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The structural and chemical evolution of battery electrodes at the nanoscale

plays an important role in affecting the cell performance. Nano-resolution X-ray

microscopy has been demonstrated as a powerful technique for characterizing

the evolution of battery electrodes under operating conditions with sensitivity to

their morphology, compositional distribution and redox heterogeneity. In real-

world batteries, the electrode could deform upon battery operation, causing

challenges for the image registration which is necessary for several experimental

modalities, e.g. XANES imaging. To address this challenge, this work develops a

deep-learning-based method for automatic particle identification and tracking.

This approach was not only able to facilitate image registration with good

robustness but also allowed quantification of the degree of sample deformation.

The effectiveness of the method was first demonstrated using synthetic datasets

with known ground truth. The method was then applied to an experimental

dataset collected on an operating lithium battery cell, revealing a high degree of

intra- and interparticle chemical complexity in operating batteries.

1. Introduction

Lithium-ion batteries (LIBs) serve as key enablers in a variety

of applications ranging from portable consumer electronics

and electric vehicles to renewable energy storage systems. The

broad adoption of LIBs has tremendous environmental and

commercial impact and is indispensable in modern society.

Real-world LIBs are characterized by structural and chemical

complexities across a wide range of length and time scales.

Various cell components including composite electrodes,

electrolytes, separators and current collectors can change their

respective morphological and chemical characteristics upon

battery cycling, leading to a progressive performance degra-

dation and even a risk of acute cell failure. It is therefore

scientifically interesting and practically important to investi-

gate the chemomechanical interplay and evolution in battery

materials under operating conditions.

With exceptional capability in high-resolution and non-

destructive imaging, nano-resolution X-ray microscopy has

been identified as a powerful tool for battery research.

Depending on the research goal, different imaging modalities

have been developed. For example, nano-resolution X-ray

radiography has been used to track the morphological change

of S particles in an operating Li–S cell (Nelson et al., 2012).

The observed partial dissolution and passivation at the

particle level indicate a potentially overlooked mechanism for
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Li–S cell degradation. Another good example is the combi-

nation of X-ray radiography with an X-ray energy scan to

analyze spatially resolved signals of X-ray absorption near-

edge structure (XANES). Xu and co-workers utilized this

approach (also known as XANES imaging) to follow a single

LiCoO2 cathode particle over more than 20 charge and

discharge cycles with varying cycling rates (Xu et al., 2017).

With a XANES scan, sensitivity to the oxidation state of

the targeted transition metal cations is achieved, indirectly

revealing the evolution of lithium concentration and distri-

bution in imaged active cathode particles. The nano-imaging

results can also be extended to three dimensions by

performing tomography, which has been successfully applied

to several different battery systems (Wang, Chen-Wiegart &

Wang, 2014a,b) to track their morphological complexities

and dynamics, both of which can affect the cell behavior and

life span.

The dynamic morphological evolution in battery materials

introduces some technical challenges for X-ray nano-imaging.

This is particularly the case when utilizing imaging modalities

with a low temporal resolution, in which the sample’s struc-

tural deformation can cause significant imaging artifacts,

jeopardizing downstream image analysis. For example, the

execution of full-field XANES imaging involves acquisition

of many transmission images as a function of X-ray energy

(Malabet et al., 2020; Pattammattel et al., 2020; Zhang et al.,

2021). The state-of-the-art temporal resolution for this

modality is roughly at the ten-minute level (Xie et al., 2019).

As a composite battery electrode could undergo non-rigid,

non-linear and multidirectional deformation during electro-

chemical cycling, it could be very challenging to track all the

structural features in an image accurately and very significant

artifacts could be induced, hindering quantitative analysis

of the XANES map. Additionally, practical limitations in the

experiment, such as the instrument’s mechanical instability, or

fluctuations in temperature, pressure and moisture, can also

lead to image jitters, which need to be accounted for in the

data reduction process.

Conventional image alignment methods have been utilized

to address these challenges to a certain extent (Su et al., 2022).

They can be broadly classified into two groups. The first group

evaluates the mutual information between the two images.

Popular algorithms such as cross-correlation, phase correla-

tion, fast normalized cross-correlation (FNCC) (Yoo & Han,

2009) and sum of squared differences (SSD) (Hisham et al.,

2015) all fall into the first category. The second group are

known as feature-based alignment approaches. They employ

feature detection and matching algorithms to align images.

Examples of feature-based techniques include the scale-

invariant feature transform (SIFT) (Burger & Burge, 2022),

speeded-up robust feature (SURF) (Bay et al., 2006) and

optical flow (Nikitin et al., 2021). These methods generally

exhibit limitations in their ability to produce accurate results

when the images are affected by significant noise, artifacts and

sample deformations.

In this work, a generative mask-based image alignment

algorithm is proposed to address the above-mentioned chal-

lenges in X-ray nano-imaging of a composite battery cathode

in an operating cell. Our method first detects isolated battery

cathode particles in the image and then utilizes their respec-

tive center-of-mass coordinates to evaluate their non-rigid

geometric distortion. This approach is particularly suitable

for analyzing the nano-imaging data of a composite battery

cathode because, while the electrode can undergo rather

complicated deformation, the individual particles mostly

remain structurally intact. The overall scheme of our approach

is illustrated in Fig. 1. The raw nano-resolution XANES

imaging data is fed into our model, and particles are detected

and masked using Cycle-GAN (cycle generative adversarial

network; Zhu et al., 2017). This is followed by a few image

denoising and background removal steps implemented with a

Dual U-net network (Su et al., 2022). The resulting sub-regions

are used to determine the target’s center of mass and

boundary, which are then used for particle registration and

quantification of the electrode deformation.

We trained and validated our model using imaging data with

single and multiple targets, meaning images with different

numbers of isolated and detectable battery cathode particles.

This model was then applied to real-world experimental data

from the nano-imaging beamlines at both SSRF (Shanghai

Synchrotron Radiation Facility, China) and SSRL (Stanford

Synchrotron Radiation Lightsource, USA) with reasonable

accuracy and robustness.

2. Method

2.1. Characteristics of XANES imaging datasets on deforming

the battery material

Our group have developed and broadly applied the

XANES imaging technique since the early 2010s. One of the

most successful applications is in imaging battery cathode

electrodes, which undergo both structural and chemical

evolution as the battery is cycled. XANES imaging correlates

the morphological changes and the local chemical evolutions,

which are closely intertwined and collectively govern the

battery performance.

In an ideal scenario, the sample should remain rigid

throughout the energy scan. In practice, this approach faces

technical challenges because the required energy scan takes

around 10 min to accomplish and there could be considerable

morphological evolution during the 10 min measurement.

More specifically, the quality of the XANES imaging data

reconstruction can be significantly affected by two factors:

(i) imaging system imperfections and (ii) intrinsic sample

deformation. The imaging system imperfections include

instabilities of the sample stage and X-ray optics, as well as

fluctuations of the X-ray source size, intensity and position.

Meanwhile, sample deformation is closely associated with the

intrinsic behavior of the battery. In addition, imaging noise

plays a role in particle segmentation and contour detection.

This is particularly the case for images acquired at lower X-ray

energies, where the absorption is relatively weak and the

contrast is poor. Therefore, we focus on detecting isolated
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particles and quantify their respective positions using their

center of mass, which will be discussed in detail below.

2.2. Deep learning-based dynamic system alignment

algorithm

We divide the alignment task into a few steps and utilize

different deep-learning models to address them respectively.

We first implemented a model (Cycle-GAN) for the identifi-

cation of multiple isolated particles in an image and subse-

quent definition of the respective regions of interest (ROIs).

This step is repeated for images acquired at different energies

and times. An ROI-matching step is implemented through

evaluating the ROI similarities (SSIM) to ensure rough

tracking of the identified particles. There are two reasons for

dividing the whole image into several ROIs for independent

processing downstream: (i) this approach could account for

electrode deformation, which makes it nearly impossible to

achieve global alignment with good accuracy, and (ii) the

particle contour detection module (Dual U-net) works better

with single target (particle) images. These ROIs are then

processed for noise reduction and contour detection (Dual U-

net) before we apply alignment using their respective centers

of mass. The aligned ROIs are then subjected to XANES

analysis using an established software package (Liu et al.,

2012). The whole process is illustrated in Fig. 2 and more

details about each step are discussed in the sections below.

2.2.1. Particle identification, ROI extraction and contour

detection. The Cycle-GAN deep learning model is utilized in

this research to detect multiple particle ROIs in order to refine

their geometric information, such as particle contours, while

mitigating complex background interference (changes in

brightness or contrast and the occurrence of any interfering

matter) and noise to yield high-quality results for a diverse

dataset.

Cycle-GAN can be trained with unpaired datasets, resulting

in a more robust model capable of scaling and transferring

learning without the need for labeled data, allowing for the

creation of faster and more accurate models with fewer data.

The network structure consists of two generators and two

discriminators.

Another deep-learning model used in this study is Dual U-

Net, which was trained based on a reference model (Su et al.,

2022). Dual U-Net was used to optimize the ROI results

generated from the Cycle-GAN model, specifically for

denoising, background removal and single contour detection,
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Figure 1
A schematic overview of the proposed algorithm. (a) A raw image stack of typical XANES imaging data with significant image jittering and deformation.
(b) The deep-learning-based image alignment method, including the forward generator of Cycle-GAN and optimized U-net. (c) A schematic illustration
of the alignment XANES image stack. (d)–(g) A comparison of the stacked image and enlarged regions of interest before [panels (d) and (f)] and after
[panels (e) and (g)] applying our registration method.



which provided a single and extremely easy-to-describe target

for ROI image alignment. The Dual U-Net network utilized

two networks with the same structure, consisting of four down-

sampling layers (step size of 2), four up-sampling layers (using

an estimated interpolation with a step size of 2), 18 feature

convolution layers (3 � 3 convolution kernels) and one fully

connected layer.

2.2.2. ROI matching. Consistent with the characteristics of

XANES described in Section 2.1, a properly aligned XANES

dataset should demonstrate a high degree of similarity

between adjacent projections due to the energy tuning step

employed during data acquisition. Accordingly, we employ the

structural similarity index (SSIM) method (Sara et al., 2019) to

assess the similarity of every image pair within the segmented

ROI for classifying the ROIs of different particles, and it can

also be used to determine the effectiveness of the alignment

technique based on its mean and variance. The similarity of

paired projection images, and related variance and average,

are calculated by the formula

SSIM x; yð Þ ¼ l x; yð Þ½ �
�

c x; yð Þ½ �
�

s x; yð Þ½ �
�
; ð1Þ

using the following parameters:

brightness comparison; l x; yð Þ ¼
2�x�y þ c1

�2
x�

2
yc1

;

contrast comparison; c x; yð Þ ¼
2�xy þ c2

�2
x þ �

2
y þ c2

;

structure comparison; s x; yð Þ ¼
�xy þ c3

�x�y þ c3

;

where �, �, �, c1, c2 and c3 are constants, � = � = � = 1, � is the

average value and � is the standard deviation.

2.2.3. Center-of-mass-based registration. Subsequent to the

outcomes of the two deep learning models, the center-of-mass

fluctuation technique (Aganj et al., 2018) is utilized to perform

the alignment of individual ROI images, as depicted in

Figs. 2(c) and 2(d). Also, as a result of fluctuations in the

scanning energy, particle edges in projection images may

become blurred, leading to potential difficulties in XANES

alignment. However, despite such changes, the distribution of

pixel intensities within the particle itself remains uniform after

processing by a deep learning model, as demonstrated by the

recognition of the particles’ contours. This uniformity allows

the center of mass to be calculated using the contours as

a reliable feature for alignment. Using information on the

particle’s contour, the zeroth- and first-order moments of its

geometry (Joseph-Rivlin et al., 2019) can be used to calculate

the center of mass. The zeroth-order moment is the summa-

tion of all non-zero pixels within the contour and can be

expressed mathematically as

M00 ¼
XX

Iðx; yÞ: ð2Þ

The first-order moment is the sum of the pixel coordinates

multiplied by their intensity values, divided by the zeroth-

order moment. This moment can be mathematically repre-

sented as

M10 ¼
XX

x Iðx; yÞ; ð3Þ

M01 ¼
XX

y Iðx; yÞ: ð4Þ

Using these moments, the horizontal and vertical coordinates

of the center of mass can be obtained as
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Figure 2
An illustration of the proposed algorithm. A Cycle-GAN generator is first used to identify isolated particles, leading to a set of ROI filters. A Dual U-net
generator is then used to conduct registration of the ROIs separately. In the final step an ROI fusion approach is incorporated.



Xc ¼
M10

M00

; Yc ¼
M01

M00

; ð5Þ

where the following parameters are used: I(x, y) is the pixel

value at position (x, y) in the image, representing the pixel

intensity at that location; M00 is the zeroth-order moment of

the image, which is the sum of all pixel intensity values in the

image; M10 is the first-order moment of the image, which is

the average of the product of pixel intensity values and their x

coordinates, representing the average position of the particle

along the x axis; M01 is the first-order moment of the image,

which is the average of the product of pixel intensity values

and their y coordinates, representing the average position of

the particle along the y axis; Xc is the horizontal coordinate

of the center of mass of the particle; and Yc is the vertical

coordinate of the center of mass of the particle.

3. Experimental methods

3.1. Battery electrode and cell preparation

A coin cell with an X-ray-transparent Kapton window was

assembled for this experiment. The cathode electrode was

made of a monolayer of single-crystalline LiNi0.6Co0.2Mn0.2O2

(NCM622) particles. The electrode was vacuum dried at 85�C

for 12 h. Electrolyte [1.2 M LiPF6, EC (ethylene carbonate):

DMC (dimethyl carbonate): DEC (diethyl carbonate) = 1:1:1

(by weight) and 1.5 wt% VC (vinylene carbonate) additive]

was filled in an argon-filled glovebox (O2/H2O < 0.1 p.p.m.).

Battery charging was performed using a battery cycler

(Biologic SP300). The cell was first cycled twice between 2.7 V

and 4.25 V as the formation cycles. After that, the cell was

charged at rate of 0.1 C while the X-ray characterization was

conducted.

3.2. TXM configuration and XANES imaging protocol

The experimental data utilized in this work were acquired

on beamline 6-2C at the Stanford Synchrotron Radiation

Lightsource and on the 18B 3D nano-imaging experimental

beamline station at the Shanghai Synchrotron Radiation Light

Source (Tao et al., 2023). The imaging procedure employed

a combination of full-field nano-resolution imaging using

a transmission X-ray microscope (TXM) and XANES. The

TXM setup utilizes a capillary ellipsoidal focusing mirror

(Mono Capillary) as the condenser, which is followed by a

pinhole, a sample stage (x, y, z and rotation), a zone-plate

objective lens and an area imaging detector (CCDs). The

illuminated field of view (FOV) is approximately 20 mm �

20 mm and the energy ranges from 5 keV to 14 keV, which

covers the absorption K-edges of several transition metal

elements relevant to battery applications. The energy resolu-

tion (�E/E) is about 2 � 10� 4, which is sufficient for XANES

imaging experiments. In addition to sample deformation,

observed image misalignments are also due to imperfections

of the imaging system, including the limited stability of the

synchrotron source and hardware along the beamline and

in the endstation. During the experiment, the sample was

repeatedly moved in and out of the beam to acquire images

with and without (i.e. background) the sample in position.

The full dataset contains 6435 projection images. We used

286 images for training our models, and the remaining images

were used for validation, and for characterizing the physico-

chemical response of the battery electrode during charging

cycles. For each XANES scan, we cover the Ni K-edge with

143 energy points, providing sufficient energy resolution to

resolve the difference in local Ni oxidation states. The entire

image stack includes 54 XANES scans for revealing the

chemical dynamics of the particles upon charging at a slow

rate. While each of the raw images has 1000�1000 pixels, we

effectively reduce the field of view to 460�460 pixels to avoid

image artifacts at the edge of the FOV due to insufficient

illumination.

The computational workstation utilized in this study was

implemented using Python 3.8 and compiled with PyTorch

1.8.1 and CUDA 10.2. The projections alignment process was

executed with an Intel Xeon W-2245 central processing unit

(CPU) and an Nvidia Quadro 5000 graphics processing unit

(GPU) with 256 GB RAM.

4. Results and discussion

Here we compare our image alignment method against other

conventional approaches, e.g. the absolute template method,

the relative template method and the SIFT method. In Fig. 3

we present the results of different alignment algorithms on

registering a synthetic XANES image stack that contains 143

projection images. This synthetic dataset is designed for

evaluating the comparative effectiveness of these algorithms

with various distortion modes, including global rigid offsets,

random relative offsets, image background variation and noise

fluctuation. We visualize the full synthetic dataset in Video S1

of the supporting information.

In this dataset, our model identified nine separated particles

and we focus on comparing the alignment results of these

particles with different algorithms. To visualize the alignment

quality achieved by different algorithms, we subtract the last

image from the first image of the aligned image stack and

evaluate the residual values in a differential map. For instance,

in the ROI containing particle 2 [Fig. 3(b)], all three

conventional methods (absolute template alignment, relative

template alignment, SIFT alignment) demonstrate quite

significant limitations, as shown by the shadowing features

in the differential maps. This is caused by non-rigid sample

deformation and the limited image quality, both of which were

purposely introduced into the synthetic dataset. The optical

flow method was considered but the alignment failed, because

the energy used in the acquisition of XANES varies

continuously, resulting in continuous dynamic changes in

brightness, contrast and background, which markedly curtail

the effectiveness of this method for image alignment (Barron

et al., 1994; Sun et al., 2010). Our approach, on the other hand,

demonstrates an improved performance, with the ability to

eliminate accurately all edges and internal regions of particle 2

in the differential map. Our method retains features that
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exhibit different pixel values that originate from the different

scan energies, which is critical for XANES spectrum recon-

struction. Thanks to the use of this synthetic dataset, we can

compare the alignment results against the ground truth. We

quantified the interparticle offset resulting from our alignment

method using similarity and variance distribution, which

enabled us to assess the accuracy of the method. As illustrated

in Fig. 3(f), for this particle the proposed method exhibits a

significantly suppressed variance and an averaged similarity

accuracy of 98.32%. In the supporting information we present

the results of the differential maps for several other particles.

These results are similar to what we have shown in Fig. 3,

highlighting the robustness of our approach.

In addition, by tracing these particles independently, we

can monitor the displacement of individual particles, revealing

electrode-scale non-rigid deformation. We combine contour

detecting techniques and the center-of-mass calculation to

track the identified particles independently. The cumulative

displacement of each individual particle and the horizontal

and vertical components of the particle motion velocity in

consecutive image frames are plotted in Figs. 3(c), 3(d) and

3(e), respectively. This information is not only essential to

registering each individual battery particle to reconstruct their

respective XANES signals but also provides some insight

into the dynamic deformation behavior at the electrode level.

Fig. 3(c) illustrates that the slowest accumulation rate

(represented by the black line) corresponds to particles with

only global rigid displacements, which could caused by

instability of the microscope hardware rather than deforma-

tion of the sample. All the other colored lines represent

particles with non-rigid displacements. The smooth black lines

in Figs. 3(e) and 3(f) represent the horizontal and vertical

velocity components of particles with only global rigid

displacements, while all other colored lines correspond to

particles with non-rigid dynamic random displacements. The

maximum displacement amplitude for non-rigid motion is

significantly higher than that of rigid motion, exhibiting a peak

4.37 times greater in the vertical direction and 2.14 times

greater in the horizontal direction. It is evident that non-rigid

displacements accumulate more significantly than global rigid

displacements, and the other velocity components are signifi-

cantly greater than the global ones. Therefore, the variance of

the global displacement squared and displacement velocity for

all particles is substantial, which severely affects the effec-

tiveness of the traditional alignment algorithms that rely on

global grayscale information (template) and multiple feature

recognition (SIFT) for overall integrated displacement

correction. Furthermore, the computational efficiency is very

high, as exemplified by processing of a dataset including 100

XANES projection images. Each image, measuring 460�460

pixels and containing nine particles, undergoes computations

for offset velocity, acceleration and distance for each particle,

completing the task in less than 10 s. This results in significant

impacts not only on the alignment of particles with non-rigid

displacements but also on the alignment of particles with only

rigid displacements in the scenarios that both cases coexist.

The proposed algorithm is further applied to rectify mis-

alignments in TXM-XANES data of an NCM cathode elec-

trode that is being actively charged. The details of the

electrode and cell configuration, the instrument setup, and the

experimental protocol can be found in the Experimental

methods section. The raw data, presented in Fig. 4(a) and in

Video S2 of the supporting information, exhibit noticeable

global rigid jitters, non-rigid deformations, and varying image

background and noise. Through our method, several isolated

particles are individually identified and independently aligned

with their boundaries optimized, as shown in Figs. 4(b) and

4(c). Subsequently, the aligned image stacks for these particles

were subjected to XANES reconstruction, and the recon-

structed Ni oxidation maps are shown in Fig. 4(d).

Although redox heterogeneity at the particle level is a

broadly reported phenomenon in battery cathodes, the
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Figure 3
Analysis of the image alignment results of a synthetic dataset. (a) The image stack with enlarged ROI to illustrate the image distortion. (b) A comparison
of the registration results from several different algorithms using differential maps. (c)–(f) Quantitative evaluation of the alignment results.
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pattern of the XANES map can demonstrate very different

features and the mechanisms are not well understood. For

example, Kuppan and co-workers showed a chemical gradient

in LiMn1.5Ni0.5O4 cathode particles that indicates chemical

onset on one side and propagates through the particle in quite

a complicated pattern (Kuppan et al., 2017), which is attrib-

uted to an imperfect particle morphology with crystal trun-

cation on its corners. Wang and co-workers demonstrated a 3D

shrinking-core pattern in an LiFePO4 particle (Wang et al.,

2016), which features an anisotropic onset followed by an

isotropic development. Xu and co-workers demonstrated that

the redox pattern can be modulated by the arrangement of

crystallographic orientations of the primary grains within a

secondary NCM particle (Xu et al., 2020). These particle-level

observations, however, could be further complicated by the

electrode-level micromorphology (Li et al., 2022) and the

effect of its distortion upon battery operation.

In Fig. 4(e), we present the final XANES maps of all five

identified particles after the final charging. These particles

exhibit different levels of inhomogeneity. Their XANES maps

are even more distinct. Particles 1 and 5 clearly demonstrate

an oxidized particle core and there is a significant offset from

the particle center. Particles 2 and 3 both demonstrate a

shrinking-core pattern, which is widely anticipated. Particle 4,

on the other hand, exhibits a lower Ni oxidation state, which

indicates that it could be partially deactivated, possibly due

to a loss of contact. From the perspective of electrode defor-

mation, we choose particle 3 as our spatial reference and

illustrate the spatial movements of the other particles. Out of

all the particles, particle 2 exhibits a distinct motion pattern

that drifts slowly towards the upper right. The other particles

demonstrate more random motion patterns with smaller

amplitudes. In the data presented here, a correlation between

electrode deformation and particle redox heterogeneity is not

obvious. To understand this properly, many more experi-

mental observations are needed and a high-throughput data

curation pipeline with good automation is indispensable. The

development presented in this work could potentially facil-

itate a systematic investigation of the correlation between a

particle’s redox heterogeneity and the electrode-level non-

rigid deformation, which can mutually modulate each other

and collectively affect the cell performance.

5. Conclusion

We have proposed an efficient non-rigid alignment method for

XANES reconstruction of battery NCM particles, enabling

simultaneous tracking of multiple particles. This method

captures the offset velocity, acceleration and distance of the

particles, thereby facilitating an in-depth analysis of the

coupling mechanisms involving morphology, compositional

distribution and redox behavior. The significance of this

method consists in its contribution to elucidating the coupling

mechanism governing morphology, compositional distribution

and redox heterogeneity, with profound implications for the

design of next-generation batteries. Beyond its application

to the battery NCM particles delineated in this study, our

proposed method demonstrates considerable potential for

examining chemical–physical coupling effects in diverse

disciplines.

The sample recognition capabilities and accuracy of the

deep learning model of the proposed method depend on the

research papers

334 Bo Su et al. � Nano-imaging of a battery cathode J. Synchrotron Rad. (2024). 31, 328–335

Figure 4
Alignment and analysis of operando XANES imaging of an NCM battery cathode upon charging. (a) Raw TXM images. (b) The results of ROI detection
by Cycle-GAN. (c) The results of particle segmentation. (d) The results of XANES map reconstruction for the identified particles. (e) The Ni oxidation
maps over the segmented and tracked particles at the end of the charging process, and their relative spatial offsets.



diversity and quality inherent in the training datasets. The

principal limitations and prospective challenges intrinsic to

this method include variations in morphology (size, thickness,

radiation deformation and other factors), the X-ray absorb-

ability of the samples, multiple scenarios of dynamic changes

in the background, and the quality of the XANES projection

images (multiple signal-to-noise ratio conditions). The extant

training dataset encompasses a battery NCM particle sample

acquired through TXM, supplemented by additional

morphological samples featuring tungsten needles and speci-

mens distinguished by the particle features made of gold.

The applicability and precision of the model may encounter

constraints when deployed in dissimilar domains characterized

by substantial disparities in morphology and background

features compared to those encompassed in the training

datasets. However, this limitation is mitigated by the incor-

poration of unsupervised deep learning models in this work,

addressing challenges associated with dataset expansion.

In response to evolving research efforts, future investiga-

tions could extend the diversity and quality of training data.

This iterative process may involve optimizing the deep

learning network model, thereby enhancing the method’s

robustness and efficiency across various application scenarios

spanning multiple disciplines and industries.
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