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This work presents a detailed analysis of the performance of X-ray magnetic

circular dichroism photoemission electron microscopy (XMCD-PEEM) as a tool

for vector reconstruction of magnetization. For this, 360� domain wall ring

structures which form in a synthetic antiferromagnet are chosen as the model to

conduct the quantitative analysis. An assessment is made of how the quality of

the results is affected depending on the number of projections that are involved

in the reconstruction process, as well as their angular distribution. For this a self-

consistent error metric is developed which allows an estimation of the optimum

azimuthal rotation angular range and number of projections. This work thus

proposes XMCD-PEEM as a powerful tool for vector imaging of complex 3D

magnetic structures.

1. Introduction

The field of nanomagnetism has evolved rapidly over the last

few decades due to significant advances and developments in

fabrication and synthesis methods (Fernández-Pacheco et al.,

2017). These improvements enable the fabrication of different

magnetic systems with complex 3D configurations of the

magnetization vector, as opposed to traditional simple mono-

domain magnetic devices. The increase in complexity of

magnetic systems (Vedmedenko et al., 2020; Sander et al.,

2017) requires the adaptation and development of versatile

characterization methods, where high magnetic sensitivity and

spatial and temporal resolutions are some of the most

important attributes.

Diverse laboratory-based characterization techniques are

currently utilized to study the properties of materials via

magnetic imaging, such as magnetic force microscopy (MFM)

(Kazakova et al., 2019), the different Lorentz transmission

electron microscopy (L-TEM) modes (Phatak et al., 2016;

Fallon et al., 2019), electron holography (Thomas et al., 2008),

scanning electron microscopy with polarization analysis

(SEMPA) (Lucassen et al., 2017; Unguris, 2001), spin-polar-

ized low-energy electron microscopy (SPLEEM) (Rouge-

maille & Schmid, 2010; Suzuki et al., 2010) and techniques

which exploit the magneto-optical Kerr effect (MOKE) to

https://doi.org/10.1107/S1600577524001073
https://journals.iucr.org/s
https://scripts.iucr.org/cgi-bin/full_search?words=three-dimensional%20magnetic%20vector%20reconstruction&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=three-dimensional%20magnetic%20vector%20reconstruction&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=X-ray%20magnetic%20circular%20dichroism%20photo-emission%20electron%20microscopy&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=X-ray%20magnetic%20circular%20dichroism%20photo-emission%20electron%20microscopy&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=XMCD-PEEM&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=nanomagnetism&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=360&deg;%20domain%20wall%20rings&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=360&deg;%20domain%20wall%20rings&Action=Search
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
mailto:hierroaurelio@uniovi.es
mailto:sandra.gomez@cpfs.mpg.de
mailto:amalio.fernandez-pacheco@tuwien.ac.at
http://crossmark.crossref.org/dialog/?doi=10.1107/S1600577524001073&domain=pdf&date_stamp=2024-02-19


perform wide-field (Flajšman et al., 2016; Soldatov & Schäfer,

2017a,b) or scanning microscopy (Flajšman et al., 2016).

Analogous to MOKE, although in the X-ray regime,

synchrotron-based characterization techniques exploit the

strong coupling that exists between photons and magnetism.

X-rays offer high lateral resolution due to their short wave-

lengths, as well as element specificity that arises from the need

to tune the photon energy to the absorption edge of the

element in question. Imaging setups may be divided into two

geometries, transmission and electron yield (Le Guyader et al.,

2012). Transmission X-ray microscopy (TXM) (Fischer et al.,

1998; Blanco-Roldán et al., 2015), scanning transmission X-ray

microscopy (STXM) (Zimmermann et al., 2018) and coherent

diffractive imaging (CDI) techniques such as ptychography

(Shi et al., 2016) and holography (Eisebitt et al., 2004) all

analyze the X-rays after passing through the magnetic

material. Different strategies may be followed for tomo-

graphic reconstruction of the 3D magnetization vector

(Donnelly & Scagnoli, 2020; Hierro-Rodriguez et al., 2018;

Donnelly et al., 2017, 2018; Hierro-Rodrı́guez et al., 2020),

depending on the geometry and properties of the sample

under investigation. This differs from photoemission electron

microscopy (PEEM) or electron yield, where X-rays which

have interacted with the material under investigation are not

directly collected but rather the photoelectrons emitted as a

consequence of such interaction. Due to the short electron

mean free path, PEEM is an excellent candidate for investi-

gating very thin structures close to the surface, e.g. the top

layers of a multilayer heterostructure.

Previous work has utilized X-ray magnetic circular

dichroism PEEM (XMCD-PEEM) to reconstruct the spatially

resolved magnetization vector, by combining images taken at

different relative X-ray/sample orientations (Le Guyader et

al., 2012; Ruiz-Gómez et al., 2018; Ghidini et al., 2022; Scholl et

al., 2002; Chopdekar et al., 2013; Chmiel et al., 2018; Digernes

et al., 2020). Here, we perform a detailed investigation of how

the quality of the reconstructed 3D magnetization vector

changes depending on the number of projections involved and

their angular distribution. For this, 360� domain wall (DW)

ring structures are chosen as the model to perform the

reconstruction, given their small size which pushes the

microscope’s resolution, and the complex winding sense of the

magnetization. These textures are found to form in a synthetic

antiferromagnet (SAF) multilayer heterostructure which

shows interlayer Dzyaloshinskii–Moriya interactions (IL-

DMI) (Fernández-Pacheco et al., 2019). For further details of

their formation the reader is referred to Sandoval et al. (2023).

In order to carry out this analysis, the algorithm first aligns

the different projections with respect to each other, in such a

way that they hold the same spatial orientation. A thorough

analysis is then performed, which consists of running the

reconstruction algorithm for different combinations of XMCD

projections measured at different angles, applying to the

resulting magnetization vectors an error metric that quanti-

tatively gives account of the quality of the reconstruction. The

resulting analysis allows optimization of the number of

different rotation angles, as well as their specific orientation in

relation to the desired accuracy of the magnetization vector

reconstruction, being thus very useful for the design of time-

efficient XMCD-PEEM experiments.

2. Methods

2.1. Experimental setup

The SAF layered structure investigated in this work consists

of |Si/Ta (4 nm)/Pt (10 nm)/Co (1 nm)/Pt (0.5 nm)/Ru (1 nm)/

Pt (0.5 nm)/CoFeB (2 nm)/Pt (2 nm)/Ta (4 nm)| (Fernández-

Pacheco et al., 2019), where the ferromagnetic layers are

asymmetric in material and in thickness. The Co layer has

dominating out-of-plane (OOP) anisotropy enhanced by the

Pt layers at the interfaces, whereas the CoFeB layer’s thick-

ness has been tuned slightly above its spin reorientation

transition (SRT), showing moderately low in-plane (IP)

anisotropy.

Prior to performing the synchrotron experiments, a series

of repeating PtxC1–x patterns consisting of rectangles and

squares were deposited via focused electron beam induced

deposition (FEBID) on top of the film surface. Respectively,

the sizes of the squares and rectangles are 1 mm � 1 mm and

2 mm � 1 mm, both being 50 nm thick. These are arranged in a

square fashion, located at the midpoints of the sides of a 7 mm
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Figure 1
Diagrams describing the sample rotation with respect to the X-ray beam
for measurement of different XMCD-PEEM projections. The X-ray
wavevector k is given by the black arrow, the circular X-ray polarization
eigenmodes by the blue and red circular arrows, the magnetization vector
(m) by the dark-blue arrow and the external magnetic field (Bext) by the
orange arrow. �k is the incidence angle with respect to the surface plane,
and ’k0

and ’k1
are the different relative angles between the X-ray beam

and sample.



square as shown schematically in Fig. 1. They serve the

purpose of providing a non-magnetic signal reference within

the field of view (FOV), given that the magnetism-dependent

photoelectrons do not possess sufficient energy to escape the

sample’s surface through this additional bit of material. The

non-magnetic signal reference is crucial for properly

computing the final XMCD images, as there might be slight

flux differences and flux spatial distribution when changing

polarization, which would alter the number of emitted

photoelectrons, thus inducing ficticious magnetic contrast.

Hence, these corrections and references are crucial in order to

be quantitative with PEEM.

The microscopy measurements were taken on the PEEM

endstation of the CIRCE beamline at the ALBA Synchrotron

(Aballe et al., 2015). The sample is transferred to the PEEM

chamber mounted on a holder with a dipolar electromagnet,

providing the capability of applying IP uniaxial magnetic fields

(Foerster et al., 2016). It is mounted in such a way that the

nominal easy axis (given by the PtxC1–x rectangle’s long axis) is

aligned with the external magnetic field direction (Bext). The

system allows rotation of the sample with respect to the

surface normal, effectively changing the projection of the

incoming X-ray beam onto the sample’s directions [Fig. 1].

Measuring at different X-ray/sample relative orientations

provides sensitivity to different components of the magneti-

zation vector, given that in XMCD-PEEM the magnetic

contrast is proportional to k · m (Stöhr & Siegmann, 2006),

with k and m representing, respectively, the X-ray wavevector

and the magnetization vector.

2.2. XMCD image measurement and post-processing

The procedure followed in this work to obtain XMCD

images is very similar to the one discussed by Le Guyader et al.

(2012). After reaching the desired magnetic state, 256 images

(acquisition time 2 s) are recorded for each incoming X-ray

circular polarization in order to perform posterior averaging

and improve the signal-to-noise ratio. Prior to the subsequent

averaging of the same polarization images, a normalization is

performed where each individual image is divided in a pixel-

wise operation by a largely defocused image in order to

remove channelplate contributions. The normalization image

is obtained experimentally by going to a homogeneous area

without obvious features, overfocusing the first lens (about

5%) and taking the average of 64 single images with the same

settings as the real data. Once the channelplate contributions

are removed, each polarization stack of images is individually

aligned in order to correct for potential drifts during the time

of measurement. For this, the Python scikit-image library (Van

der Walt et al., 2014) is used, where sub-pixel alignment is

performed utilizing its Fourier-space cross-correlation algo-

rithm. The alignment is done by selecting a region of interest

(ROI) with a clear sharp feature, which in this case is chosen

to be one of the FEBID deposited landmarks within the FOV.

It is crucial to perform the channelplate correction prior to the

alignment of each stack, otherwise artifacts due to the trans-

lation would be induced. In addition to the image alignment,

within each polarization stack an equalization in image

brightness is performed. For this, a proportionality factor that

equalizes the average intensity in the PtxC1–x deposits for each

image in the stack is found and applied as a global intensity

factor to each full image. This is done to take into account and

correct for potential X-ray flux variations during the time of

measurement.

Averaging of the two aligned stacks of images is now

performed, giving as a result two averaged images ICL and ICR,

corresponding to incoming circularly left and right polariza-

tion, respectively. The cross-correlation algorithm is utilized

again for aligning these two images, and the intensity equal-

ization is similarly done by finding a factor f which relates the

intensity in the PtxC1–x deposits, i.e. f = I CL=I CR, with I

denoting the averaged intensity in the deposits. This factor

accounts for changes in signal upon reversing the circular

polarization. The final XMCD image is computed as IXMCD =

(ICL � f ICR)/(ICL + f ICR) (Stöhr & Siegmann, 2006), where

these are all pixel-wise operations.

2.3. Magnetization vector reconstruction

To perform reconstruction of the three components of the

magnetization vector, a minimum of three different projec-

tions are required in order to create a solvable system of

equations with unique solutions. Experimentally, this is

achieved by rotating the sample in the PEEM chamber about

the sample normal and taking XMCD projections at different

orientations, as sketched in Fig. 1. The XMCD images at each

of the azimuthal angles are computed utilizing the procedure

described in the previous section, although these host

different spatial orientations due to the relative rotation

between sample and camera. To correct for this, a new

protocol which aligns the different azimuthal charge projec-

tions (computed as ICL + fICR) to one another is developed.

Charge images are used for this, given that their contrast is

independent of the magnetic configuration and azimuthal

orientation, unlike the XMCD signals.

First, a single projection’s spatial orientation is chosen as a

reference, with respect to which the rest of the projections are

aligned. For this, the algorithm finds the most suitable affine

transformation parameters: rotation, translation, scale and

shear, which take the distorted projection to the reference.

Scale and shear adjustments are necessary to correct image

deformations introduced by the electron optics upon sample

rotation. The error metric defined for this consists of the pixel-

wise squared distance between both charge images, and the

effectiveness of the procedure is further enhanced by applying

a combination of Sobel edge and high-pass filtering algorithms

to give more weight to the edges, which serve as alignment

features. The optimized affine transformation parameters,

which are found from running the algorithm on the charge

images, are in the end applied to the corresponding XMCD

images.

With the different projections now aligned, the magnetiza-

tion vector is reconstructed by fitting at each pixel the asso-
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ciated XMCD azimuthal profile to the model, as given by

expression (1):

XMCDð�k; ’k; jmj; �m; ’mÞ ¼ kð�k; ’kÞ �mðjmj; �m; ’mÞ; ð1Þ

where �k and ’k are the independent (or known) parameters

which describe the normalized X-ray wavevector, corre-

sponding to, respectively, the X-ray incidence angle with

respect to the sample surface and the azimuthal rotation angle.

These angles are known from the experimental setup. The

remaining are the unknown (or fit) parameters: |m|, �m and ’m,

which are the modulus, polar and azimuthal angles of the

magnetization vector, respectively. Ten fits are done per pixel,

where in each of these different random initial guesses are

given to the fit parameters to avoid becoming pinned in local

minima due to the parameter landscape.

2.4. Error metric and analysis

The main objective of this work is to investigate how the

quality of the reconstructed results varies depending on the

data used, i.e. not only the number of projections involved but

also whether any particular combination of sample orienta-

tions is more beneficial than others. In order to be quantitative

in this endeavor, an error metric needs to be defined. The

procedure followed for this is sketched in Fig. 2, where

eight is the total number of available projections (since this

is the number measured experimentally). A combination of

projections are picked, represented by white circles (with a

minimum of three and a maximum of seven), which are then

fed to the fitting algorithm to obtain a spatially resolved

magnetization vector. With this vector configuration, the

XMCD model is now applied in reverse, artificially generating

the projections which were not involved in the reconstruction

(black circles of the initial experimental projections). These

artificially generated projections are now subtracted from

their corresponding experimental real XMCD images. The

resulting difference images are squared and summed,

normalizing the resulting quantity by the number of images

involved. The pixel-wise error metric corresponding to this

process is mathematically described by �2 = |Iexp � Iart|
2.

An intuitive way of interpreting the meaning of this metric

is the following. Utilizing part of the available experimental

information, the reconstruction algorithm is run. Since the

ground truth or real magnetic configuration is not known

to compare how accurate the reconstruction is, the only

comparison that can be made with real data is with respect to

the other experimental projections. In order to do that, these

are generated artificially utilizing the XMCD model, and

compared in a pixel-wise operation.

3. Results and discussion

In previous work, ring-like structures were observed to form

within the FOV of the SAF after applying IP demagnetization

magnetic field procedures. Briefly, these protocols consist of

applying oscillating fields of consecutively decreasing ampli-

tude with a non-zero offset (Sandoval et al., 2023). To perform

vector reconstruction of the magnetization within these rings,

eight projections were measured at the Co L3 edge (775.2 eV)

with �k = 16� (large sensitivity to IP components). The signals

obtained in this configuration are expected to come exclu-

sively from the top CoFeB layer and not from the bottom Co,

as the layered structure prevents the signal from the bottom

Co layer from reaching the surface due to the short electron

mean free path.

The eight experimental projections are shown in Fig. 3(a),

after having applied the image processing and projection

alignment algorithms described in Methods. The magnetic

signal in these images is determined as coming mostly from IP

components, given that it varies upon azimuthal rotation

(OOP magnetization would be insensitive to azimuthal rota-

tion). The resulting 3D magnetization vector’s spherical

components obtained after applying the reconstruction fitting

algorithm to the eight projections are shown separately
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Figure 2
A schematic diagram describing the work flow of the error metric utilized for quantitatively assessing the quality of the reconstructed magnetization
vector. A subset of the initial available experimental projections is taken; in this example three, six and eight are selected (left, white circles). The
reconstruction algorithm is applied to obtain the spatially resolved vector given by the matrix, which is then utilized to compute artificially the
projections that were not involved in the reconstruction (right, dark-gray circles). Finally, these artificially generated projections are subtracted in a pixel-
wise operation from the experimental ones (black), squaring and summing for all the pixels, and normalizing by the number of images involved (in this
particular case five). This error metric is represented by �2.



in Figs. 3(b)–3(d). The IP magnetization vector directions

[Fig. 3(b)] reveal the presence of 360� DW rings separating the

outer and inner domains, which point approximately along +x.

The OOP component [Fig. 3(c)] is very close to zero in the

uniformly magnetized areas, although it becomes significantly

large in the DW area. A large uncertainty is expected for this

component, mainly for two reasons. First, the very shallow

angle of the incoming X-rays gives a small sensitivity to OOP

magnetization (proportional to the sine of 16�). Second, on

small length scales where the magnetization changes rapidly,

the resulting magnetic signal measured by the microscope

suffers a decrease in amplitude due to the microscope’s

natural resolution (of the order of 30 nm; Aballe et al., 2015).

Thus even if, in reality, the signal is coming from IP magne-

tization, the decrease in amplitude makes the XMCD profile

much more susceptible to noise deforming the expected

sinusoidal form and preventing the algorithm from identifying

it as such. The decrease in magnetic signal amplitude due to

the microscope resolution is clearly evident in the spatially

resolved modulus component [Fig. 3(d)], which becomes

significantly smaller in the 360� DW (20–30% relative to the

outer uniformly magnetized area). In the ideal case where

the microscope had infinite resolution, the modulus of the

magnetization vector would be constant throughout the

probed space, given that it is made up of the same magnetic

material (except if there were inhomogeneities and/or defects

which could alter the saturation magnetization). Also, mis-

alignment has a larger negative effect in the quality of the

reconstructed results in areas where the magnetic features are

of smaller length scales, e.g. in the ring.

The previously described error metric, �2, is now computed

and represented in Fig. 4(a) as a function of the projection

azimuthal angle images displayed on the x axis. The points on

the graph represent the average values of �2 for all possible

reconstruction combinations which exclude the projection at

hand, while the error bars give the standard deviation or

spread in �2. This graph gives information regarding the

quality of each individual XMCD projection, enabling iden-

tification of which of these are reliable, i.e. better levels of

signal-to-noise ratio, smaller misalignments and deformations

etc. Overall, the value of the error metric is of the same order

of magnitude for all projections, which implies that the noise

level and alignment between the different angles are quite

similar, in all showing how the average error decreases as

more projections are involved in the reconstruction. A parti-

cular case for these experiments concerns the case of the 45�

projection, where the value of �2 stands above all, having an

even larger error for seven projections than in the rest of the

azimuthal angles with three. This implies that the image

quality at this angle in particular is worse than for the other

angles, most probably due to imperfect correction and align-

ment with respect to the others. This error metric thus allows

for detection of bad quality images which can be discarded

from the final dataset if needed.

Now the error metric is plotted with respect to different

relevant quantities in Figs. 4(b) and 4(c), as described here-

after. In Fig. 4(b), the curve of filled blue circles shows the

average error for all the possible reconstruction combinations

as a function of the number of projections involved in the

algorithm. The curve of open orange circles represents the

smallest error obtained for a single combination of projec-

tions, i.e. the best case for each projection number (shown

in the supporting information). In both curves the error

decreases as more projections are added to the reconstruction,

due to two main factors: an increase in statistics, i.e. improving

the signal-to-noise ratio, and from appropriately selecting the

azimuthal angles of the projections involved in the recon-

struction.
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Figure 3
(a) Aligned experimental XMCD-PEEM projections, whose azimuthal rotation angles are given by the numbers in the inset. Images labelled 0� and 90�

are parallel to the x and y directions of the inset in (b). (Bottom row) Spatially resolved (b) IP directions, (c) OOP component angle and (d) modulus of
the reconstructed magnetization vector obtained from all eight experimental projections. The colored arrows in the white boxes of (b) denote the
magnetization components along the dashed arrows.
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The best-case curve is mostly influenced by the increase in

statistics, as the optimum azimuthal projection configuration

has already been chosen. On the other hand, the blue curve’s

errors are affected by both statistics and projection angles, as

all the possible azimuthal combinations are considered. The

effect of selecting the azimuthal projection angles on the

quality of the reconstruction is depicted in Fig. 4(c), where �2

is represented against the average relative angle in between

projections (considering three and four projections). A very

clear trend is observed, which indicates how the error

decreases as the spacing between projections becomes larger,

converging to similar values for the largest separation

possible. This is because the more spread out the projections

are, the more evenly the different components are probed,

having a lower average error in the vector field. Thus, these

results reveal, as expected, that it is more effective to have

fewer projections evenly spread in space than numerous

projections spanning a narrow angular range. From the best

case, five projections appears to be a good compromise

between quality and time for measurements (each projection

takes about 2 h of measurement including sample rotation).

The error for five projections improves on the best-case error

obtained with three projections by 42%, whereas for six and

seven projections the improvements are by 52% and 61%,

respectively.

4. Conclusions

In conclusion, we have quantitatively assessed how in XMCD-

PEEM the quality of a reconstructed 3D magnetization vector

depends on the number of projections involved and their

spatial orientation. For this, we used 360� DW ring structures

forming in a SAF multilayer as the model to perform a

detailed analysis, measuring more than three or four projec-

tions, as is typically done in XMCD-PEEM. We have defined

an error metric which uses part of the data for the vector

reconstruction and the remainder for quantitative compar-

ison.

As expected, the results show how the quality of the

reconstructed vector improves significantly upon increasing

the number of projections. More importantly, measuring these

projections at azimuthal angles evenly spread through the full

angular range improves the data quality more efficiently than

pure statistics.

This quantitative approach provides the reader with an

insight for the design of XMCD-PEEM magnetization vector

reconstruction synchrotron experiments, where a compromise

between accuracy in the reconstruction and the duration of

the experiments becomes essential.
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