
computer programs

J. Synchrotron Rad. (2024). 31, 385–393 https://doi.org/10.1107/S160057752301086X 385

ISSN 1600-5775

Received 24 October 2023

Accepted 19 December 2023

Edited by A. Stevenson, Australian Synchrotron,

Australia

Keywords: high-level application; Pyapas;

physical quantities.

Published under a CC BY 4.0 licence

A new modular framework for high-level
application development at HEPS

Xiaohan Lu, Yaliang Zhao, Hongfei Ji, Yi Jiao,* Jingyi Li, Nan Li, Cai Meng, Yuemei

Peng, Daheng Ji, Yuanyuan Wei, Haisheng Xu, Weimin Pan and Gang Xu

Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, People’s Republic of China. *Correspondence

e-mail: jiaoyi@ihep.ac.cn

As a representative of the fourth-generation light sources, the High Energy

Photon Source (HEPS) in Beijing, China, utilizes a multi-bend achromat lattice

to obtain an approximately 100 times emittance reduction compared with third-

generation light sources. New technologies bring new challenges to operate the

storage ring. In order to meet the beam commissioning requirements of HEPS, a

new framework for the development of high-level applications (HLAs) has been

created. The key part of the new framework is a dual-layer physical module

to facilitate the seamless fusion of physical simulation models with the real

machine, allowing for fast switching between different simulation models to

accommodate the various simulation scenarios. As a framework designed for

development of physical applications, all variables are based on physical

quantities. This allows physicists to analytically assess measurement parameters

and optimize machine parameters in a more intuitive manner. To enhance both

extensibility and adaptability, a modular design strategy is utilized, partitioning

the entire framework into discrete modules in alignment with the requirements

of HLA development. This strategy not only facilitates the independent

development of each module but also minimizes inter-module coupling, thereby

simplifying the maintenance and expansion of the entire framework. To simplify

the development complexity, the design of the new framework is implemented

using Python and is called Python-based Accelerator Physics Application Set

(Pyapas). Taking advantage of Python’s flexibility and robust library support, we

are able to develop and iterate quickly, while also allowing for seamless inte-

gration with other scientific computing applications. HLAs for both the HEPS

linac and booster have been successfully developed. During the beam

commissioning process at the linac, Pyapas’s ease of use and reliability have

significantly reduced the time required for the beam commissioning operators.

As a development framework for HLA designed for the new-generation light

sources, Pyapas has the versatility to be employed with HEPS, as well as with

other comparable light sources, due to its adaptability.

1. Introduction

The High Energy Photon Source (HEPS) (Jiao et al., 2018;

Jiao & Pan, 2022) is a fourth-generation light source with

an ultralow emittance of about 35 pm rad, currently under

construction in Beijing, China. The HEPS accelerator complex

comprises a linac and a booster as injector, a 1.3 km, 6 GeV

storage ring and three transfer lines (Jiao et al., 2020; Meng

et al., 2020; Peng et al., 2020; Guo et al., 2020). To achieve

an ultralow emittance, HEPS adopts a compact multi-bend

achromat (MBA) lattice, coupled with the extensive use of

combined-function magnets. This approach results in several

challenges to the design, commissioning and operation of

the light source, e.g. pronounced cross-talk effects between

magnets, stringent dynamic and static error tolerances,

https://doi.org/10.1107/S160057752301086X
https://journals.iucr.org/s
https://scripts.iucr.org/cgi-bin/full_search?words=high-level%20application&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=Pyapas&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=physical%20quantities&Action=Search
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
mailto:jiaoyi@ihep.ac.cn
http://crossmark.crossref.org/dialog/?doi=10.1107/S160057752301086X&domain=pdf&date_stamp=2024-02-01


necessitating an efficient and stable framework for the

development of high-level applications (HLAs).

The HLAs focus on implementing complex algorithms

to analyse, measure and control physical parameters. These

include tuning the magnetic field of magnets instead of their

current, getting beam orbit from beam-position-monitor

readings for correction, tune optimization and calculating

optical parameters based on the response matrix, etc. The

development of HLAs is necessary for every accelerator

facility. With the increasing complexity of accelerator facilities,

the approach of developing applications individually based

on specific requirements becomes more and more difficult in

terms of meeting the development demands. Furthermore,

during the beam commissioning, conducting extensive simu-

lations based on physical models for predicting beam beha-

viour is crucial. Conventional approaches usually require

offline simulations that use real-time magnet parameters with

subsequent adjustments based on these simulation results,

which would notably reduce the efficiency of the beam

commissioning process. As a result, implementing online

simulations and adjusting parameters based on simulation

results in real time has become a widely accepted practice in

HLA development across different laboratories (Zhukov et

al., 2019; Corbett et al., 2003; Portmann et al., 2005; Stevani et

al., 2016; Yang et al., 2013). Consequently, there has been an

emergence of many systematic development frameworks for

HLAs. For example, the XAL (Zhukov et al., 2019) developed

by SNS based on Java offers a series of functions and tools for

HLA development, and the MML (MATLAB Middle Layer)

(Corbett et al., 2003; Portmann et al., 2005) developed by

SLAC integrates many commonly used tools and greatly

facilitates the setup and control of a storage ring. XAL

incorporates an online model for model-based control, and

MML employs Accelerator Toolbox (AT) (Terebilo, 2001) for

the same purpose. These integrated development frameworks

provide extremely convenient development tools for the

construction of HLAs, ensuring good consistency and stability

in applications development.

However, these integrated frameworks, with their highly

interconnected and interdependent functions, may not be very

flexible and transportable in some scenarios. Particularly when

new requirements emerge or when functional updates and

iterations are necessary, considerable time and effort are

required. For HEPS, due to the complicated beam dynamics,

various simulation tools are used for simulation studies (Xu et

al., 2023). During the design and research phase, MADX,

elegant, AT, BMAD, etc. were utilized to investigate different

problems (Jiao et al., 2021; Wang et al., 2023; Duan et al., 2021;

He et al., 2021). Similar situations will likely be encountered

during the beam commissioning and operation. Moreover,

with an MBA lattice, the number of magnets in fourth-

generation light sources has increased by an order of magni-

tude compared with existing third-generation light sources.

This means that the variables to be controlled have increased

by one or two orders of magnitude. The error tolerances of the

fourth-generation light sources are also tighter due to the

ultralow emittance and stronger magnetic fields. Therefore,

higher control precision and faster response times need to be

considered in the HLA development. In the past few years

there has been an increase in new solutions to address the

mentioned requirements, such as more efficient communica-

tion tools, more convenient interface development tools, and

more reliable database systems. Integrating new technologies

can effectively fulfil our new requirements for HLA devel-

opment.

Based on the above considerations, we have developed a

brand new framework named Pyapas (Python-based Accel-

erator Physics Application Set) for HEPS, by incorporating

design experiences from various HLA development frame-

works and referring to the design logic of XAL and PyDM

(https://slaclab.github.io/pydm/) with new technologies.

Pyapas is designed with a modular concept, by dividing it

into several modules based on the functionalities required

for HLA development: graphic interface module, dual-layer

physical module, communication module, client-server

module, database module, and pre-development module. Each

module is designed individually according to its functionality,

ensuring its completeness and independence. We have

established protocols for inter-module communication and

provided concise interfaces to minimize coupling between the

modules. This modular design greatly enhances the extensi-

bility and maintainability of the development framework.

Upgrading or even replacing a single module will not signifi-

cantly impact other modules or the developed applications. As

an HLA development framework oriented towards physics,

the core of Pyapas is the dual-layer physical module which can

set up the connection from various simulation models to the

real machine. Also, a more efficient communication system

has been designed to communicate with the real machine.

The modular structure design and the dual-layer physical

module have significantly improved the extensibility and

usability of the HLA development framework. To further

reduce the complexity of HLA development we implemented

the Pyapas design in Python, which has concise and readable

syntax, robust libraries and strong community support. We

basically completed the HLA development for the linac,

booster, transfer line and the storage ring (Lu et al., 2021). The

development of HLAs based on Pyapas has used remarkably

concise code to accomplish relatively complex measurement

applications (Lu et al., 2023a), and Pyapas has been used in

commissioning the linac and booster successfully.

The outline of the paper is as follows. In Section 2 an

overview of the design of Pyapas and its core design principles

are discussed. Section 3 introduces how to implement the

design with Python to make the framework more reliable and

extensible. In Section 4 we briefly introduce the development

of the HLAs based on Pyapas and their application to the

beam commissioning of the linac and booster. Conclusions are

given in Section 5.

2. Framework design

The development of HLAs is a huge project, especially for a

facility like HEPS with a large number of elements. A signif-

computer programs

386 Xiaohan Lu et al. � High-level application development at HEPS J. Synchrotron Rad. (2024). 31, 385–393

https://slaclab.github.io/pydm/


icant amount of optimization applications need to be prepared

for optimizing beam parameters. The improvement on appli-

cation development efficiency and application quality must

be considered. Improving development efficiency is crucial,

especially under conditions of limited human resources. The

design of a HLA framework itself is one of the most effective

strategies to improve development efficiency – with a well

designed framework the HLA developers can save a lot of

time. A good framework should have comprehensive func-

tions, easy-to-use interfaces and excellent stability. To achieve

these desirable attributes, a modular design approach is

adopted.

As shown in Fig. 1, the framework supports different types

of HLAs, scripts, GUI applications and server-based applica-

tions. There are some unified development templates for rapid

application development, which can reduce the time spent on

application development and improve the stability of the

applications. These developed applications can invoke simu-

lation models through the dual-layer physical module and

read real-time machine settings for online calculations.

Notably, the calculated results such as beam trajectory and

Twiss parameters can also be compared with the real-time

measurement data. Furthermore, the flexibility of these

applications is evident as they can seamlessly switch between

different simulation models online through the dual-layer

physical module to perform different tasks and cross check.

Additionally, with the database module the integration with

the database is streamlined, and all the applications can easily

access and store the required data.

In accordance with the specific requirements of the HLAs,

we have divided the functions involved into several distinct

modules: the graphical user interface (GUI) application

development module, the physical module, the communica-

tion module, the server module, the database module and the

pre-development module. As shown in Fig. 1, with the dual-

layer physical module as the core, each module is designed

and developed independently. A straightforward interface is

provided according to the needs of physical beam commis-

sioning. The physics developers do not need to understand

the technical details behind, rather only simple invocation is

needed. This strategy not only facilitates the integration of

comprehensive functions but also helps in creating user-

friendly interfaces, ensuring exceptional stability. Through

modular design, each component of the framework can be

developed, tested and refined independently, fostering a

robust and efficient development environment that meets the

highest standards of quality and performance.

The distinctive aspect of HLAs is its involvement with

various physical algorithms and the online calculation of

machine parameters. Therefore, when designing a new HLA

framework, it is crucial to consider not only the provision

of basic development functions but also the integration of

computer programs

J. Synchrotron Rad. (2024). 31, 385–393 Xiaohan Lu et al. � High-level application development at HEPS 387

Figure 1
The new modular framework of HLAs.



dependable physical algorithms and robust online simulation

models. As such, the design of an online physical calculation

module should be the primary focus.

As mentioned earlier, integrated development frameworks

typically include a specialized simulation model designed for a

specific device. If alternative models are required, significant

adaptation work is necessary. Fourth-generation light sources,

represented by HEPS, involve numerous physical processes

with higher simulation accuracy requirements. Different

models are often used for simulation studies during the design

phase. In the beam commissioning phase, we also hope to use

different models for online simulation and control of different

physical processes of the beam. To meet this requirement, a

dual-layer physical module has been designed, as shown in

Fig. 2. The first layer is the device mapping layer, defining

various types of accelerator elements, including combined

elements. The element class contains various basic parameters

such as length, position, physical quantities and related

channels for communication with the actual machine. The

second layer is a simulation model layer, which includes

mathematical models of a series of components. The first and

second layers are independent of each other, with their mutual

communication facilitated by a connection class. The

connection class does not require any complicated code, other

than just a few simple dictionaries that define the correspon-

dence between the two layers, the class names, the names of

the parameters and the conversion of units. The interface of

the element mapping layer will correctly pass parameters

to the simulation model layer for simulation calculations

according to the corresponding relationship. Based on this

design, changing the corresponding parameters in the

connection class allows us to quickly switch between different

simulation models online. This decoupled dual-layer design

can greatly increase its scalability. Defining or calling different

simulation models only requires writing the corresponding

relationship in the connector. It is worth mentioning here that,

to ensure the stability and reliability of online programs, the

invocation of simulation models is done directly by calling the

corresponding calculation functions or element calculation

classes.

The dual-layer physical module can easily implement online

physical parameter calculations. However, there is still a

problem that must be considered during the implementation

process. Physical parameter calculations usually involve

physical quantities such as magnetic fields, energy, angles, etc.,

while the control quantities of actual accelerator elements are

engineering quantities, such as current. This means that the

data read from the actual accelerator elements cannot be

directly used for physical parameter calculations. If each HLA

can directly read physical quantities from a low-level control

system, the difficulty of the development will be further

reduced and the data of HLA will be more consistent and

intuitive.

To solve this problem, another design principle based on

physical quantities is proposed. All the variables of HLA

should be physical quantities and a conversion system using

Experimental Physics and Industrial Control System (EPICS)

is established to help HLA control the real machine with

physical quantities. As an example, Fig. 3 shows the process

converting from physical quantity K (focusing strength of a

quadrupole) to engineering quantity I (power supply current

of the quadrupole), based on measured excitation data to

perform mutual conversions between physical and engi-

neering quantities. The excitation curve measured for a

quadrupole magnet establishes the relationship between the

magnetic field gradient and current. So the first step of the

conversion system is to convert the value K to the magnetic

field gradient G, as shown in equation (1),

K B� ¼ K
E2 � m0c2ð Þ

2
h i1=2

qc
¼ G ð1Þ

where B� is the magnetic rigidity, E is the total energy of the

particle, q is the charge of the particle, m0 is the rest mass and c

is the speed of light; afterwards, the value G is converted to the

current I using interpolation based on the excitation curve. To

perform the conversion process, a new EPICS record type

‘cvt’ has been developed. The conversion system is deployed

in the control system, and it works in conjunction with the

HLA based on physical quantities, perfectly realizing direct

computer programs

388 Xiaohan Lu et al. � High-level application development at HEPS J. Synchrotron Rad. (2024). 31, 385–393

Figure 2
The dual-layer physical module.



control of the actual machine based on physical quantities,

greatly facilitating the commissioning process for the opera-

tors.

3. Implementation with Python

The systematic framework design can assist developers in

quickly developing and deploying their applications, aiming to

minimize the time cost of HLA development. As all the design

discussed in the last section strives to enhance the adaptability

and extensibility of the HLA development, the choice of a

programming language emerges as a vital consideration.

Python, standing as one of the most popular scripting

languages globally, naturally comes to the forefront. Its

popularity is attributed to its ease of learning, stability and

robust library support, which has fostered its growing promi-

nence in the particle accelerator area. Recognizing these

advantages, we chose to implement the new framework in

pure Python, leveraging its capabilities to further enhance the

efficiency and effectiveness of the HLA development process.

As mentioned, this brand new framework was named Pyapas.

In the last section, the key design principles have been

established: modular design, dual-layer physical module,

physical quantity-based strategy. A conversion system has

been developed and deployed in the control system to help

Pyapas accomplish physical quantity-based control. For the

dual-layer physical module, the road map is very clear – a

couple of Python classes were defined to map to the element

of the real accelerator. For the physical calculation layer,

OCELOT (Agapov et al., 2014), which is developed based on

pure Python, is used as the primary simulation model. Other

simulation models, such as PyAT (Rogers et al., 2017) and

specifically developed models, are now also available. We

developed ‘kick–drift–kick’ models for simulating combined

magnets and other special elements.

Additionally, to improve the completeness and usability of

Pyapas, we utilized Python’s extensive library ecosystem to

incorporate efficient communication module, advanced inter-

face development tools, reliable server and database modules,

as well as pre-developed module.

As discussed earlier, a high-efficiency communication

system is required to address the challenges of managing a

large number of control variables while maintaining effective

communication. As the low-level control system of HEPS is

based on EPICS, the communication module of Pyapas needs

to communicate with the EPICS system. To ensure the stabi-

lity and consistency of the HLAs during communication

operations, we have designed a comprehensive communica-

tion module for the development of HLAs based on the

factory pattern, singleton pattern and PyQt’s (https://wiki.

python.org/moin/PyQt) signal-slot mechanism, as shown in

Fig. 4. The creation and destruction of all channels are

managed by the ‘ChannelFactory’ class. The factory pattern

can decouple the creation and usage process, reduce code

duplication, and maximize the avoidance of errors caused by

creation logic errors, thereby greatly enhancing stability. In

addition to the traditional ‘factory pattern’, we have devel-

oped a more specialized factory pattern called the ‘singleton

factory pattern’. In the same commissioning application, if the

factory class encounters a second instantiation request, it will

automatically return the reference to the existing instance,

rather than creating a new one. This avoids creating multiple

computer programs

J. Synchrotron Rad. (2024). 31, 385–393 Xiaohan Lu et al. � High-level application development at HEPS 389

Figure 3
The conversion process from physical quantities to engineering quantities.

https://wiki.python.org/moin/PyQt
https://wiki.python.org/moin/PyQt


factory classes in the same application and causing repeated

channel connections, which may exhaust network resources in

a serious scenario. At the same time, to more conveniently

establish monitoring of a specific EPICS channel and obtain

the real-time value of the channel, a listener class in

conjunction with Qt’s signal-slot mechanism was designed.

This class can automatically establish non-blocking connec-

tions from the channel to the receiving function, monitoring

changes in the channel value.

In the development of HLAs, the most time-consuming

aspect is the development of the GUI. In the interface

development module, Pyapas uses PyQt as the interface

construction tool and introduces QtDesigner as the main

interface design tool. QtDesigner provides basic interface

widgets for drag-and-drop style interface design. The gener-

ated GUI files can be directly loaded into specific applications,

greatly reducing the time cost of interface development.

However, basic widgets are not sufficient to meet the needs of

complex application development. To further reduce devel-

opment time, we made customizations for common interactive

needs in physical commissioning and loaded them as plugins

into QtDesigner. Developers can perform drag-and-drop

development to complete the design of relatively complex

interactive interfaces. The interface development module

contains numerous plugins to meet different needs, such

as embedding the pyqtgraph and matplotlib drawing tools

into QtDesigner and widgets with hardware communication

capabilities.

In the development of the server module, we encapsulated a

simple and easy-to-use server class based on XML Remote

Procedure Call (xmlRPC) and multicast DNS (mDNS) tech-

nology. xmlRPC serves as a protocol that uses XML to encode

its calls with HTTP as a transport mechanism. This technology

facilitates the communication between different systems,

allowing for a seamless exchange of information and

commands. mDNS operates as a protocol within the IP

network to resolve hostnames to IP addresses within small

networks without requiring a dedicated DNS server. This

technology is particularly beneficial in local network envir-

onments, where it can facilitate easy discovery of services and

hosts. When these two technologies are combined within a

server module, they create a powerful and flexible module that

can greatly simplify the development process. Developers only

need to inherit the ‘Server’ class and invoke the registration

function to create a fully functional server application. This

approach not only reduces the development time but also

ensures that the application adheres to best practices in terms

of scalability and performance.

In the database module, we adopted Object Relation

Mapping technology and further encapsulated it. Developers

only need to call the corresponding function to pass in the data

list, the corresponding table name or filter conditions, and they

can implement basic functions such as data insertion, deletion

and search. This meets general application development

needs, greatly reduces time cost and minimizes the likelihood

of errors.

In order to unify the development style, save the develop-

ment time and enhance application stability, we created a pre-

development module that offers standardized templates that

simplify application development. It provides pre-defined

programming structures and coding standards, promoting a

uniform and efficient approach. This consistency not only

speeds up development but also improves stability. The

template includes best programming practices and robust

error handling to minimize common coding pitfalls and

runtime errors, thereby enhancing application stability. These

templates have undergone a thorough review and testing

process to ensure the reliability and stability of the code

blocks, which in turn reinforces the overall integrity of the

application.

We implemented the framework design of Pyapas in Pure

Python. Each module was independently designed and

encapsulated with a simple and easy-to-use interface. The

design of each module is premised on stability and ease of use.

Moreover, based on these modules, we also designed various

useful tools to help physics developers quickly develop HLAs,

such as a multi-threaded parameter scanner, multichannel

data fetcher, lattice manager, etc., ultimately forming a

comprehensive HLA development platform. Based on

Pyapas, we have completed the HLA development of the linac

and booster and successfully applied it to actual beam

commissioning.

4. Application in HEPS beam commissioning

We have applied the HLAs based on Pyapas to the beam

commissioning of the HEPS injector. On 9 March 2023 we

began the beam commissioning of the linac (Meng et al.,

2023a,b). To meet the beam commissioning needs of the linac,

we have developed applications such as beam-based align-

ment, emittance measurement application, phase scan appli-

cation, orbit correction application, etc. (Zhao et al., 2023).

These applications need to interact with the actual machine

and perform online physical parameter calculations, requiring

a good interactive interface, data storage functions, etc.

Developed based on Pyapas, these applications implemented

all necessary functions with just a few lines of code. Taking

the emittance measurement application as an example, the

quadrupole scanning method (Zhao et al., 2018) is used to

obtain the emittance and Twiss parameter. To develop this

application, the core tasks are GUI development, data

computer programs

390 Xiaohan Lu et al. � High-level application development at HEPS J. Synchrotron Rad. (2024). 31, 385–393

Figure 4
The communication module design.



acquisition and Twiss parameter calculation. As shown in

Fig. 5, it is very easy to design a GUI with the GUI develop-

ment module. With the communication module, less than five

lines of code are needed to set up a monitor to get the beam

profile data from the diagnostic system. Then it only takes

about ten lines of code to compute the real-time machine

Twiss parameters, as shown in Fig. 6. The developer spends

most time focused on result calculation and error analysis.

The pre-developed modules of Pyapas greatly reduce the

difficulty of developing online measurement applications.

Meanwhile, we used a relatively accurate simulation model,

which makes the results more credible. For the results of

emittance measurement, at the high bunch charge mode with

a single bunch charge of 7 nC, the measured horizontal

emittance is about 56.4 nm rad, satisfying the design target of

below 70 nm rad.

In addition to measurement applications that include

algorithms, Pyapas can enable even more straightforward and

efficient development for control monitoring applications.

Taking the Linac Controller application as an example, as

shown in Fig. 7, the custom widgets with channel properties

enable us to complete all functions through drag-and-drop

development in QtDesigner. Loading the generated user

interface file requires less than ten lines of code, greatly

simplifying the development process.

Beam commissioning of the booster began in late July of

2023 and is to be started in 2024 for the storage ring. Before

the commissioning, we have developed corresponding HLAs

based on Pyapas, including global orbit correction, local orbit

correction, dispersion measurement, physics-based control

programs, chromaticity measurement, first-turn beam analysis,

etc. All applications have been developed and tested in

multiple rounds on a virtual accelerator (Lu et al., 2023b),

which was also developed based on Pyapas.

5. Conclusion

To meet the beam commissioning requirements of the fourth-

generation synchrotron light source HEPS, we have designed

a brand-new HLA development framework and implemented

it in Python, named Pyapas. The use of Pyapas can signifi-

cantly reduce the development time cost. After two years of

development, Pyapas now has almost all the necessary func-

tions, and all HLAs of HEPS are developed based on Pyapas.

With limited human resources, we have quickly completed the

development of about 30 applications and successfully applied

them to the beam commissioning of the HEPS injector.

Pyapas is a feature-complete, clear-structured and easy-to-use

framework for HLA development. Its well designed structure

ensures high reliability and maintainability. The modular

design makes it easy to extend the framework, and the dual-

layer physical module allows for quick switching between

different simulation models for online calculations. For

example, the communication module can be expanded to

support other control systems, such as Tango (https://

tango-controls.readthedocs.io/). This can be achieved by

computer programs

J. Synchrotron Rad. (2024). 31, 385–393 Xiaohan Lu et al. � High-level application development at HEPS 391

Figure 5
The emittance measurement application.

Figure 6
Example of an online Twiss calculation.

https://tango-controls.readthedocs.io/
https://tango-controls.readthedocs.io/


adding the appropriate code to the communication module to

make interface calls. All applications developed with Pyapas

have a universal design that allows easy adaptation to a new

accelerator. This process simply involves preparing a special

configuration file for the new accelerator, containing critical

details such as component layout, connection channel names

and database settings. Once this configuration file is in place,

applications can be easily applied to the new accelerator.

Pyapas features remarkable extensibility, robust stability and

superior portability, making it a versatile solution not only for

different light sources but also for a range of other large-scale

experimental facilities.

In the near future, it is planned to develop machine-

learning-related applications based on Pyapas. The use of

machine-learning algorithms is increasingly common in

particle accelerator research, with numerous successful

applications. Effective data acquisition and utilization is a

critical step in both training and deploying these algorithms.

Inadequate data quality or insufficient marked data can result

in model training failures. Pyapas took into account machine

learning as a future application from the outset. The design

based on physical quantities can accurately correlate physical

measurements with data and store them in real time within

a database, which will greatly simplify the model training

process for machine-learning studies. Along with other soft-

ware systems and solutions (Liu et al., 2022; Li et al., 2023;

Zhang et al., 2023; Dong et al., 2022) designed for the big data

acquisition and analysis tasks at HEPS beamlines, a whole

Python-based automatic and intelligent scientific software

ecosystem is emerging to facilitate cutting-edge scientific

discovery at HEPS.

Funding information

The following funding is acknowledged: High Energy Photon

Source (HEPS), a major national science and technology

infrastructure in China; National Natural Science Foundation

of China (grant Nos. 12005239, 12275284, 11922512).

References

Agapov, I., Geloni, G., Tomin, S. & Zagorodnov, I. (2014). Nucl.
Instrum. Methods Phys. Res. A, 768, 151–156.

Corbett, J., Portmann, G. & Terebilo, A. (2003). Proceedings of the
2003 Particle Accelerator Conference (PAC2003), 12–16 May 2003,
Portland, OR, USA, pp. 2369–2371. WPPE020.

Dong, Y., Li, C., Zhang, Y., Li, P. & Qi, F. (2022). Nat. Rev. Phys. 4,
427–428.

Duan, Z., Chen, J.-H., Shi, H., Tang, G.-Y., Wang, L. & Wu, Y. (2021).
Nucl. Sci. Tech. 32, 136.

Guo, Y., Wei, Y., Peng, Y. & Xu, G. (2020). Radiat. Detect. Technol.
Methods, 4, 440–447.

He, J., Sui, Y.-F., Lu, Y.-H., Yin, D., Duan, Z., Tian, S.-K., Zhu, D.-C.,
Zhao, Y., Yue, J. & Cao, J.-S. (2021). Nucl. Sci. Tech. 32, 114.

Jiao, Y., Chen, F., He, P., Li, C., Li, J., Qin, Q., Qu, H., Wan, J., Wang, J.
& Xu, G. (2020). Radiat. Detect. Technol. Methods, 4, 415–424.

computer programs

392 Xiaohan Lu et al. � High-level application development at HEPS J. Synchrotron Rad. (2024). 31, 385–393

Figure 7
Linac Controller based on physical quantities.

https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB10


Jiao, Y. & Pan, W. (2022). High Power Laser Particle Beams, 34,
104002.

Jiao, Y., Xu, G., Cui, X.-H., Duan, Z., Guo, Y.-Y., He, P., Ji, D.-H., Li,
J.-Y., Li, X.-Y., Meng, C., Peng, Y.-M., Tian, S.-K., Wang, J.-Q.,
Wang, N., Wei, Y.-Y., Xu, H.-S., Yan, F., Yu, C.-H., Zhao, Y.-L. &
Qin, Q. (2018). J. Synchrotron Rad. 25, 1611–1618.

Jiao, Y., Bai, Y., Cui, X., Du, C. C., Duan, Z., Guo, Y. Y., He, P.,
Huang, X. Y., Ji, D., Ji, H. F., Jiang, S. C., Li, B., Li, C., Li, J. Y., Li,
N., Li, X. Y., Liang, P. F., Meng, C., Pan, W. M., Peng, Y. M., Qin, Q.,
Qu, H., Tian, S. K., Wan, J., Wang, B., Wang, J. Q., Wang, N., Wei, Y.,
Xu, G., Xu, H. S., Yan, F., Yu, C. H., Zhao, Y. L. & Lu, X. H. (2021).
Proceedings of the 12th International Particle Accelerator Confer-
ence (IPAC2021), 24–28 May 2021, Campinas, SP, Brazil, pp. 229–
232. MOPAB053.

Li, X., Zhang, Y., Liu, Y., Li, P., Hu, H., Wang, L., He, P., Dong, Y. &
Zhang, C. (2023). J. Synchrotron Rad. 30, 1086–1091.

Liu, Y., Geng, Y.-D., Bi, X.-X., Li, X., Tao, Y., Cao, J.-S., Dong, Y.-H.
& Zhang, Y. (2022). J. Synchrotron Rad. 29, 664–669.

Lu, X. et al. (2023a). Proceedings of the 14th International Particle
Accelerator Conference (IPAC2023), 7–12 May 2023, Venice, Italy.
THPA125.

Lu, X. et al. (2023b). Proceedings of the 19th International Conference
on Accelerator and Large Experimental Physics Control Systems
(ICALEPCS 2023), 9–13 October 2021, Cape Town, South Africa.
THPDP033.

Lu, X., Ye, Q., Ji, H., Jiao, Y., Li, J., Meng, C., Peng, Y., Xu, G. & Zhao,
Y. (2021). Proceedings of the 18th International Conference on
Accelerator and Large Experimental Physics Control Systems
(ICALEPCS 2021), 14–22 October 2021, Shanghai, China, pp. 978–
980. THPV047.

Meng, C., He, X., Jiao, Y., Nie, X., Peng, Y., Wang, S., Xiao, O., Zhang,
J., Zhang, S. & Li, J. (2020). Radiat. Detect. Technol. Methods, 4,
497–506.

Meng, C. et al. (2023a). 67th ICFA Advanced Beam Dynamics
Workshop on Future Light Sources (FLS’23), 27 August–
1 September 2023, Lucerne, Switzerland. TU4P27.

Meng, C., Cao, J., He, D., He, P., Jiao, Y., Kang, L., Kang, W., Li, J., Li,
J., Lin, G., Long, F., Qi, X., Qu, H., Song, H., Sui, Y., Wang, S., Xu,
G., Ye, Q., Zhang, J., Zhang, J. & Pan, W. (2023). High Power Laser
Particle Beams, 35, 054001.

Peng, Y., Duan, Z., Guo, Y., Jiao, Y., Li, J., Meng, C., Xu, G. & Xu, H.
(2020). Radiat. Detect. Technol. Methods, 4, 425–432.

Portmann, G., Corbett, J. & Terebilo, A. (2005). Middle Layer Soft-
ware Manual for Accelerator Physics, LBNL Internal Report
LSAP-302. Lawrence Berkeley National Laboratory, Berkeley, CA,
USA.

Rogers, W. A. H., Carmignani, N., Farvacque, L. & Nash, B. (2017).
Proceedings of the 8th International Particle Accelerator Conference
(IPAC2017), 14–19 May 2017, Copenhagen, Denmark, pp. 3855–
3857. THPAB060.

Stevani, I., Milas, N., Resende, X. R. & Vilela, L. N. P. (2016).
Proceedings of 11th International Workshop on Personal Compu-
ters and Particle Accelerator Controls (PCaPAC2016), 25–28
October 2016, Campinas, Brazil, pp. 47–49. WEPOPRPO22.

Terebilo, A. (2001). Report SLAC-PUB-8732. SLAC, Stanford, CA,
USA.

Wang, S.-C., He, D.-Y., Meng, C., Li, J.-Y., Zhou, Z.-S. & Liu, J.-D.
(2023). Nucl Sci Tech, 34, 39.

Xu, H., Meng, C., Peng, Y., Tian, S., Wang, N., Cui, X., Du, C., Duan,
Z., Guo, Y., He, P., Huang, X., Ji, D., Ji, H., Jiao, Y., Li, J., Li, N., Li,
X., Lu, X., Liang, P., Pan, W., Qu, H., Wang, B., Wang, J., Wei, Y.,
Wan, J., Xu, G., Yan, F., Yu, C., Yue, S., Zhang, X. & Zhao, Y.
(2023). Radiat. Detect. Technol. Methods, 7, 279–287.

Yang, L., Choi, J., Hidaka, Y., Li, Y., Shen, G. & Wang, G. (2013).
Proceedings of the 14th International Conference on Accelerator
and Large Experimental Physics Control Systems
(ICALEPCS2013), 6–11 October 2013, San Francisco, CA, USA,
pp. 890–892. TUPPC130.

Zhang, Z., Bi, X., Li, P., Zhang, C., Yang, Y., Liu, Y., Chen, G., Dong,
Y., Liu, G. & Zhang, Y. (2023). J. Synchrotron Rad. 30, 169–178.

Zhao, Y., Ji, H., Lu, X., Meng, C., Peng, Y., Jiao, Y., Li, J., Xu, G. &
Xu, H. (2023). J. Instrum. 18, P06014.

Zhao, Y., Yan, F., Geng, H. & Meng, C. (2018). High Power Laser
Pulse Beams, 30, 015101.

Zhukov, A. P., Allen, C. K., Bolling, B. E., Chu, C. P., Dodson, T.,
Esteban Müller, J. F., Gillette, P., Laface, E., Laurent, P., Levinsen,
Y., Li, M. T., Li, Y., Lu, X. H., Milas, N., Normand, G., Peng, J.,
Rosati, C., Savalle, A. & Shishlo, A. P. (2019). Proceedings of the
10th International Particle Accelerator Conference (IPAC’19), 19–
24 May 2019, Melbourne, Australia, pp. 3341–3344. WEPTS096.
doi: 10.18429/JACoW-IPAC2019-WEPTS096.

computer programs

J. Synchrotron Rad. (2024). 31, 385–393 Xiaohan Lu et al. � High-level application development at HEPS 393

https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB13
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB13
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB26
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB26
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB26
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB16
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB16
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB16
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB16
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB16
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB19
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB19
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB19
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB22
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB22
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB22
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB22
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB892
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB892
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB25
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB25
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB27
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB27
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB27
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB27
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB27
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB29
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB29
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB29
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB29
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB29
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB31
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB31
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB30
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB30
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB32
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB32
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB32
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB32
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB32
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB32
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5051&bbid=BB32

	Abstract
	1. Introduction
	2. Framework design
	3. Implementation with Python
	4. Application in HEPS beam commissioning
	5. Conclusion
	Funding information
	References

