darker region around the sample edges (light

brown shaded region in the plot). The strength of these arti-

facts varies in different virtual slices along the sample, e.g.

halos seen around the lacunae are more intense in Fig. 4(b)

than in Fig. 4(a). The contrast between shade-off regions near

sample edges and the bone also fluctuates between the slices.

Typical for the ellipsoid lacunae, the lateral extent of the

osteocyte changes along its axis. However, the gray values also

differ, at the margin between air (light-blue shaded region in

the line plot) and bone (green shaded region in the line plots).

Notably, even within the bone, a range of gray values is seen

and often they are strongly affected by the proximity to the

sample edges.

3.2. U-Net versus Sensor3D models

The training efficiency of U-Net and Sensor3D models can

be assessed by comparing the effects of changing the training

data size and batch sizes. A reasonable balance was sought

between the extent of data needed for training and validation

versus training parameters affecting computation time and

model accuracy (e.g. batch size). Fig. 5 compares the accuracy

and error loss metrics for the multiple U-Net and Sensor3D

CNN models, trained with the same data (correlations

between the different parameters is given in Fig. 5 of the

supporting information). For both CNN model types, the

accuracy of models with 32 batch sizes increases and the error

loss decreases with increased training data sizes (0.95 corre-

lation, p < 0.05, see Fig. 5 and Tables 1 and 2 of the supporting

information). The same is seen for the U-Net model with a

batch size of 32, whereas, unexpectedly, the U-Net model with

a batch size of 64 decreases in accuracy and increases in error
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Figure 4
(a, b) Examples of slices within Zernike-nanoCT data scanned on ANATOMIX. Line profiles (shown in orange in panels a and b) across the same lacuna
at different heights reveal the gray-level profile along the sample. Orange arrows identify the outer edges of the bone sample. Halo regions in (a) and (b)
have higher values compared with the surrounding, though different absolute values (as seen by the peaks shaded in yellow) and are located around the
edges of the sample and near the lacuna void (peak shaded in blue). The values of the outer-margin halo peaks vary, and are lower in (a) than in (b)
whereas the internal halos in the same lines show an opposite trend. Shade-off regions (indicated in light brown) are seen around the edges of bone and
vary significantly between slices (a) and (b). The bone matrix far from edges or pores (shaded in green) has an intermediate gray value.
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loss during training with larger data sizes of 70 images. Yet

when validating the model (see lower panels of Fig. 5), analysis

shows that this model actually reached higher accuracy and

lower error loss than the U-Net model trained with a data size

of 50 images. We found no correlation between the accuracy

metric and the batch size (p > 0.05, Fig. 5 of the supporting

information). Models with a batch size of 64 took 2�–3� less

time to train (larger batch size requires fewer iterations) than

the models with a batch size of 32. However, in some cases,

models trained with a batch size of 32 required fewer epochs

(number of times that a model was trained) and therefore

need shorter training durations than models with a batch size

of 64 (see Fig. 6 of the supporting information for training

durations between the different stages). Most U-Net and

Sensor3D models have high accuracy (�0.9) and low error

loss (�0.1) except for U-Net and Sensor3D models with a

batch size of 64 and training data size of 20. No significant

differences were found (p > 0.05) when using either accuracy

or error loss as metrics. Of all the model training performed,

the Sensor3D model with a batch size of 32 and a training data

size of 70 images had the highest accuracy and the lowest error

loss when evaluating the training data. Numerical training and

validation results for the U-Net and Sensor3D models are

provided in Tables 1 and 2 of the supporting information and a

visual comparison between the different stages is provided in

Fig. 7 of the supporting information.

Comparisons of segmentation outcomes from bone and

voids by manual labeling, by Otsu thresholding, as compared

with trained CNN models provide insights into the robustness

of the DL training, especially in slices within entire tomo-

graphic reconstructions. Fig. 6 shows bone, LCN and shade-off

classes in exemplary slices, along with 3D renderings of clas-

sified data segmented by Otsu segmentation as well as U-Net

and Sensor3D models. We observe that some regions

containing air outside of the bone were incorrectly classified as

being bone by the U-Net model. Fig. 8 of the supporting

information shows 3D renderings of classified data presented

in Fig. 6 magnified. The standard Otsu threshold method

applied to the whole sample yields highly unreliable results

and exemplifies the difficulty in segmenting porosity data

based solely on global gray values.

Transfer learning across the different datasets was explored

using the best-trained ANATOMIX model (highest accuracy

and lowest error). The Sensor3D model trained with 70 images

and a batch size of 32 was used to train and segment a dataset

of similar fishbone scanned on P05. The performance of the
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Figure 5
Analysis of the accuracy and error loss metrics for training and evaluation of ten Sensor3D and ten U-Net models. For most of the models, accuracy
improves and the error decreases when increasing the number of training images. The main effect of the batch size is observed for models trained with a
smaller training data size of 10 and 20, though the difference is not statistically significant. Whereas the Sensor3D model with a batch size of 32 and
training size of 10, 20 and 30 required 71, 67 and 52 epochs, respectively, unexpectedly for a training size of 50, only 30 epochs were needed due to a lack
of any increase in learning rate, whereas with 70 training images a total of 97 epochs were needed. For the Sensor3D model with a batch size of 64 and
training sizes of 10, 20, 30, 50 and 70, the DL process required 65, 30, 45, 56 and 90 epochs, respectively, thus increasing with increasing training data sizes.
The U-Net model with a batch size of 32 and a training sizes of 10, 20, 30, 50 and 70 images required 30, 43, 45, 56 and 51 epochs, respectively. The U-Net
model with a batch size of 64 and training sizes of 10, 20, 30, 50 and 70 images were completed within 65, 25, 119, 55 and 65 epochs, respectively, again
demonstrating that the number of epochs required is not linearly related to the training data size. The two intermediate additional data sizes of 10 and 30
ground-truth images are marked by gray shade regions.

http://doi.org/10.1107/S1600577523009852
http://doi.org/10.1107/S1600577523009852
http://doi.org/10.1107/S1600577523009852
http://doi.org/10.1107/S1600577523009852
http://doi.org/10.1107/S1600577523009852
http://doi.org/10.1107/S1600577523009852
http://doi.org/10.1107/S1600577523009852
http://doi.org/10.1107/S1600577523009852


same model with no further training was compared with the

classification performed with additional training using only 20

images as training data. By using the pre-trained CNN, rapid

convergence was achieved, reaching sufficient training within

�40 epochs. The segmentation results of Sensor3D model

segmentation in classifying voids along the spine bone are

shown in Fig. 7. Classification of the cross-sectional slices of

zebrafish bone scanned on P05 shows that the pre-trained

model that was re-trained with P05 images can better identify

the boundaries of both LCN and bone [Fig. 7(b)] as compared

with the same model which was only trained with

ANATOMIX images [Fig. 7(a)]. Note that, for re-training,

only three classes were used (bone, LCN and background)

instead of four (bone, LCN, halo and background) due to

contrast differences caused by shade-off artifacts between

ANATOMIX and P05 datasets. This shade artifact is less

pronounced in the P05 data than in the ANATOMIX data;

therefore the Sensor3D model trained for the ANATOMIX

data incorrectly detects areas of shade-off around the edges of

bone that do not exist in the P05 data.

4. Discussion

Our results show how incremental DL training applied to

reconstructions of Zernike phase-contrast enhanced tomo-

graphy can reliably and predictably classify the micro-nano

scale pores revealed in bone. The Zernike-nanoCT scans were

reconstructed from enhanced contrast radiographs collected

on different TXM machines. The features revealed are the
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Figure 7
An identical cross-sectional slice of a zebrafish bone scanned in the
Zernike-nanoCT setup of P05, labeled using the (a) Sensor3D model
trained for the ANATOMIX dataset with 70 images and 32 batch size and
applied to P05 data versus (b) the same model re-trained on 20 ground-
truth images of the P05 dataset. Note that these data have different size,
noise level and contrast range as compared with the ANATOMIX data.
The as-trained model produced a compromised, though not totally
incorrect, classification, mainly mislabeling edges (indicated by the black
arrows and green regions) of the bone class that are incorrectly classified
as background values. Whereas Sensor3D training on 20 images from
scratch required 67 epochs, the use of a pre-trained ANATOMIX model,
retrained with 20 ground-truth images of a P05 data, improved classifi-
cation of both bone and LCN yet required only 37 epochs (1 h).

Figure 6
Example images and classification for shade-off (brown), bone (green) and the LCN (blue) classes performed on an ANATOMIX dataset comparing the
result obtained with Otsu thresholding, the Sensor3D model with 32 batch size and 70 training size, the U-Net model with 64 batch size and 70 training
size versus manual segmentation (ground truth). The standard Otsu thresholding has the worst outcome, mislabeling the bone class with background
values because gray value segmentation yields ambiguous results. Both Sensor3D and U-Net models can correctly segment the voids, bone and shade-off
regions which Otsu thresholding and other simple segmentation methods cannot.



main components of the LCN, with the resolution limit of the

setups estimated to be in the 130–150 nm range. Consequently,

our data reveal the major component of the porosity in

osteocytic bone, though not smaller-scale nano pores (Tang et

al., 2022). A major advantage of the Zernike-nanoCT method

is that bone segments can be imaged rapidly, within a rela-

tively large field of view (�48 mm3) and this approach makes it

possible to repeat measurements on overlapping regions of

interest so that even larger samples can be mapped rapidly in

3D. The samples are not destroyed during the imaging process,

which is an important advantage over nano-resolution slice-

and-view (FIB-SEM) analysis methods that are often used in

bone research (Weiner et al., 2021). In the experiments

reported here, data were collected from two Zernike phase-

contrast beamlines with similar setups. In both, a recurring

disadvantage of these data is the appearance of halos and

shade-off artifacts, as shown in Figs. 1, 2 and 4. Halo and

shade-off artifacts are enhanced by cross-talk between the

sample microstructures and the phase ring as well as the outer

sample geometry (Vartiainen et al., 2015). For example,

concave sample regions exhibit strong shade-off artifacts as

compared with broader samples [Figs. 2(b) and 2(c)]. Darker

shade-off regions are very prominent at bone interfaces with

air such as near lacunae, as opposed to bone regions covered

by sample-gripping polymer, where interference effects are

attenuated. We note the important difference in addressing

noise versus image-artifacts: DL methods have previously

been applied to denoise TXM data. However, it was shown

that such DL denoising enhances halo artifacts in Zernike

phase-contrast data, reducing the applicability for imaging the

LCN in zebrfish bones (Flenner et al., 2022). Such shade-off

artifacts make segmentation of the bone data challenging

since traditional threshold methods, which separate gray

values and classify structures based on intensity, fail to reliably

separate the voids and outer edges of the bone, as shown in

Fig. 6. Comparisons between outcomes of DL segmentation

show that the CNN models are excellently reliable alternatives

to traditional segmentation methods conventionally used for

the analysis of absorption contrast data. The results show that

in all cases the Sensor3D models are slightly more accurate

than U-Net for outlining the boundaries of the bone and LCN

classes within the limits of the training data and batch sizes

tested. This comes at a computational price in that it takes

longer to train these CNN models as compared with U-Net

models.

The ground-truth data size used for CNN model training

can affect the classification of 3D tomographic reconstruc-

tions, especially with classes having variable contrast. For both

the U-Net and Sensor3D models, incremental exposure to

increasing amounts of training data improved the accuracy,

resulting in an increased capacity to reliably classify structural

features within the Zernike-nanoCT data. Since there is no

way to know a priori which CNN model is better suited to

robustly identify pores, bone and halo/shade-off artifacts, we

compared the outcomes of model training and validation with

different training data and batch size parameters. However,

there are infinite possible parameter combinations and no

universally prescribed guidelines regarding the number of

ground images for CNN model training. Further, we want to

avoid over-training. Therefore, the present study targeted

finding a reasonable amount of training data that reliably yield

a reproducible workflow. With this approach, the LCN pores

in bone imaged by Zernike phase contrast were retrieved, a

challenge of great relevance in many ongoing studies (Busse et

al., 2010; Cardoso et al., 2013; Sharma et al., 2012; Tommasini et

al., 2012). The U-Net and Sensor3D models mostly have high

accuracy (�0.9) and low error loss (�0.1) except for models

with a batch size of 64 and training data size of 10 and 20.

Our results suggest that the outcome of classification by both

CNNs excellently matches the labeling in the ground-truth

images if the models have a training data size of 50 or more

images. The Sensor3D model with a batch size of 32 and the

larger training data size of 70 images had the highest accuracy

and the lowest error loss (Fig. 5) for both training and vali-

dation (when ground-truth images are iteratively compared

with model predictions of classification). Visual inspection of

the outcomes of segmentation with both model types (Fig. 6

and also Fig. 8 of the supporting information) shows that the

U-Net model yields larger numbers of mislabeled pixels, as

compared with the Sensor3D model.

Increasing the batch size allows to speed up training. Most

of the models with a batch size of 64 completed training in

about half the time as compared with models with a batch size

of 32. We found no correlation between the batch size and any

of the accuracy and error loss metrics (Fig. 5 of the supporting

information). This suggests that the determination of the

optimal batch size parameter should be based on technical

consideration of speed and memory and is not likely to affect

the quality of the classification outcome. For transfer learning

assessment, the model with a batch size of 32 was chosen due

to slightly higher accuracy, though also training models with a

batch size of 64 can be used when memory and time are

limited. Our incremental approach creates a way to provide

large amounts of ground-truth data so that any model can

better ‘learn’ to identify porosity and other bone features

(Fang et al., 2021), reducing human-based and time-consuming

classification efforts. Training data need to be representative

and diverse enough so that the model can correctly identify

recurring patterns and variable relationships between features

with different contrasts in structures of the same type. This

was not possible with training data sizes of 20 and 50. Incre-

mental training stages make use of labeled data that were

segmented with the help of intermediate rudimentary models

to create a larger number of training images that is sufficient

to train the CNN models reliably. In the initial stage, it is

recommended to begin with a modest number of ground-truth

images (between 10 and 20), depending on the data

complexity. Subsequently, additional ground-truth images

should be progressively incorporated based on the accuracy

and error loss metrics. More stages will be needed if the

accuracy and error loss values do not sufficiently improve. For

Zernike-nanoCT reconstructions, this approach reduces the

labor-intensive manual labeling efforts and shortens the time

needed to achieve robust CNN models.
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The U-Net and Sensor3D models were compared by accu-

racy and error loss metrics applied to both the training and

validation steps. This approach provides an observer-inde-

pendent evaluation of how accurately the trained models

identify features in slices in the 3D data. An ideal model

would generate predictions identical to the ground-truth

labels in all slices. Practically, however, the model will never

classify features as precisely as those marked in the ground-

truth data since slices will have some noise and statistical error

as well as some possible labeling bias. Additional available

morphometric operations such as ‘remove islands and closing’

should be used to correct mislabelled porosity pixels.

It was also possible to use the Sensor3D model trained for

the ANATOMIX dataset as a pre-trained model for successful

segmentation of the P05 dataset, following additional training.

Transfer learning is of increasing interest in building libraries

of validated models that can be reused in other data (Rawat &

Wang, 2017). Models that are trained for a specific task on one

kind of data can suffer significant error loss when used on new

data, as in the case shown in Fig. 7(a). However, in our data,

excellent classification was achieved by retraining the model,

used as a pre-trained model, a strategy that significantly

shortens the learning process. Transfer learning is increasingly

applied for medical imaging, especially when the trained

models become too specialized (Matsoukas et al., 2022;

Mustafa et al., 2021; Yosinski et al., 2014). Accurate classifi-

cation of new tomographic data does not require training from

scratch, which significantly reduces training time and effort.

Note that, due to different statistical noise and contrast, the

Sensor3D model trained for the ANATOMIX dataset was

only partially useful to segment the P05 dataset when used

without further training. Contrast differences induced by

shade-off artifacts are stronger in the ANATOMIX dataset

than in the P05 dataset, making it difficult to segment the bone

regions, since the CNN was not previously trained on such

subtle but important detail. Both P05 and ANATOMIX data

reveal important contributions of sample geometry (concavity,

convexity) as well as the presence of mounting polymer, on

the outer bone surface, as strong modulators for the promi-

nence of shade-off artifacts, which was much less visible in the

sample imaged on P05. Results suggest that transfer learning

between different beamlines can be used, though the models

require additional training, to reduce the efforts in reaching

reliable Zernike-nanoCT segmentation.

In this study, Zernike phase-contrast data were recon-

structed with a well established FBP algorithm, a widely

adopted method in X-ray microtomography instruments

due to its proven ability to deliver high-quality reconstructions

across a wide range of sample types. Advanced reconstruction

algorithms tailored to a given sample could have been a

promising alternative. However, these alternatives often

demand significantly greater computational resources,

making them less practical for general use across various

sample types. The proposed approach has the merit of being

based on reconstruction tools readily available at the beam-

lines, making it versatile and applicable to a diverse array

of sample types.

4.1. Examples of 3D assessment of DL segmented osteocytic

bone data and LCN

Osteocytes and canaliculi (>150 nm diameter) of the LCN

within the imaged bones are revealed, unstained, by Zernike-

nanoCT imaging. The segmented LCN porosity, graphically

rendered in Fig. 8, consists of a complex interconnected

porous system that is typical for many osteocyte-containing

bones. This segmentation was obtained with the Sensor3D

model (batch size of 32 and training data size of 70 images)

because of its higher accuracy and lower error loss compared

with the other trained models. The lacunae appear as nodes

connected through the canaliculi and are thought to enable

communication between neighboring bone cells. The LCN

class analyzed in 3D for bone scanned on ANATOMIX (data

shown are for the Sensor3D DL analysis) has an average

porosity of 2.1%, which is within the range of porosities of 1%

to 4% reported in the literature (Hesse et al., 2015; Palacio-

Mancheno et al., 2014; Yu et al., 2020).

The LCN data can be further processed so that [Fig. 9(a)]

each lacuna and its corresponding connected canaliculi can

be measured for local thickness and volume. Fig. 9(b) shows

that the 8 lacunae within the ANATOMIX dataset have a

maximum thickness of 3.5 mm corresponding to previous

reports of the diameters of lacunae voids (Carter et al., 2013;

McCreadie et al., 2004; Yu et al., 2020). Due to the non-linear

phase-contrast enhancement Zernike effects, it is difficult

to define the precise detection resolution for canaliculi.

However, the effective pixel size sets a lower limit on what

becomes visible with this method. The minimum canaliculi

diameter detectable is limited by the spatial resolution of the

scans, to �0.15 mm. Some individual lacunae with connected

canaliculi have a volume above 150 mm3 [Fig. 9(c)]. Correctly

classified pores in 3D makes it possible to further analyze the

pore space distribution, pore paths and pore constrictions

(Kollmannsberger et al., 2017; van Tol et al., 2020; Wittig et al.,
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Figure 8
3D-rendering overview of the LCN porosity within zebrafish bone in an
ANATOMIX dataset, segmented with the Sensor3D model. Analysis
revealed an average porosity of 2.1%. Several canaliculi connecting to
lacunae are seen in detail. Due to resolution limits, only canaliculi larger
than 130 nm are visible.



2019). Such data with quantitative estimates of the micro-nano

void network, within relative sample volumes, are useful to

characterize the fluid flow inside the LCN. This is useful for

e.g. analyzing the transport of nutrients and waste products, in

addition to being important for assessing poroelasticity and

mechanotransduction due to deformation of the LCN across

the bone (Cowin, 2002; Fritton & Weinbaum, 2009; van Tol et

al., 2020).

The ability of bone to adapt is believed to be regulated by

the network of embedded osteocytes. In mammalian bone,

the morphology of lacunae and their resident osteocytes are

known to change with age and diseases. Analysis of Zernike-

nanoCT data as described in the present work lays the

groundwork for the geometric analysis, which may have

implications for an improved understanding of the role of the

LCN. We have proposed an end-to-end analysis procedure

which encompasses image processing, segmentation and

analysis of Zernike-nanoCT images of zebrafish bones. This

will hopefully support ongoing efforts for the characterization

of the interconnected porous system within bones (Varga et al.,

2015; Schneider et al., 2007; Wittig et al., 2019). The proposed

DL approach is less time-consuming and more accurate than

standard gray value or Otsu threshold methods and is likely to

become a standard computer-aided segmentation approach

well able to identify bone porosity in relatively large datasets

of PCE tomographic data of bone with variable contrast.

5. Conclusions

The present work presents detailed steps needed to identify

and quantify bone features by implementing a DL-based

segmentation approach for 3D data with non-linear varying

feature visibility. Zernike-nanoCT from both ANATOMIX

and P05 beamlines provides high contrast and high spatial

resolution, sufficient to reveal the micro-nano porosity of the

LCN in zebrafish bone. However, there are limitations to the

resolution and these define the smallest porosity detectable,

suggesting that canaliculi smaller than 150 nm cannot be

detected in this manner. The results here demonstrate that

the DL models are a powerful tool for objective automatic

segmentation of data with regionally varying contrast and

therefore reproducible assessment of the interconnected

porous systems embedded in X-ray Zernike phase-contrast

imaged bone material. Nevertheless, differences in the signal-

to-noise ratio of the data may affect the performance of

different CNNs during training and may require larger

amounts of data for robust classification.

6. Data availability

Trained models and raw data required to reproduce these

results are available upon reasonable request by contacting

Professor Paul Zaslansky (paul.zaslansky@charite.de).
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