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Alignment of each optical element at a synchrotron beamline takes days, even

weeks, for each experiment costing valuable beam time. Evolutionary algo-

rithms (EAs), efficient heuristic search methods based on Darwinian evolution,

can be utilized for multi-objective optimization problems in different applica-

tion areas. In this study, the flux and spot size of a synchrotron beam are

optimized for two different experimental setups including optical elements such

as lenses and mirrors. Calculations were carried out with the X-ray Tracer

beamline simulator using swarm intelligence (SI) algorithms and for comparison

the same setups were optimized with EAs. The EAs and SI algorithms used

in this study for two different experimental setups are the Genetic Algorithm

(GA), Non-dominated Sorting Genetic Algorithm II (NSGA-II), Particle

Swarm Optimization (PSO) and Artificial Bee Colony (ABC). While one of the

algorithms optimizes the lens position, the other focuses on optimizing the focal

distances of Kirkpatrick–Baez mirrors. First, mono-objective evolutionary

algorithms were used and the spot size or flux values checked separately. After

comparison of mono-objective algorithms, the multi-objective evolutionary

algorithm NSGA-II was run for both objectives – minimum spot size and

maximum flux. Every algorithm configuration was run several times for Monte

Carlo simulations since these processes generate random solutions and the

simulator also produces solutions that are stochastic. The results show that the

PSO algorithm gives the best values over all setups.

1. Introduction

Synchrotron beamlines need continuous realignment of

optical elements, since noise and vibrations cannot be ignored

for accurate measurements. Additionally, different require-

ments for a variety of experiments call for different experi-

mental setups, thus realignment is crucial. Beamlines are like

electric circuits that are connected in series – thus any failing

part prevents the synchrotron beam from hitting the sample;

even slight changes in the angle or position of an optical

element may cause significant effects. The current study

focuses on optimizing the beamline optics, which play a vital

role in measurement quality. Beamline optics are utilized for

collimating, focusing and monochromatizing the beam with

the required properties from source to sample (Hart, 1996;

Ketenoglu, 2019). Beam characteristics such as flux, photon

beam energy (wavelength), energy bandwidth (mono-
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chromaticity), spot size and polarization are adjusted at

beamlines depending on the dedicated experiment.

In the earliest studies, optimization was carried out on

storage rings (Zisman, 1987); software written in Fortran was

developed to enable studies on the storage ring parameters.

Circumference, momentum compaction factor, natural emit-

tance and damping times are machine parameters whereas

energy, intensity, bunch length and momentum spread are the

beam parameters, and frequency, voltage and higher-order

cavity modes are the radiofrequency system parameters that

were intended to be optimized with this program. This study

was implemented on the LBL (now ALS) synchrotron facility

in California, USA. Just as optimizations were used on existing

systems, there were studies that made use of optimization

techniques in the design phase (Shimano et al., 1992).

Compact storage rings and beamlines were designed by the

ray-tracing method and flux was used as an objective function.

Optimization studies were carried out on particle accelerator

facilities as well, similar to synchrotron facilities (Catani,

1997). Evolutionary strategies were used on coils for optimi-

zation using specifications of the LISA facility in Italy. Expert

systems were also used on an earlier study for intelligent

decision making (Svensson & Pugliese, 1998). The alignment

problem was solved by using a set of rules taken from

beamline technicians. Flux was optimized with genetic-based

algorithms on the SSLS facility XAFCA beamline in Singa-

pore. The orientation of optical elements was adjusted by six-

axes motors for maximum flux (Xi et al., 2015). In a follow-up

study at the same facility, a genetic algorithm was used with a

differential evolution algorithm with the same set of para-

meters. It was suggested in this study that the genetic algo-

rithm gives results with less generation but more working time

(Xi et al., 2017). In a similar approach, particle swarm opti-

mization and the genetic algorithm was used on an ion

accelerator facility and transmission maximization was

selected as the objective function (Appel et al., 2017). The

study concluded that other optimization techniques should

be used and beam size and position should be included.

The multi-objective NSGA-II algorithm was used on the

SIBERIA-2 facility in Russia; horizontal emittance and

dynamic aperture were selected as objective functions by

Korchuganov et al. (2018). While minimizing the objectives

it was aimed to have a fixed magnetic elements geometry,

elements position and feed circuit. In 2019, a hard X-ray free-

electron laser (FEL) was optimized using the NSGA-III

algorithm (Ketenoglu, Bostanci et al. 2019). Saturation power,

the Pierce parameter and saturation length parameters were

optimized. The NSGA-II algorithm was used on radiotherapy

applications using collimating magnets on a proton accel-

erator, and the Pareto front was found for clinical require-

ments (Liu et al., 2020). Aydin et al. (2020) made use of multi-

objective optimization and evolutionary algorithms at the

TARLA facility in Turkey. They used NSGA-II, NSGA-III,

VEGA and RVEA algorithms on beam position monitors and

optimized the signal-to-noise ratio using the antenna radius,

gap and thickness as well as the beam pipe diameter. It was

found that NSGA-II is the best algorithm out of all four. The

latest study performed on undulators for gap optimization by

the authors of this paper (Ketenoglu et al., 2023) was carried

out using the VEGA, GA, DE, PAES, "-MOEA, NSGAII,

GDE3 and NSGA-III algorithms. In the optimization process,

undulator gap and number of photons are taken as input

parameters while objective functions (i.e. fitness functions) are

taken as brilliance and �ph. NSGA-II and VEGA yielded peak

brilliance while NSGA-III provided minimum brilliance.

Zhang et al. (2023) used the NSGA-II algorithm at beamline

ID17 of the European Synchrotron Radiation Facility (ESRF)

with energy and dose rate as objectives. They successfully

optimized both objectives with an energy increase of 7% and

dose rate of 20%. An optimal solution set can be obtained

within 30 generations. The SHADOW simulator was used

for this task.

Simulators, or simulation software, have often been utilized

in this field. The SHADOW ray-tracing simulator was used for

an optical system optimization study by Li et al. (1993). Three

optical elements – reflection mirror, silicon filter and beryllium

windows – were used in the simulations. Technical specifica-

tions were obtained from the SSRC facility. Desired results

were obtained for a lithography experiment. In another study,

the SHADOW simulator was used for designing an optimum

beamline on the AMOS beamline at the INDUS-2 facility

(Das et al., 2014). Similar to SHADOW, another simulator

named SRW was developed and validated at the ESRF and

SOLEIL facilities on infrared beamlines (Chubar et al., 2007).

SRW was again used on I13 beamline at the Diamond Light

Source facility. Optical elements were controlled for optimi-

zation and genetic algorithm parameters were 50 generation

and 100 population (Taheri et al., 2019). The SIMPLEX

simulator was used on a FEL for optimizing undulator para-

meters such as gain length, saturation power and saturation

length using numerical calculations (Ketenoglu, Aydin &

Yavas, 2019). X-Ray Tracer (XRT) was used at the Canadian

Light Source facility (Heredia et al., 2019). Optical element

combinations were tested on the simulator and it was found

that V-shaped apertures are needed for their experimental

setup. A simulator named SYRIS was developed and validated

at DESY PETRA III (Otte et al., 2019), intended to be used

for experiment preparation, instrument operation and analysis

benchmarks.

From the literature, one can see that simulators have been

widely used on beamlines and have proven to have benefits on

optimization of the designing and readjustment phases. EAs

were used and results were tested on existing beamlines.

Almost all of the studies used different setups and parameters.

Thus a robust optimization software should be tested on

different beamlines with different optical elements.

For this study Swarm Intelligence (SI) algorithms were

tested and then compared with EAs. Simulations were carried

out in mono- and multi-objective modes. This work contains

the Genetic Algorithm (GA), Non-dominated Sorting Genetic

Algorithm-II (NSGA-II) for EA and Particle Swarm Opti-

mization (PSO) and Artificial Bee Colony (ABC) for SI. ABC

had never been used on this type of problem, while PSO had

only been used on a remotely related experimental setup and

computer programs
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objective functions. Maximum flux and minimum spot size

were selected as the objective functions owing to its use on a

variety of applications. These objective functions were tested

on two different experimental setups; one of them focuses on

a single beryllium compound refractive lens and the other

focuses on a mirror pair – the Kirkpatrick–Baez (KB) mirror.

KB mirrors are used at the SOLEIL, SLS (Mercere et al.,

2007) and DESY facilities (Ketenoglu et al., 2015, 2018). KB

mirrors with good focusing ability were used and the beam was

focused to the micrometre level. Beamline setups were

provided from DESY PETRA III scientists.

The rest of the paper is laid out as follows. In Section 2, the

optimization concepts and algorithms are explained briefly. In

Section 3, simulator results are presented – an experimental

setup on simulator is included in this chapter. The conclusions

are drawn in Section 4.

2. Optimization algorithms

Optimization is the selection of best elements with regard to

some criterion from some set of available alternatives. Many

real life problems can consist of one or more criteria called

objectives. In our problem we are going to minimize spot size

and maximize flux. When there are more than one conflicting

objectives, multi-objective methods are used,

f : R n ! R k;

min f �xð Þ ¼
�

f1 �xð Þ; f2 �xð Þ; . . . ; fk �xð Þ
�
;

gj xð Þ � 0; j ¼ 1; 2; . . . ;m;

hm xð Þ ¼ 0; m ¼ 1; 2; . . . ; i;

x l
t � xt � x u

t ; t ¼ 1; 2; . . . ; n:

ð1Þ

Here, n is the number of decision variables, k is the number of

objective functions, m is the number of inequality constraint

functions, i is the number of equality constraint functions,

g and h are constraint functions, and x� l and x� u are lower

and upper boundaries of the decision variables (Marler &

Arora, 2004).

EAs imitate evolution theory. In its core concepts it

contains reproduction, mutation, recombination and selection

of candidate solutions for an optimization problem. The terms

were borrowed from biology, as can be seen in Fig. 1. Here, an

individual is every coded solution. Population is the pool of

individuals. Selection is choosing the fitter individuals. A gene

is one bit of information in a coded individual. Mutation is

changing only one gene of a chromosome. A chromosome is

every gene of the individual. Crossover is exchanging some

genes between two chromosomes. Generation is the new

population after the best individuals are selected.

For our problem we want to change the focusing device

position for the objective of maximum flux and minimum spot

size in Fig. 2. The fitness criteria for our optimization problem

are minimum spot sizes and maximum flux values. Our deci-

sion variable becomes the position value in millimetres.

For the first generation the system creates random

uniformly distributed distance values as in Fig. 3. Each

distance value is coded in binary and becomes an individual.

In this example population the size is eight. Some individuals

change through crossover and mutation. Then their fitness

(spot size) is measured using the simulation software XRT by

shifting the focusing device from the position A1 to position

A8. This process is repeated until the best values or values that

are good enough were found.

One of the oldest and most tested evolutionary algorithms

is the genetic algorithm (GA). The GA is a very basic form

of the EA. Thus every concept is valid for GA. Algorithm

performance is largely impacted by its parameters such as

population and generation numbers, mutation and crossover

probabilities (Goldberg, 1989).

SI mimics the natural behavior of insects. In PSO, compared

with GA, we use particles instead of chromosomes. Particles

(candidate solutions) started randomly and their fitness is

measured similar to GA. Best particles are selected and then

neighboring particles change position towards these particles

as in Fig. 4. This process repeats until a user-defined conver-

gence criterion is met (Kennedy & Eberhart, 1995).

computer programs
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Figure 1
EA terminology.

Figure 2
Synchrotron beamline (Ketenoglu et al., 2019).

Figure 3
Focusing device shifting.



The ABC algorithm is an SI algorithm similar to PSO. This

uses a bee analogy. In this algorithm the setting parameters are

colony size and maximum cycle. The individuals are called

food positions and their fitness is evaluated by bee move-

ments. Scout bees choose a food source randomly and eval-

uate these sources as in Fig. 5. Employed bees and onlookers

use their experience. The better the food source, the more

vigorous the bee dance, thus attracting other bees. If a better

source is discovered, the previous source is forgotten. This

process is repeated until the cycle number is reached or a

convergence criterion is met which is set by the user (Kara-

boga, 2010).

In single objective optimization there is only one minimum

or maximum. In multi-objective optimization we try to find the

Pareto front that contains the best set of solutions. In Fig. 6,

colored dashed lines are called the Pareto front. Since we can

find either a minimum or a maximum of an objective, different

regions are found accordingly. Since one objective is mini-

mized and the other is maximized, the red Pareto front is the

solution.

A set of results is non-dominated if two values have a

negative covariance relationship meaning one objective value

gets better while the other objective value gets worse (Fig. 7).

In NSGA-II we use these non-dominating relations.

In Fig. 8, at first the child population Qt is produced from

the parent Pt population using conventional genetic operators.

Then the two populations are merged. Solutions are ranked

depending on their distance to the Pareto front. The crowding

distance is measured from these ranked points. Then a

crowding comparison is used to select the next generation. The

points with the highest rank and lowest crowding distance at

the same rank are assumed to be non-dominated and consist

of next-generation individuals. This process is repeated until

the convergence criterion is met (Deb et al., 2002).

There are two types of algorithms in this study. GA and

NSGA-II are EAs whereas PSO and ABC are SIs. All four of

the algorithms use random processes which help the blind

search in an unknown search space. GA uses mutation and

crossover at the decision variables which are coded in binary.

Selecting only the best solutions might stop the algorithm

at the local minima or maxima points. Thus these genetic

operators help to skip these points and search undiscovered

areas. This is especially helpful since most of the search space

provides zero value for the objective function. On the other

hand a strong feature of NSGA-II is multi-objective optimi-

computer programs
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Figure 4
Swarm behavior.

Figure 5
Bee colony.

Figure 6
Transition from decision space to objective space by the objective
function.

Figure 7
Ranking of the solutions.

Figure 8
NSGA-II schematic.



zation. Since the first part of the algorithm is classic GA, this

algorithm adds unnecessary complexity on single objective

optimization while trying to rank solutions depending on their

Pareto front which is a global extremum on a single mode and

separation of these solutions using the crowding distance. SI

algorithms such as PSO and ABC use global best and local

best as part of their search strategy. So they do not solely rely

on better half and random jumps. Instead they divide the

search space into regions and create local bests. The best of

the local bests is the global best. So in the next generation the

rest of the solutions change their position towards these best

values. If the value is better, the position change is faster. The

difference between PSO and ABC is that in PSO all of the

swarm behaves the same while in ABC the swarm is divided

and given different roles such as scouts, onlookers and

employed bees. This means that we have more parameters to

adjust which creates complexity. When the number of para-

meters increases, the algorithms require additional study for

parameters other than the default ones. Given this informa-

tion, SI algorithms are expected to perform better since the

swarm searches the space with prior knowledge and semi

random jumps since beamline optics work in series and

function only at certain positions and angles.

For this study the iteration/generation number is fixed for

all the algorithms and is 100. The population/particle number

is 20. The same set of parameters were used for comparison as

much as possible.

3. Experiments on simulation

XRT is a ray tracer simulator that enables users to tweak

around the parameters of different source types such as

undulators and wigglers and optical elements such as slits,

lenses, mirrors etc. (Klementiev & Chernikov, 2014). XRT is

written in Python language. There is a module called XrtQook

for visualization that helps to see changes in beam geometry

and the sample. For reading the results we must also add

screens to the experimental setup.

We used geometric source for calculations. Apart from the

parameters in Table 1, the rest of the parameters were left as

default. The beam is elliptical in shape so the results emerge in

elliptical form. For setups including a lens we used a beryllium

compound refractive lens with a density of 1.85 g cm� 1 at a

33 m-long beamline with focus 0.1 mm, number of lenses 6 and

thickness 0.1 mm with a z-axis limit of 1 mm, so the overall

thickness is 1.1 mm. The rest of the parameters were left as

default. We stationed a screen to read the parameters at a

sample position of 33 m. Absorption of Be changes with

energy, as can be seen in Fig. 9.

The position of the lens was changed between 10 m and

33 m by the algorithm to find the optimum solution. A double-

crystal monochromator (DCM) was stationed 20 m away from

the source. For setups including KB mirrors, a pair of rhodium

mirrors of density 12.38 g cm� 1 were used at a 70 m-long

beamline where the screen is at the end. The reflectivity of

rhodium changes depending on the energy, as can be seen

in Fig. 10.

There is a DCM at 48 m away from the source and after that

there is a pair of mirrors at 68 m (Fig. 11). The distance

between the KB mirrors is 1 m. While one of the mirrors

focuses vertically, the other mirror focuses horizontally, thus

the mirrors are in a perpendicular orientation.

As can be seen in Fig. 11, flat mirrors are bent to create a

curvature that changes the focus depending on the bending

rate. So the radius of curvature is a decision variable calcu-

lated by the simulator. Thus for this setup we are going to

change the focal distance and optimize flux and spot size. The

computer programs
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Table 1
Geometric source parameters.

Electron energy 9 � 0.5 keV
Polarization Horizontal
dx0 1 � 10� 5

dz0 3 � 10� 6

Number of rays 100 000

Energy distribution Normal

Figure 9
Be absorption as a function of energy.

Figure 10
Rhodium reflectivity as a function of energy.



sizes of the mirrors were adjusted depending on the source

size – for this experiment it is 0.145 m � 0.011 m. The pitch of

the first mirror is 0.005 and 0.003. The roll value of the first

mirror is � 1.571. The two parameters in the XRT simulator

are p and q.

As can be seen in Fig. 12, the p value is the defocal distance

which is roughly the distance from the source to the mirror.

Since there are two mirrors in this setup, there are two p and q

values which we call p1, p2 and q1, q2, respectively. Focal

points of the mirrors are adjustable and not dependent on

their position since the mirrors are foldable instruments. As

can be seen in Fig. 12, the q value is the focal distance of the

mirror and the p1 and p2 values can be fixed at the distance

between the source and the mirror. The simulator takes care

of the bending and we can directly set the focal distance of q.

So the boundaries of the focal distances are between 0 m and

68 m for the first mirror and between 0 m and 69 m for the

second mirror. Since XRT contains random processes, we run

the algorithms three times and take the average, known as

Monte Carlo simulation.

All the optical elements and distances were obtained from

the beamline operator at DESY PETRA III.

3.1. Mono-objective lens position optimization

XRT was run with mono-objective algorithms to observe

system and objective function behavior. For illustration

purposes the spot size is chosen as the objective. After the

algorithm run, as in Fig. 13, the scatter pattern changes and

gives a better spot size and focusing. In Fig. 13, four algorithms

optimized the same setup. NSGA-II is normally a multi-

objective algorithm but it has the option to optimize only one

objective as well, thus we include it here.

In Table 2 the results from Fig. 14 can be seen. On average,

the PSO algorithm gives the best results. Distance results are

given in millimetres since the simulation takes millimetre

values for distances. The best result is highlighted in bold font.

Fig. 15 shows the results of four algorithms with the

objective of minimum spot size – these are tabulated in

Table 3. On average the PSO algorithm gives the best results.

Spot size results are given in mm2.

For maximum flux the lens position should be 10000 to

12000 mm whereas for minimum spot size the lens should be

stationed at around 28000 mm. This creates conflict between

the objectives. Thus, multi-objective optimization usage can

be justified.

3.2. Multi-objective lens position optimization

Using NSGA-II the highest ranking solutions were selected.

In Fig. 16 the desired space is in the right-hand lower corner,

meaning the maximum flux and minimum spot size. After the

dominated results were cleaned out, only five distances

remained out of 20 since the population was set to 20 for each

experiment, just like for single-objective optimization where

we are only interested in the best value.

As can be seen, the results from the NSGA-II algorithm

have an inverse proportion relation in Fig. 16 considering

computer programs
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Figure 11
Schematic representation of KB mirrors.

Figure 12
Parameters of one mirror.

Figure 13
First result for minimum spot size.



maximum flux and minimum spot size are desired which is in

the lower right corner. Starting from the left the distances

were found to be 17085, 28926, 29376, 16609 and 17687 mm,

and some values leaned towards the minimum spot size

distance which is a juxtaposition of 28000 mm. Some values

are between 10000 and 28000 mm.

3.3. Mono-objective mirror focal distance optimization

Four algorithms were run with flux as the objective. It can

be seen from Fig. 17 that NSGA-II gives a poorer performance

on average while PSO gives slightly better results. The results

of Fig. 17 are also given in Table 3. From Tables 4 and 5 it can

be seen that the objective values are much better since KB

mirrors give a better focus than when using only a lens.

Since the beam is elliptical, giving both mirrors the same or

relative focal distances does not provide good results. For

mono-optimization, PSO gives the best results of the four

algorithms. The reason for this must be that swarm intelligence

does not create solely random decision variables except the

first generation. It includes local and global best solution

positions, and EA operators such as mutation and crossover

send some of the solutions towards unknown spaces in the

search field. Thus PSO is more efficient for this type of

computer programs
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Table 3
Minimum spot size calculation results.

Algorithm Distance (mm) Spot size (mm2) X-axis (mm) Z-axis (mm)

ABC 28 723 55.13 13.48 53.45

GA 28 869 53.24 12.26 51.82
NSGA-II 28 605 54.85 14.98 52.77
PSO 28 843 51.59 12.11 50.16

Figure 14
Maximum flux results.

Table 2
Maximum flux calculation results.

Algorithm Distance (mm) Flux (photons s� 1)

ABC 10 570 476.39557

GA 11 665 483.55616
NSGA-II 10 188 481.49050
PSO 10 095 486.51149

Figure 15
Minimum spot size results.

Figure 16
Pareto front for NSGA-II solutions.

Figure 17
Maximum flux results.



problem. ABC is more complex than PSO so that could be the

reason for the difference between their performances.

For maximum flux, NSGA-II gives the worst results. Mirrors

have a mixture of focal distances, because one mirror focuses

vertically while the other focuses horizontally. For spot size,

the focal distance of the first mirror should be around

2000 mm which is the distance between the first mirror and

sample. The focal distance of the second mirror should have

huge values that make it practically flat. Since KB mirrors

cannot be completely flat, the second mirror should have a

slight bending. Thus the focal distance of the first mirror can

never be exactly 2000 mm since this focuses the beam before

the sample and beams are scattered after focusing.

Fig. 18 shows the fitness through the generations. Best

values are provided by PSO. Since the focal distance values

are completely different for the two objectives, we are going to

use multi-objective optimization.

3.4. Multi-objective mirror focal distance optimization

The spot size value and flux value are optimized simulta-

neously using the NSGA-II algorithm with two objectives. The

q1 and q2 values for three runs are shown in Tables 6, 7 and 8.

As can be seen from the results, the total results are biased

towards minimum spot size. Most of the q1 values are around

2000 mm. This is in conformity with Fig. 17 because the mono-

objective results were between 833 and 907 photons s� 1 for

flux and approximately 0.02 mm2 for spot size. Since every run

is a different stochastic process, it is safe to assume that the

best value is around 900 photons s� 1 and 0.01 mm2. As for the

computer programs
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Table 6
Multi-objective results for the first run.

q1 (mm) q2 (mm) Spot size (mm2) Flux (photons s� 1)

2059 69 503 0.086 766.41
26 341 57 142 0.979 779.56
1780 57 572 0.245 774.75

2062 69 950 0.840 778.06
2052 61 890 0.097 770.66

Table 7
Multi-objective results for the second run.

q1 (mm) q2 (mm) Spot size (mm2) Flux (photons s� 1)

22 626 48 770 1.153 788.31
12 718 61 341 1.161 799.74
2167 69 770 1.151 778.06

2152 69 404 0.094 753.42
2166 69 846 0.091 747.54
2166 69 562 0.088 729.31
2166 69 778 0.114 761.99
2012 69 404 0.105 758.86

Table 4
Average flux objective function results and focal distances on three runs for ABC, GA, NSGA-II, PSO algorithms.

Run 1 Run 2 Run 3

q1 (mm) q2 (mm) q1 (mm) q2 (mm) q1 (mm) q2 (mm) Average flux (photons s� 1)

ABC 29 924 46 223 62 481 69 810 37 432 27 147 896.01516
GA 6879 38 147 28 304 51 984 20 251 63 477 900.80349
NSGA-II 25 472 58 603 7195 39 071 49 302 58 113 833.13396
PSO 17 964 38 823 2261 52 871 22 005 47 655 907.22915

Table 5
Average spot size objective function results and focal distances on three runs for ABC, GA, NSGA-II, PSO algorithms.

Run 1 Run 2 Run 3

q1 (mm) q2 (mm) q1 (mm) q2 (mm) q1 (mm) q2 (mm) Average spot size (mm2) X-axis (mm) Z-axis (mm)

ABC 2033 68 294 2071 63 869 2071 69 047 0.499 0.4881 0.1027
GA 2089 62 637 2058 68 787 2108 69 541 0.481 0.4669 0.1158
NSGA-II 2025 62 692 2069 69 557 2036 68 609 0.0194 0.0188 0.0047
PSO 2050 68 247 2140 59 042 2083 69 326 0.0190 0.0186 0.0039

Figure 18
Minimum spot size results.

Table 8
Multi-objective results for the third run.

q1 (mm) q2 (mm) Spot size (mm2) Flux (photons s� 1)

8018 21860 1.050 791.71
2090 60744 0.122 781.44
2019 58713 0.133 783.48

2088 67845 0.084 738.91
2020 60429 0.111 775.69
2088 69157 0.106 768.99
2097 58713 0.092 755.91



q2 values, it can be seen that they are larger compared with the

q1 values.

The Pareto fronts for every run have different element

numbers as can be seen from Fig. 19; thus it is difficult to

calculate the average. Individual results might dominate each

other since they are independent processes. For this reason it

is difficult to draw conclusions, but to the best of our ability we

can infer that the results are biased towards minimum spot size

where the flux values drop significantly. Calculations were

carried out at 9000 eV, and 100000 rays were deployed on

experiments which is quite low compared with real-life

experiments. For a quicker observation of the system, the

source parameters were reduced. Thus spot size and flux

diverge from real-life experiment results. Nevertheless, the

method should be the same for every beamline parameter.

4. Conclusion

For every optimization problem, some algorithms and tech-

niques may give better performance than others. Thus

different methods should be tested at first for every domain.

When four algorithms (ABC, GA, NSGA-II mono and PSO)

were compared on a single objective mode, PSO showed

superior performance for this type of optimization problem

where efficiency is increased step by step.

If we were to reflect sunlight with a plane mirror, first we

need to adjust the angle until the light hits the target surface.

Angles that are too narrow or too wide do not give any results.

In a sense it is a scanning process. After hitting the surface, we

focus the light for a better flux on a certain area. With this

analogy in mind, the random jumps on EAs slow down the

process whereas PSO includes the global and local best. If

parameters of each algorithm were adjusted, given sufficient

time any algorithm would have given the best results. But that

means losing time for parameter optimization. With the same

set of parameters PSO is the best choice on a single objective.

Beamline alignment is prone to errors. By adjusting the

optical elements, spot size and flux values can change signifi-

cantly. Just like the algorithms, the objective functions should

be tested. The simulation tends to give better results on spot

size when the two objective functions spot size and flux are

used. Depending on the experiment type, the objective func-

tion should be determined in favor of the requirements.

Since comparison of multi-objective algorithms takes

different metric calculations such as hypervolume, spacing,

error ratio and inverted generational distance etc., it will be

considered for a future study.

5. Data availability

The generated and/or analyzed datasets during the study are

available from the corresponding author upon reasonable

request.
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