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The direction of particle accelerator development is ever-increasing beam

quality, currents and repetition rates. This poses a challenge to traditional

diagnostics that directly intercept the beam due to the mutual destruction of

both the beam and the diagnostic. An alternative approach is to infer beam

parameters non-invasively from the synchrotron radiation emitted in bending

magnets. However, inferring the beam distribution from a measured radiation

pattern is a complex and computationally expensive task. To address this

challenge we present SYRIPY (SYnchrotron Radiation In PYthon), a software

package intended as a tool for performing inference of synchrotron-radiation-

based diagnostics. SYRIPY has been developed using PyTorch, which makes it

both differentiable and able to leverage the high performance of GPUs, two vital

characteristics for performing statistical inference. The package consists of

three modules: a particle tracker, Lienard–Wiechert solver and Fourier optics

propagator, allowing start-to-end simulation of synchrotron radiation detection

to be carried out. SYRIPY has been benchmarked against SRW, the prevalent

numerical package in the field, showing good agreement and up to a 50� speed

improvement. Finally, we have demonstrated how SYRIPY can be used to

perform Bayesian inference of beam parameters using stochastic variational

inference.

1. Introduction

The field of accelerator development is continually pushing

boundaries to generate increasingly brighter beams, elevate

peak currents and enhance repetition rates. These high-

intensity beams serve as unique tools for unveiling new

insights across a diverse range of research areas, from ultra-

high-gradient plasma wakefield accelerators to probing strong

field quantum electrodynamics (Yakimenko et al., 2016). For

instance, the Facility for Advanced Accelerator Experimental

Tests II (FACET-II) will soon boast the capability of delivering

beams with a charge of 2 nC, at an energy of 10 GeV, with a

normalized transverse emittance of less than 10 mm, and up to

200 kA in peak current (Yakimenko et al., 2019). However,

these intense beams present a considerable challenge to

traditional accelerator diagnostics, particularly those that

require placing material in the beam’s path. For example,

beam size measurements rely on capturing optical transition

radiation emitted as the beam traverses a thin foil. These foils

are subject to quick deterioration due to surface heating

(Stupakov, 2013), resulting in operational difficulties,

including escalating costs and time expenditure. Moreover,

these destructive diagnostics negatively impact the down-

stream beam quality, thus barring their simultaneous opera-

tion with an experiment. As such, there is a growing
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preference for single-shot, non-invasive diagnostics that

leverage machine learning to overcome these hurdles (Emma

et al., 2018, 2021).

As a beam travels along an accelerator, it passes through

bending magnets and emits synchrotron radiation. This

radiation is common to both linear and circular accelerators,

making it a promising candidate for a single-shot, non-invasive

diagnostic. Upon entering or exiting a bending magnet, the

beam is subject to rapidly fluctuating fringe fields. In such

conditions, the intensity of the radiation produced can eclipse

that of standard synchrotron radiation, a phenomenon known

as edge radiation (Titov & Yarov, 1991; Chubar, 1995a; Bosch,

1999; Geloni et al., 2009). When the beam traverses two

successive bending magnets, the emitted radiation can inter-

fere, resulting in a ringing intensity profile. These rings exhibit

a high sensitivity to the beam’s size and divergence, which

makes edge radiation a prime candidate for a single-shot, non-

invasive diagnostic. This potential has been previously

explored in applications at both the Siberia-1 electron storage

ring and the FERMI free-electron laser (Chubar, 1995b;

Fiorito et al., 2014).

To extract beam information from a measured intensity

profile through statistical inference, a model of the system is

required. This cannot be achieved analytically, making a

numerical simulation necessary. A number of publicly avail-

able software packages exist for this purpose, including

SPECTRA (Tanaka & Kitamura, 2001) and Synchrotron

Radiation Workshop (SRW) (Chubar & Elleaume, 1998).

These packages are widely used and extensively benchmarked

against experimental results. However, when applying statis-

tical inference, a large number of simulations must be carried

out. The existing software packages capable of modelling edge

radiation are limited to CPU-based operation, which is

suboptimal for this objective. Therefore, we have developed a

new package SYRIPY (SYnchrotron Radiation In PYthon)

built upon the PyTorch library (Paszke et al., 2019). SYRIPY

is specifically designed as as a tool for performing inference of

synchrotron-radiation-based diagnostics. Through PyTorch,

the code runs natively on graphics processing units (GPUs),

allowing us to make use of the massively parallel architecture

for high numerical efficiency. Furthermore, SYRIPY can

utilize PyTorch’s automatic differentiation package to calcu-

late the gradient of output intensity profiles with respect to

simulation inputs. This high efficiency and gradient informa-

tion are invaluable tools for applying inference schemes in

high-dimensional spaces.

In this paper we will review and demonstrate our new

synchrotron radiation toolkit SYRIPY. We will begin in

Section 2 by discussing the system of equations which the

package solves and detail the specific numerical implementa-

tion. In Section 3 we will provide benchmark results,

comparing against both analytical and numerical calculations.

Finally, we will demonstrate an application of the package,

using it to perform Bayesian inference on mock experimental

data.

2. Theory and numerical implementation

A start-to-end simulation of synchrotron radiation production

and detection, spanning from the initial electron beam para-

meters to the expected intensity profile at a detector, can

be divided into three stages. First, electron trajectories are

obtained by tracking the electron beam through the region of

interest. Secondly, using these trajectories, the electro-

magnetic field at an initial downstream wavefront is calcu-

lated. Finally, the field is propagated through optical elements

to the detector plane. These stages are demonstrated in Fig. 1,

which shows a diagram of the production and detection of

edge radiation in the centre of a bunch compressor. In this

section we will detail the theory and our numerical imple-

mentation used to solve this system. This implementation is

highly parallelizable over a number of simulation parameters,

including electrons, observation points and time samples.

Therefore, parallelized hardware (i.e. GPUs) are ideal for

carrying out these calculations.

2.1. Particle tracking

The first part of the calculation consists of sampling elec-

trons from the beam and generating their trajectory through

the region of interest. If we assume the interaction between
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Figure 1
Diagram showing the production and detection of edge-radiation in the central part of a bunch compressor. This shows a 300 MeV electron beam passing
through two 0.5 T dipoles and emitting synchrotron radiation. The field is then propagated to the detector at the Fourier plane of a f = 10 cm lens.



electrons within the beam is negligible, their motion is

governed by the Lorentz equation of motion,

dp

dt
¼ � e c b � B; ð1Þ

where p is the electron momentum, b is the relativistic velo-

city, c is the speed of light and e the electron charge. B � B(r)

denotes the used defined magnetic field, which can consist of

drift spaces, dipoles and quadrapoles. Equation (1) is solved

using a fourth-order Runge–Kutta scheme. Parallelizing the

calculation over multiple electrons within the beam is trivial

due to the independence of trajectories.

2.2. Radiation solver

Having generated a sample of electron trajectories, the next

step is to calculate the resulting synchrotron radiation at a

downstream plane (i.e. wavefront). This calculation is

performed for each sampled trajectory individually. The

electromagnetic field due to the arbitrary motion of a single

electron is given by the Liénard–Wiechert scalar and vector

potentials (Jackson, 1999; Landau, 2013),

�ðr; tÞ ¼
e

4��0

1

ð1 � n � bÞR

� �

ret

;

Aðr; tÞ ¼
e

4��0c

b

ð1 � n � bÞR

� �

ret

;

ð2Þ

where SI units are used, r = (x, y, z) is the observation point, t

is the observation time, R = |r � re| is the distance between the

electron and the observation point, re is the electron position,

n is the unit vector pointing from electron to the observation

point (i.e. n = R/|R|), �0 is the electric constant and [ . . . ]ret

denotes that the term inside the brackets is calculated at the

retarded time

t 0 ¼ t �
R

c
: ð3Þ

The more familiar electric field can be expressed in terms of

the scalar and vector potentials through the following defini-

tion,

E ¼ � r� �
@A

@t
: ð4Þ

Most diagnostics are only sensitive to radiation over a limited

spectral range. Therefore, it is more efficient to calculate the

electric field in the frequency domain as opposed to the

temporal domain. Applying a Fourier transform to equation

(4) yields

E! ¼ � r�! � i!A!; ð5Þ

where

�! ¼
e

4��0

Z 1

� 1

1

Rðt 0Þ
exp i! t 0 þ Rðt 0Þ=c½ �

� �
dt 0

A! ¼
e

4��0c

Z 1

� 1

bðt 0Þ

Rðt 0Þ
exp i! t 0 þ Rðt 0Þ=c½ �

� �
dt 0;

ð6Þ

and ! is the angular frequency of the field. Using equations (5)

and (6), the Fourier domain electric field is given by (Chubar,

1995a)

E! ¼
ie!

4��0c

Z1

� 1

1

R
b � n 1þ

ic

!R

� �� �

exp i! t 0 þ R=cð Þ½ � dt 0:

ð7Þ

By calculating equation (7) over a grid of observation points

the initial wavefront is obtained. Each of these observation

points is independent, which once again enables the calcula-

tion to be easily parallelized.

Equation (7) is of the form

I ¼

Z1

� 1

fðtÞ exp
�
i! gðtÞ

�
dt; ð8Þ

where f(t) is a slowly varying function and exp[i!g(t)] oscil-

lates rapidly. This makes solving equation (7) numericaly

infeasible using standard quadrature methods. To understand

why, we can study the setup in Fig. 1, taking the electron

energy and dipole field strength to be �100 MeV and �0.1 T,

respectively. The electrons are moving close to c, so will take

Oð10� 8 sÞ to traverse the setup, which sets the limits of the

integration. If we are performing the calculation at the peak of

the synchrotron emission spectrum [! ’ 1015, using equation

(24)] the oscillating part of the integral will have a period of

�10� 15 s. To prevent large numerical errors, the integrand

must be densely sampled such that these oscillations are

resolved. For our example this would require at least 107

samples which is unpractical.

Solving equation (7) using practical computational

resources requires quadrature methods specifically designed

for highly oscillatory functions. To apply these, we start by

splitting the integral into three parts,

I ¼

Z tL

� 1

þ

Z tR

tL

þ

Z 1

tR

¼ IL þ IC þ IR; ð9Þ

where IC integrates over the the trajectory in which the elec-

tron passes through the region of interest. Outside the region

of interest (IL/R), we assume the electron travels to infinity

with a constant velocity bL/R. Ignoring IL/R would result in

the emission of spurious radiation from the creation and

destruction of the electron at tL and tR. The electron’s position

as a function of time is simply given by R = cbL/R (t � tL/R) +

RL/R, where RL/R is the location of the electron at the integral

boundary tL/R. Using this, derivatives of f(t) and g(t) can be

computed to any order, allowing us to solve IL/R using an

asymptotic expansion. This involves successively applying

integration by parts to equation (8), generating a sequence

with terms increasing in order !� 1. To first order this gives

(Stein & Murphy, 1993)
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I ¼

Z b

a

fðtÞ exp i! gðtÞ½ � dt ¼
1

i!

Z
fðtÞ

g0ðtÞ

d

dt
exp i! gðtÞ½ � dt ð10Þ

¼
1

i!

fðtÞ

g0ðtÞ
exp i! gðtÞ½ �

� �b

a

�
1

i!

Z b

a

d

dt

fðtÞ

g0ðtÞ

� �

exp i! gðtÞ½ � dt;

where the first term is an approximation of the integral and the

second term is the error. To continue the expansion, the same

process is applied to the error. For the systems of interest to

this work, ! � 1, making the expansion converge rapidly.

Therefore, a first-order expansion is found to be sufficient.

The trajectory between tL and tR is a complicated para-

metric function of the user-defined magnetic field. Information

about f(t), g(t) and their derivatives at the boundaries is

insufficient for solving IC. Therefore, it is not possible to apply

an asymptotic expansion and instead we adopt Filon’s method

(Filon, 1930). This method shares similarities with the

commonly used Simpson’s rule, as a quadratic approximation

is applied to the non-oscillating part of the integral. Before

applying the Filon method, we first remove the irregular, non-

stationary phase using a change of variables x = g(t),

I ¼

ZgðtLÞ

gðtRÞ

f g� 1ðxÞ
� �

g0 g� 1ðxÞ½ �
expði! xÞ dx ¼

Z b

a

hðxÞ expði! xÞ dx: ð11Þ

The integral is then discretized into n intervals and h is

interpolated by a quadratic at the ends and centre points (x1,

x2 and x3) of each interval, i.e. h(x) ’ v(x) = c1 + c2x + c3x2.

The parameters of the quadratic fit ci within each interval are

obtained by solving the linear system

vðx1Þ ¼ hðx1Þ; vðx2Þ ¼ hðx2Þ; vðx3Þ ¼ hðx3Þ: ð12Þ

Applying this quadratic approximation to equation (11) yields

Zb

a

hðxÞ expði! xÞ dx ’
Xn� 1

j¼ 0

Zx2jþ2

x2j

c
ðjÞ
1 þ c

ðjÞ
2 xþ c

ðjÞ
3 x2

h i
expði! xÞ dx:

ð13Þ

Euler’s formula is used to express the complex exponential in

terms of sine and cosine functions, allowing the integral within

each interval to be solved using the analytical formula for the

moments
R

x m sinð! xÞ dx and
R

x m cosð! xÞ dx. For a fixed

interval size, the error in the approximation of equation (13)

decays as Oð!� 2Þ (Stein & Murphy, 1993). This is the same as

the first-order asymptotic expansion used to calculate IL/R.

2.2.1. Increasing numerical efficiency. Equations (10) and

(13) can be readily solved using double-precision floating

point format (FP64) to obtain the initial wavefront field.

However, leveraging single-precision (FP32) is advantageous,

as GPUs are generally optimized for this format. Nvidia GPUs

based on the Ampere architecture (for example, the Nvidia

RTX A6000 used to perform simulations for this work) have

an FP32 to FP64 theoretical peak performance ratio of 32 :1.

We cannot directly perform the calculation using FP32 as

numerical errors are likely to arise from catastrophic cancel-

lation. To understand why, we can study the dominant emis-

sion region of equation (11). This occurs when the

denominator g0(t) = 1 � n · b is small. Given that the electron

is highly relativistic, n · b ’ 1 when the electron is moving

towards the observer. Obtaining g0(t) requires taking the

difference between two similar numbers, resulting in a large

relative error if FP32 is used. To avoid this cancellation error,

we can apply a small observation angle approximation (i.e. Z =

|z � ze| � X = |x � xe|, Y = |y � ye| and �z � �x, �y) which

allows us to rewrite the phase gradient g0(t) and phase g(t) as

g0ðtÞ ¼
� � 2 þ jb?j

2

2
�

2Z R? � b? � �zjR?j
2

2Z2 þ jR?j
2

;

gðtÞ ¼

Z t

� 1

g0ðt 0Þ dt 0;

ð14Þ

where � is the Lorentz factor and R? and b? are the trans-

verse relative position and velocity, respectively. Defining the

phase gradient with equation (14) avoids taking the difference

between similar numbers.

Realizing that the radiation emission is dominated in the

region where g0(t) is small allows us to make further numerical

improvements. To obtain small numerical errors from Filon’s

method, h(x) must be accurately approximated by a quadratic

within each interval. Fig. 2(a) shows a plot of hx(t) [the x-

component of h(x)] for the system shown in Fig. 1. As the

electron passes through the compressor, the integrand
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Figure 2
Real and imaginary parts of hx(x) with (a) showing the function plotted against evenly spaced time samples and (b) showing the function plotted
against u.



experiences both sharp peaks and flat regions. To approximate

the flat regions with a quadratic, a low density of samples is

required, whereas the sharp peaks require a high density of

samples. Therefore, solving equation (13) using evenly spaced

time samples is inefficient.

A more efficient approach would redistribute the samples

such that the density is higher when h(x) changes rapidly, i.e.

when |[g0(t)� 1]0| is large. This can be achieved using inverse

transform sampling. Here, the cumulative distribution func-

tion (CDF) of a target distribution p(t) / |[g0(t)� 1]0| is calcu-

lated,

u ¼ CðtÞ ¼
Rt

� 1

pðtÞ dt; ð15Þ

and its inverse t = C � 1(u) obtained. If we take a set of evenly

spaced samples in u and transform them according to C � 1(u),

we will obtain irregular spaced samples in t with the required

density. This is demonstrated in Fig. 2(b) showing the same

function as (a) now plotted against u. The peaks are now

wider, meaning h(x) can be accurately approximated by a

quadratic using fewer samples.

So far, we have only redistributed the samples according

to the emission observed at a single point. However, for an

observation point at a different location along the x-dimension

(the transverse dimension in which the beam is bent) the

target distribution will change. As n and b are now parallel at a

different part of the trajectory, the peaks in Fig. 2(a) will shift.

The updated time samples will not be optimal for this new

observation point. To solve this issue, |[gi
0(t 0)� 1]0| is calculated

at a set of M locations along x, and the new target distribution

is given by the maximum over this set at any given value of t,

pðtÞ / max
i2M

g0iðtÞ
� 1

� �0
�
�
�

�
�
�: ð16Þ

For a single observation point, redistributing the samples

requires additional overheads, increasing the time taken to

perform the calculation. However, this process is only carried

out over a limited number of observation points, much less

than the total number in the 2D wavefront (i.e. M � N 2

where N is the number of wavefront observation points in

both x and y). Therefore, the overhead time is small compared

with the total simulation time. On top of this, as we will see in

the next section, to calculate the intensity from a beam with

finite emittance involves summing over multiple electron

trajectories. Given that the beam is small, the emission peaks

will occur at similar locations for all trajectories. Therefore,

this process only needs to be carried out for the central

trajectory, and the updated time samples used for all electrons

in the beam. We have found for the example calculation shown

in Fig. 3 that this process can reduce the number of samples by

a factor of five without a noticeable increase in the error.

2.2.2. Emission from an electron beam. When measuring

the radiation profile with a camera, the quantity that is directly

obtained is the total photon flux density from a beam of

electrons (number of photons per unit surface area, per unit

relative spectral interval). This can be obtained by summing

up the electric field contribution from individual electrons

within the beam and squaring,

d2Nph

d� d!=!
¼
�0c

h- �

XNe

i¼ 1

E!ðri; piÞ

�
�
�
�
�

�
�
�
�
�

2

; ð17Þ

where Nph is the number of photons, � is the surface area, Ne

is the number of electrons in the beam, and ri and pi are the

initial position and momentum of an electron, respectively.

This sum can be decomposed into temporally coherent and

incoherent parts (Hirschmugl et al., 1991),

XNe

i¼ 1

E!ðri; piÞ

�
�
�
�
�

�
�
�
�
�

2

’ Ne Ne � 1ð Þ

Z

E!ðr; pÞ f ðr; pÞ dr dp

�
�
�
�

�
�
�
�

2

þ Ne

Z

E!ðr; pÞ
�
�

�
�2f ðr; pÞ dr

¼ ICSR þ IISR; ð18Þ

where f(r, p) is the electron beam distribution function. If the

beam is long in comparison with the wavelength of the

radiation, the coherent term can be neglected and the total

intensity is then obtained by integrating the single electron

intensity over f(r, p). Equation (18) contains six-dimensional

integrals which are too numerically expensive to solve using

standard quadrature methods. Therefore, a Monte Carlo

approach is used instead. Here, the integrals are approximated

as sums of the single electron electric field/intensity, calculated

at the sample points {ri, pi} ’ f(r, p). Fig. 3(a) shows an

example of an intensity pattern for the system shown in Fig. 1,

calculated using the method described here.

2.3. Wavefront propagation

The final part of the calculation involves propagating the

wavefront through an optical system to the detector location.

This is carried out using scalar diffraction theory (Goodman,

2005). Here, the paraxial approximation (small observation

angles) is made, allowing us to treat the field components as

independent and neglect the longitudinal field. Under this

assumption, the propagation of a field through free space is

given by the Rayleigh–Sommerfeld diffraction integral,

E?ðx2; y2Þ ¼
z

i�

Z Z

�

E?ðx1; y1Þ
expðikr12Þ

r 2
12

dx1 dy1; ð19Þ

where x1, y1 and x2, y2 are transverse coordinates before and

after propagation, respectively, r12 = [(x2 � x1)2 + (y2 � y1)2 +

z2]1/2 is the distance between positions on the two planes, � is

the area of the source plane and z is the propagation distance.

Equation (19) is a convolutional integral and can be written

using the convolution theorem as

E?ðx2; y2Þ ¼
z

i�
F � 1

n
F E?ðx1; y1Þ
� �

F hRSðx1; y1Þ
� �o

; ð20Þ

where hRSðx; yÞ = expðikr12Þ=r 2
12 and F denotes a Fourier

transform. This equation is solved numerically using a chirp z

transform (CZT) implemented using Bluestein’s algorithm

(Bluestein, 1970). A CZT is similar to the more common fast

Fourier transform (FFT) but can be more computationally
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efficient. It allows the post-transform samples to be set inde-

pendently of the input samples and internalizes zero padding

of the wavefront (Leutenegger et al., 2006).

At small observation angles, calculating expðikr12Þ is prone

to numerical errors. If this is the case we can make the Fresnel

approximation, whereby a first-order Taylor expansion is used

to give r12 ’ z + 0.5(x2 � x1)2 + 0.5(y2 � y1)2. This is then

inserted into equation (19) to give

E?ðx2; y2Þ ¼
expðikzÞ

i�z

Z Z

�

E?ðx1; y1Þ ð21Þ

� exp
ik

2z
ðx2 � x1Þ

2
þ ðy2 � y1Þ

2
� �

� �

dx1 dx2;

which is known as the Fresnel diffraction solution. This is also

a convolutional type integral and is solved in the same way as

equation (20).

To model the propagation through a lens or aperture the

field is simply multiplied by transmittance functions. These

transmittance functions are given by

tLðx; yÞ ¼ exp � i
k

2f
ðx2 þ y2Þ

� �

and

taðx; yÞ ¼ �
x2 þ y2ð Þ

1=2

wa

" #

ð22Þ

for a lens and aperture, respectively, where f is the lens focal

length, �(x) is the rectangle function and wa is the aperture

radius.

To measure the divergence of some incoming field, it can be

imaged at the Fourier plane of a lens. We can model this

system by multiplying the field by the lens transmittance

function given by equation (22) and propagating z = f using

equation (21). However, for low f /# lenses this calculation is

prone to aliasing errors. Multiplying by the transmittance

function introduces a quadratic phase term which has the

effect of increasing the source bandwidth. A high density of

samples in the initial wavefront is then required to avoid

aliasing in the Fourier domain. This increases the memory

requirement to propagate the field. To avoid this, we can

directly substitute E(x1, y1) = tL(x1, y1)E(x1, y1) into equation

(21) and rearrange to give

Eðx2; y2Þ ¼
expðikzÞ

i�f
exp i

k

2f
ðx2

2 þ y2
2Þ

� �

ð23Þ

�

Z Z

�

Eðx1; y1Þ exp � i
2�

�f
ðx2x1 þ y2y1Þ

� �

dx1 dx2;

with the quadratic terms cancelling. This is known as the

Fraunhofer diffraction integral and, unlike equations (19) and

(21), it is not a convolution-type integral but simply a scaled

Fourier transform.

Fig. 3(b) shows an example of a propagation calculation

applied to the wavefront in Fig. 3(a). The field has been

propagated to the Fourier plane of an f = 10 cm lens with a

2 cm-radius aperture. This calculation was performed using

the Fraunhofer diffraction integral given by equation (23).

3. Benchmark simulations

To benchmark our implementation discussed in Section 2, we

can compare simulations with analytical calculations of the

emitted radiation. There are few systems in which this is

possible, one being the emission from an electron performing

circular motion in a constant magnetic field. The full calcula-

tion has been given by Jackson (1999) with the photon flux

density (per unit solid angle d� = R2d�) given as

d2Nph

d� d!=!
¼

e2

12�3c�0h-
!�

c

� �2 1

�2
þ �2

� �2

� K2
2=3ð Þ þ

�2

ð� � 2 þ �2Þ
K2

1=3ð Þ

� �

; ð24Þ

where � is the radius of curvature, � is the polar angle, K2/3 and

K1/3 are modified Bessel functions of the second kind and their

argument is

 ¼
!�

3c

1

�2
þ �2

� �3=2

: ð25Þ
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Figure 3
Wavefront intensity profiles at (a) the initial wavefront and (b) the detector plane for the setup shown in Fig. 1. The radiation wavelength is � = 5 mm and
total samples NxNy = 5002.



Plots of equation (24) for fixed frequency and observation

angle can be found in Figs. 4(a) and 4(b), respectively. These

show the photon flux density emitted from a 100 MeV electron

beam performing circular motion in a 1 T magnetic field. Also

shown is the photon flux density calculated using the method

discussed in Section 2. A very good agreement is seen between

the two calculations.

For the systems of interest to this work (e.g. Fig. 1) the

emitted radiation distribution cannot be calculated analyti-

cally. Therefore, to benchmark this type of simulation we have

compared results from SYRIPY with the widely used SRW

package. This comparison can be found in Fig. 5, showing both

horizontal and vertical lineouts of the flux density for a single

electron, using the same simulation parameters as Fig. 3. Once

again, the SYRIPY simulations agree well with the benchmark

calculations.

When carrying out highly parallelized tasks, GPUs

demonstrate superior performance compared with CPUs.

As a result, optimizing SYRIPY for GPU execution offers a

substantial performance advantage over SRW. A comparison

of the performance of SRW and SYRIPY is shown in Table 1.

Here, we can see the time taken to perform the benchmark

calculation normalized by the number of macro electrons. The

SRW simulations were performed using an AMD Ryzen

Threadripper Pro 3955WX, 16-core, 32-Thread CPU, which

was parallelized over multiple cores using Python’s multi-

processing package. The SYRIPY simulations were carried out

using an NVIDIA A6000 RTX GPU in both single and double

precision mode. This allows us to compare the performance of

these two modes; however, for these simulation parameters

the single precision error of�0.6% per pixel is acceptably low.

In double precision mode, we find a modest improvement over

SRW, with a�2� increase in the calculation rate. However, in

single precision mode, a larger improvement of �15� is

found.

In the above SYRIPY simulations, individual macro elec-

trons were calculated sequentially. For large 2D wavefronts it

is not possible to simulate multiple macro electrons in parallel,

due to memory constraints. However, this is not the case for

wavefronts with a lower number of samples (e.g. 1D simula-

tions with Ny = 1). By calculating the individual macro elec-

tron wavefronts in batches, the overhead time is reduced,

making more efficient use of the GPU resources. Table 1 also

compares the performance for simulations with a 1D wave-

front [in the horizontal plane, equivalent to Fig. 5(a)]. These

simulations consisted of 106 macro electrons, with a batch size

of 104 used for SYRIPY. In this case, SYRIPY shows a

significant increase in calculation rate compared with SRW

with an improvement of �9� for double precision mode and

�53� for single precision mode.

4. Gradient-based Bayesian inference

The process of deducing latent variables from experimental

measurements, such as inferring beam parameters from an

observed intensity profile, is an example of an inverse problem

that can be addressed using statistical inference techniques.

The solution requires the implementation of a forward model

of the system — typically a simulation. By adjusting the input

parameters of the simulation, the output can be manipulated

until it aligns with the experimental observations. SYRIPY has

been designed primarily as a forward model for performing

statistical inference of synchrotron-radiation-based diag-

nostics.

Solving inverse problems can be exceedingly computa-

tionally expensive if the number of latent variables is large.

This is due to the high-dimensional space that must be

searched, and is a direct consequence of the curse of dimen-

sionality. Directly solving the equations in Section 2 using a

C++/CUDA implementation would improve performance by

removing the Python overhead. However, we elected to use

PyTorch instead of CUDA as it allows us to make use of its

automatic differentiation package. Gradient information

allows us to search the input space in an intelligent manner,

greatly reducing the resources required. This opens up the

computer programs
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Figure 4
Circular motion photon flux density distribution calculated using both analytical (solid red line) and numerical (dashed black line) methods. Panel (a)
shows the distribution against observation angle with fixed frequency ! = 1016 rad s� 1. Panel (b) shows the distribution against frequency with an on-axis
observation point (� = 0).



possibility of applying inference schemes which utilize a high-

dimensional input space.

Inverse problems are ill-posed when the forward model is

not an injective function, i.e. multiple distinct inputs have the

same output (Tarantola, 2005). For example, both the diver-

gence and spot size of an electron beam contribute to a

broadening of the emitted radiation. In this case, making a

point estimate of the latent parameters may result in an

erroneous result. Bayesian inference offers an approach for

solving ill-posed inverse problems, as a probability distribu-

tion over the input spaces is inferred as opposed to a point

estimate. On top of this, Bayesian methods offer a robust

approach for uncertainty quantification. In this section, we will

demonstrate how SYRIPY can be used to extract a distribu-

tion over beam size and divergence from a measured intensity

profile. We will use the same setup as displayed in Fig. 1, but

we omit the lens, making the intensity profile sensitive to the

beam size. For this simplified example, we will restrict the

measured intensity profile to 1D by taking a horizontal lineout

through the centre of the wavefront. This reduces the number

of parameters to infer, as the intensity profile only depends on

the x-components of the beam size, �x, and divergence, �x0 .

The intensity profile used in this example is shown in Fig. 6(a),

where we have assumed �x = 300 mm, �x0 = 150 mrad and a

Gaussian pixel noise with �N = 2% of the pixel counts.

We wish to obtain a joint probability distribution over all

unknown parameters x = ð�x; �x0 ; �NÞ given the measured

intensity profile y. This is achieved by applying Bayes’ rule

pðxjyÞ ¼
pðyjxÞ pðxÞ

pðyÞ
; ð26Þ

where p(y|x) is the likelihood, p(x) is the prior distribution and

p(y) =
R

pðyjxÞpðxÞ dx is the marginal distribution. The like-

lihood is the probability of obtaining the measured intensity
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Figure 6
(a) Synthetic experiment data used to infer beam parameters with Bayesian inference. (b) Intensity profile using most probable input beam parameters.

Figure 5
Photon flux density from a single electron calculated using SRW (solid red line) and SYRIPY (black dashed line). Panel (a) shows a horizontal lineout
through the centre of the wavefront. Panel (b) shows a vertical lineout through the centre of the wavefront.

Table 1
Comparison between SRW and SYRIPY simulation run-time normalized
by the number of macro electrons simulated.

Wavefront
shape

SRW
Single-processor
(s)

SRW
Multiprocessor
(s) FP64 (s) FP32 (s)

500 � 500 (2D) 1.86 0.086 0.039 0.0057

500 � 1 (1D) 0.014 0.00064 7.0 � 10� 5 1.2 � 10� 5



profile given the input beam parameters. The pixel noise is

Gaussian, so the appropriate form for the likelihood is

pðyjxÞ ¼
YN

i

1

�N

ffiffiffiffiffiffi
2�
p exp

�
fiðxÞ � yi

�2

2�2
N

( )

; ð27Þ

where fi(x) is the intensity obtained from the forward model at

pixel i, yi is the measured intensity at pixel i and N is the total

number of pixels. The prior distribution encodes our prior

knowledge of the beam parameters before observing y. We will

only assume an order of magnitude knowledge of the para-

meters and use the following uninformative uniform priors:

p(�x) = U(100 mm, 1000 mm), pð� 0xÞ = U(100 mrad, 1000 mrad)

and p(�N) = Uð0; 0:1Þ.

With p(y|x) and p(x) defined, equation (26) can be solved.

However, carrying this out directly involves calculating p(y),

an integral over all the beam parameters. With our simplified

1D example this is computationally expensive. However, for a

more realistic higher-dimensional problem (e.g. including the

y-dimension and finite energy spread), the integral is intract-

able. Therefore, an approximate inference scheme is required.

Here, we will apply stochastic variational inference (SVI)

(Hoffman & Blei, 2015), which uses a stochastic optimizer to

solve equation (26) using the variational inference approx-

imation. This involves assuming that the posterior can be

approximated by a distribution with a known parametric form,

i.e. p(x|y) ’ q�(x). This is known as the variational distribution

with parameters h. The objective of variational inference is to

find the values of h such that q�(x) best approximates the true

posterior. This is achieved by minimizing the distance between

the two distributions. To do so requires a metric, such as the

Kullback-Leibler (KL) divergence,

DKLðqjjpÞ ¼

Z1

� 1

qhðxÞ log
q�ðxÞ

pðxjyÞ

� �

dx: ð28Þ

However, it is not possible to directly calculate DKL(q||p) as it

requires prior knowledge of p(x|y) (the exact distribution we

are trying to obtain). Therefore, to proceed, we can rewrite the

KL divergence as

DKLðqjjpÞ ¼ EqhðxÞ
log pðx; yÞ � log qhðxÞ
� �

þ log pðyÞ

¼ ELBO þ log pðyÞ; ð29Þ

where ELBO = EqhðxÞ½log pðx; yÞ � log qhðxÞ� stands for the

evidence lower bound (Hoffman & Blei, 2015). The second

term in equation (29) is independent of h; therefore, mini-

mizing the KL divergence with respect to h is equivalent to

minimizing the ELBO, which can be directly calculated.

Through this process the inference scheme has been

reduced from an integral to an optimization problem, making

it numerically tractable. During each update step r�ELBO is

required, which can be obtained efficiently as SYRIPY is

differentiable. A flow diagram of the inference scheme is

displayed in Fig. 7. To streamline the implementation of this

scheme, the probabilistic programming library Pyro (Bingham

et al., 2018) has been used. A multivariate Gaussian was

selected as the variational distribution, allowing for correla-

tions between parameters to be accounted for. This results in a

nine-dimensional optimization problem as we are inferring

three means and six unique elements of the covariance. The

result of applying SVI is displayed in Fig. 8, showing all the 2D

and 1D marginals. A strong correlation between the beam size

and divergence is shown, as expected. From the marginal

distributions, we can extract estimates and uncertainties for

the latent parameters giving �x = 323.6� 43.4, �x0 = 145.5� 8.1
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Figure 7
Flow diagram showing a variational Bayesian inference scheme using a differentiable simulation. The posterior distribution is approximated by a
multivariate Gaussian q�(x) with parameters h. Samples are taken from this distribution and used as the inputs for a simulation. The simulation output
and measured intensity profiles are used to calculate the ELBO where p(x, y) = p(y|x) p(x). Using automatic differentiation, the gradient of the ELBO
with respect to h is calculated. By minimizing the ELBO, the difference between q� and p(x|y) is also minimized.



and �N = 0.0213 � 0.0017. The ground truth for each para-

meter lies within the 1� bound for each estimate, and is shown

in Fig. 8 with vertical dashed lines. Finally, the result of

performing a forward simulation using the mode of the

posterior (equivalent to the maximum a posteriori estimation)

is shown in Fig. 6(b). A very good agreement between the

synthetic experiment data and the most probable prediction

is shown.

5. Summary

In this manuscript, we have introduced a novel Python

package SYRIPY, specifically designed to facilitate the

statistical inference of synchrotron-radiation-based diag-

nostics. SYRIPY is composed of three core modules: a particle

tracker, a Liénard–Wiechert solver and a propagation module

based on Fourier optics. This enables start-to-end simulations

of the generation and detection of synchrotron radiation. The

package has been developed using the library PyTorch,

allowing SYRIPY to run natively on both CPUs and GPUs. In

particular, the Liénard–Wiechert solver and the Fourier optics

module are highly parallelizable, making the code highly

efficient when run on a GPU. Developing the package with

PyTorch as the underlying library enables the automatic

calculation of gradients.

We have presented benchmark calculations, showing that

the package agrees well with both analytical and numerical

results. For simulations which only require single floating-

point precision, SYRIPY shows a significant (�50�) speed

improvement compared with SRW. This is a direct result of

the higher instruction throughput of a GPU when compared

with a CPU.

SYRIPY is both fast and differentiable, making it an ideal

tool for performing statistical inference. We have demon-

strated this capability by using the package to perform

Bayesian inference of simulated experimental data. With the

application of SVI, the complex task of solving Bayes’ equa-

tion is reduced to a more manageable optimization problem.

Even so, with our simplified 1D example, nine parameters

must be optimized. This would be intractable without gradient

information due to the curse of dimensionality. Moreover, the

utility of SYRIPY is not limited to Bayesian inference. Other

applications of the package could include inferring beam

parameters rapidly through maximum likelihood estimation

or predicting the full transverse phase space of the beam using

a neural network parameterization as discussed by Roussel

et al. (2023).

SYRIPY is publicly available on GitHub at https://github.

com/robbiewatt1/SYRIPY.
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The dashed vertical black lines correspond to the ground truth value.

https://github.com/robbiewatt1/SYRIPY
https://github.com/robbiewatt1/SYRIPY
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB13
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB13
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB16
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tv5053&bbid=BB18
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