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An integrated computer software system for macromolecular crystallography

(MX) data collection at the BL02U1 and BL10U2 beamlines of the Shanghai

Synchrotron Radiation Facility is described. The system, Finback, implements a

set of features designed for the automated MX beamlines, and is marked with

a user-friendly web-based graphical user interface (GUI) for interactive data

collection. The Finback client GUI can run on modern browsers and has been

developed using several modern web technologies including WebSocket,

WebGL, WebWorker and WebAssembly. Finback supports multiple concurrent

sessions, so on-site and remote users can access the beamline simultaneously.

Finback also cooperates with the deployed experimental data and information

management system, the relevant experimental parameters and results are

automatically deposited to a database.

1. Introduction

To meet the requirements of highly automatic and reliable

operation, a user-friendly and robust data collection system

is necessary to integrate beamline hardware and underlying

software for biological macromolecular crystallography (MX)

beamlines. Since 2010, the BluIce system (McPhillips et al.,

2002) has been applied at Shanghai Synchrotron Radiation

Facility (SSRF) beamlines. The BluIce system was originally

developed by Stanford Synchrotron Radiation Lightsource.

The SSRF MX group ported BluIce and integrated it with a

Rigaku ACTOR sample changer for mounting/dismounting

samples, remote access and automatic crystal screening. In

recent years, with the popularization of hybrid pixel array

detectors such as Pilatus and Eiger, the amount of diffraction

data collected has increased dramatically. To overcome this

challenge, an automatic data processing and experimental

information system, which can be cooperated with BluIce, was

developed and deployed at SSRF MX beamlines (Yu et al.,

2019). However, both SSRF accelerator and optics devices as

well as our newly home-made diffractometer and sample

changer are controlled using Experimental Physics and

Industrial Control System (EPICS). Therefore, maintenance

and development of the distributed hardware servers (DHSs)

of BluIce requires much extra work.

Besides BluIce, over the past 20 years multiple data

acquisition software and graphical user interfaces (GUIs)

have been developed, including BSS (Ueno et al., 2005),

CBASS (Skinner et al., 2006), STARS (Yamada et al., 2008),

MxCuBE2 (Gabadinho et al., 2010), JBluIce-EPICS
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(Stepanov, Hilgart et al., 2011; Stepanov, Makarov et al., 2011;

Stepanov et al., 2013), GDA (https://github.com/opengda/

gda-diamond) and DA+ (Wojdyla et al., 2018). In recent years,

to apply the safer and faster-responding remote access mode,

several web-based data collection systems have been

successfully developed and deployed for many MX beamlines

or other beamlines, such as WIFIP (Sallaz-Damaz & Ferrer,

2017), YAIBEX (Australian Synchrotron), MXCuBE3

(Mueller et al., 2017) and Daiquiri (Fisher et al., 2021).

Inspired by these progressions, and further considering that

our experimental information system also uses a web inter-

face, developing a data collection system with web interface

can integrate the two systems more deeply and reduce the

workload by sharing partial source code (such as raw image

viewer and database manipulation). Taking these factors into

consideration, we have developed Finback – a new MX data

collection system which implements a set of features expected

for an automated MX beamline and includes a user-friendly

web-based GUI for interactive data collection. Finback is now

deployed at SSRF BL02U1 and BL10U2 and has been avail-

able to users since June 2021.

2. Beamline endstation configuration

Both SSRF BL02U1 and BL10U2 are equipped with a home-

made diffractometer and a home-made sample changer called

Swordfish. The area detectors are Eiger2 S 9M (BL02U1) and

Eiger X 16M (BL10U2), respectively. The data storage server

and computing cluster are provided by SSRF Phase II

Computing Center, and include about 6.9 PB of storage space

and 48 computing nodes (each with two Intel Xeon Gold 6140

CPUs and 128 GB memory) for all SSRF beamlines. The

beamline and data storage server are connected via a 40 Gbit

network, and the data storage server and the computing nodes

are connected via an Infiniband network. For online data

processing, an automatic data-processing backend called Seal

is deployed that provides a web-based interactive interface

known as SealWeb for inspecting the processed results (Yu et

al., 2019). An additional CPU node and a GPU node deployed

at each beamline are dedicated to the processing of grid scan

X-ray diffraction images and artificial intelligence crystal

centering based on Mask-RCNN (He et al., 2017), respectively.

Benefiting from the stream data of the Eiger detector, grid

scan images are processed simultaneously during data collec-

tion, so real-time grid scan analysis results can be displayed

when scanning.

3. Software infrastructure

The Finback data collection system consists of a frontend and

backend, as well as a Redis message broker over Transport

Layer Security (TLS) and a series of helper scripts for

beamline setup, on-site real-time raw image monitoring, etc.

(Fig. 1).

The frontend is a web-based interactive interface for user

manipulation. The logical code is written based on the Angular

framework and the GUI is constructed based on the Fomantic-

UI framework. Angular, which is also used in SealWeb, is a

popular frontend framework that supports data-driven

dynamic rendering of frontend interfaces without page

refresh. Fomantic-UI is a responsive web design framework

that supports dynamic adjustment of page layout according to

the actual displayed page size. To reduce maintenance diffi-

culties, the source code of the frontend is strictly identical at

both beamlines. Some beamline-specific features can be

enabled or disabled by beamline parameters configuration.

Since all devices are controlled using EPICS, except for the

Eiger detector which is controlled by a RESTful API, it made

sense that we chose EPICS for the hardware drivers. There-

fore, the original DHS drivers are not needed. The EPICS

computer programs
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Figure 1
The software infrastructure of Finback. The Finback components are shown in the shaded box. The communication protocols among the Finback
components, hardware, LDAP, user data database and automatic processing backend are represented by different colored lines.

https://github.com/opengda/gda-diamond
https://github.com/opengda/gda-diamond


system supports asynchronous monitoring of process variable

(PV) values, and a call-back can be executed as soon as the

value is changed. Using this mechanism, it is possible to

monitor a series of specific PVs and transmit the charged

values to clients in real time. However, the Http protocol is a

half-duplex protocol that cannot support real-time two-way

communication between the frontend and the backend.

Benefiting from HTML5, the WebSocket protocol has been

introduced into modern browsers. Thus, browsers can use

sockets to achieve real-time two-way communication between

frontend and backend. In Finback, WebSocket communica-

tion and message parse run as a separate WebWorker thread.

The latency of the Finback system is similar to other MX data

collection systems, such as BluIce. In practice, over 600 crystals

can be measured in one day at maximum.

The backend consists of the web server, the EPICS server,

the operation server and the raw image server. The web server

is written using Node.js, provides login authorization via the

light-weight directory access protocol (LDAP), and database

operation for sample information and data processing results.

The other servers are written using Python, implementing

real-time transmission of hardware status, raw diffraction

images and user operations.

In the Finback client GUI, four different types of

commands over WebSocket are supported:

(1) EPICS commands. Remote procedure call (RPC) over

WebSocket of caget and caput is partially implemented in the

EPICS server. EPICS commands are mainly used for setting

beamline parameters and controlling simple hardware, such as

manually switching of the diffractometer shutter.

(2) Device commands. Implemented in the operation server

and contain complex hardware movement.

(3) Operation commands. Most frequently used, such as

auto-centering and data collection. When an operation

command is running, the Finback client GUI is locked, and no

further command will be executed, except the abort command.

(4) Abort command. Terminates operation commands on

demand.

In the Finback GUI, there are five operation tabs, namely

‘Collection’, ‘RawImages’, ‘Protocols’, ‘Tools’ and ‘Admin’.

Among them, the Collection tab is used for sample exchange

and data collection, the RawImages tab is used for raw images

inspection, the Protocols tab is used to import sample infor-

mation, and the Tools and Admin tabs are mainly used by

beamline staff.

3.1. Collection tab

The Collection tab is the most frequently used component

in the Finback GUI, and includes motor movement, sample

exchange, data collection and fluorescence scans, as well as

displaying autoindexing results (Fig. 2).

The left part of the interface consists of sample-related

operation and information. The user can firstly import sample

computer programs
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Figure 2
The interface of Finback. (a) Navigation bar. Five tabs can be chosen. The navigation bar is automatically hidden when it is not active. The ‘Collection’
tab is responsible for sample mount/dismount, fluorescence scanning and data collection. The ‘RawImages’ tab is used to show raw diffraction images.
The ‘Protocol’ tab is responsible for importing sample information. The ‘Tools’ tab currently provides real-time video of the experimental station, mainly
for remote users to observe the status of the experimental station equipment. The ‘Admin’ tab is used by beamline staff. (b) The ‘Collection’ tab. Like
BluIce, Finback supports multiple clients logging in simultaneously, but only one client can operate. The user can switch between active and passive states
by clicking the Control button in the upper right corner.



information and set the sample positions in the sample

changer dewar using the Protocol tab, then mount or dismount

the sample according to the sample name or the position in the

sample changer [Fig. 3(a)]. In Finback, we employ a sample-

centric operating model. All collection operation settings and

their results are designed as properties of the Sample object.

These settings and autoindexing results are also shown in this

region. Autoindexing is performed asynchronously using

DIALS (Winter et al., 2018), which means that users do not

need to wait for autoindexing results before starting a new

data collection. This helps the experienced user maximize the

efficiency of the beam time.

The middle part of the interface is the sample camera.

Currently, GigE color cameras (Hikvision MV-CA013-20GC,

1/2" CMOS, 1280 � 1024 pixels) are used at SSRF BL02U1

and BL10U2. These cameras are driven by an EPICS Aravis

driver and MJPEG video stream generated using an FFmpeg

server. Finback supports MJPEG video stream directly. There

are three ways to render the camera view in modern browsers:

scalable vector graphics (SVG), canvas and WebGL. Among

these, SVG provides the most high-level API functions and is

the easiest for implementing camera views without depen-

dending on third-party libraries. But SVG has a limit on the

number of objects – too many objects will slow down the

rendering speed. The initial version of Finback used SVG to

draw the camera view, which ran smoothly in most cases.

However, if more than 1000 cells were required in the grid

scan, the refresh speed of the interface was too low to use. The

current version of Finback uses PIXI.js to draw the camera

view. PIXI.js is a WebGL-based 2D graphics library which can

make use of the graphics card to maximize the display

performance and can fall back to canvas automatically

if there is no WebGL support. Over 10000 points are drawn

and move smoothly with the sample movement in the grid

scan [Fig. 3(b)]. To align the sample position, two different

sample alignment methods are available: manual and auto-

matic. In the manual option, mouse wheel clicking corre-

sponds to sample translation and omega rotation by 90�, and

mouse wheel scrolling corresponds to camera zoom. As a

result, only the mouse wheel is required to align the sample,

with as little as two clicks. The isolate operation mode of

sample translation and rotation is also available by clicking the

left mouse button. Fully automatic crystal centering is

achieved using Mask-RCNN deep neural network technology

(https://github.com/matterport/Mask_RCNN). This image

recognition program will attempt to identify the crystal and

loop at 0� and 90� before alignment. After alignment, the

side of the sample with the larger area in view is rotated

to align with the camera for subsequent observation and

data collection.

computer programs
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Figure 3
(a) Sample queue. Click the Mount button to the right of the specified sample name in the Sample queue column on the left to mount the corresponding
sample. The sample queue can import hundreds of samples at once, which is useful for a fragment-based lead discovery (FBLD) screen campaign.
(b) Gridscan. A heat map of the diffraction results with red corresponding to the strongest diffraction is displayed on top of the sample’s camera view. A
13 � 10 cells grid scan is covering a protein crystal. Data were collected with the Eiger S 9M detector at 40 Hz with a 20 mm � 20 mm X-ray beam.
Benefiting from the stream data of the Eiger detector, the grid scan images are processed simultaneously during data collection and immediately
displayed on the browser.
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On the right half of the interface is the motion control

panel, quick crystal test collection settings panel and

quick dataset collection settings panel. Routine collection

tasks can be accomplished using the quick collection settings

panel. If advanced collection tasks are required, such as

inverse beam, helical data collection and grid scan, dialogs

with detailed settings are provided. Finback supports inverse

beam data collection using the Eiger detector. For the

inverse beam, the total frame number of diffraction images

can be evenly divided by the frame number of diffraction

images in the sub-wedge, and .h5 files must be re-sorted

after collection.

To benefit from the unified development of the software

and hardware, fast multi-angle test image collection has been

implemented in Finback . When test images need to be

collected, the user can select ‘1 image’, ‘2 images every 90�’,

‘4 images every 45�’ or ‘4 images every 90�’. Whatever item is

selected, only one arm command will be sent to the detector.

When omega is rotated to the corresponding angle, the

diffractometer will send 1, 2 or 4 trigger signals to the detector.

In this way, the time required to collect several test images can

be minimized. Furthermore, due to the lack of starting angle

information for the last 1 or 3 images, these data cannot be

indexed directly. To autoindex these data, Finback will add

custom records in the master file, and a specified script to

index these data, and send back the index result and predic-

tion (Fig. 4).

3.2. Rawimages tab

Finback also supports the display of raw diffraction images

in browsers for on-site and remote users (Fig. 5). Limited by

network bandwidth and additional data transmission, the web

raw image viewer can only display images at low frame rate

and is only suitable for inspecting test images – it is not

suitable for monitoring the data collection process. Depending

on whether the user’s network address is outside the SSRF

firewall or not, the Finback backend converts the raw image to

zstd compression format (https://github.com/facebook/zstd) or

uncompressed format, then sends these binary data via

computer programs
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Figure 4
The interface for the index result and prediction. After test images are collected, DIALS is used to index these images, then the index result and
prediction image are shown in Finback.

https://github.com/facebook/zstd


WebSocket transport protocol. For Eiger X 16M, its size is

about 14 Mbytes for compression format or 70 Mbytes for

uncompressed format; for Eiger2 S 9M, it is about 9 Mbytes

for compression format or 35 Mbytes for uncompression

format. In the Finback client, we also use PIXI.js for rendering

raw images. Before rendering, the raw linearized data must

be decompressed (if needed), re-shaped to a bitmap, as well

as carrying out color transformation including brightness

adjustment and color marking of ‘gap’, overflow pixels and

bad pixels. The initial color transformation code is written in

JavaScript, but only provides an acceptable performance in

browsers with a high-performance just-in-time (JIT) compiler

(e.g. Google Chrome). To be compatible with more browsers

and obtain higher performance, we have re-written the color

transformation code using WebAssembly technology in C

language, so the raw image viewer can now change brightness

and render raw images smoothly on the various modern

browsers. For on-site users, we also provide a helper script

called albula_helper. It receives commands from the Finback

backend via ZeroRPC, then the manipulation Python API of

Albula to display raw images in real time.

3.3. Multiple concurrent sessions

The Finback system supports multiple clients running at the

same time, so several authorized users can run the Finback

GUI at different locations together. But only one of them can

operate Finback, which is referred to as the active client, and

the others are referred to as passive clients. Any user can take

control permissions from the current active user without the

active user’s consent. Beamline staff can terminate remote

user authorization and log them out, but staff do not have the

priority to obtain control permissions over other users. This

design concept is inherited from BluIce and is efficacious for

remote access. To implement this feature, real-time hardware

status information synchronization, as well as user operation

information including data collection parameters, grid scan

settings, collection progress and so on, must be synchronized

computer programs
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Figure 5
The raw image viewer of the Finback GUI. After test images or a dataset are collected, the first frame of the test images or the dataset will be
automatically shown in the raw image viewer. For remote access, users can choose JPEG format instead of the raw diffraction images if bandwidth is
too low. Besides that, any image files in the user’s home directory can be open. Users can zoom in or zoom out of images and adjust the brightness. The
top-left image is local region of the raw image after zooming out. When the raw image is zoomed out at maximum magnification, the intensity of every
pixel is shown.



among every client. In Finback, which benefits from sample-

centric operating models and JavaScript object notation

(JSON) data interchange format, the active client stringifies

and sends the Sample object to all logged-in passive clients

and passive clients receive and parse text information to the

Sample object. The active client also sends a copy to the Redis

database at the same time. The Finback client loads this copy

from the Redis database on startup every time, so the latest

operational information can be shown for a newly logged user

or after browser refresh.

3.4. Finback configuration parameters

In order to be compatible with different beamlines, an MX

data collection system needs to set many configuration para-

meters, such as beam center, exposure time limit, sample

changer mounting positions and so on. Usually these config-

uration parameters are saved in files or databases that the

program reads every time at startup. But if the configuration

parameters are modified, the program needs to be restarted

for these to take effect. Finback is a dedicated system for

crystallography, in which the procedures are well established.

Meanwhile, at the backend, there is no requirement for

Finback to be compatible with any hardware driver other than

EPICS. Therefore, it is feasible to directly use EPICS to

implement the parameter setting of Finback. There are about

200 configuration parameters (hardware parameters not

included) in Finback, with each configuration parameter

corresponding to a PV. Some of these parameters may change

irregularly, such as beam center, sample changer mounting

positions, etc. For these parameters, the autosave module of

EPICS is used to implement regular backup and restoration.

Using the callback mechanism of EPICS, the changes of the

parameters can be known to the frontend and backend of

Finback in real time, so restarting is not necessary before the

parameters take effect.

4. Summary

We have recently developed an MX experiment environment

at SSRF, including diffractometer, sample changer, data

collection system, automatic data processing pipeline and

experiment information management system. As a part of this

system, Finback is a mature and easy-to-use software system

for MX data collection. It inherits some design concepts of

BluIce that have been proven to be very effective over the

years, such as server/client architecture and active/passive

mechanism for remote access. In Finback, hardware control is

unified to EPICS, which is more streamlined, and the main-

tenance work is reduced. By integrating with home-made

diffractometer and sample changer, some customized features

can be easily implemented. By integrating with automatic data

processing and experiment information management systems,

users can track samples from data collection to data proces-

sing and, finally, to inspecting and downloading automatic data

processing results. The Finback source code can be obtained

by email from the corresponding author.
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