

IUCrData

ISSN 2414-3146

Received 20 March 2016 Accepted 15 April 2016

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México

Keywords: crystal structure; iron dithiolate; coordination compound; sodium compound.

CCDC reference: 1474454

Structural data: full structural data are available from iucrdata.iucr.org

Di- μ -dimethylformamide- $\kappa^4 O:O-\mu$ -tetrahydrofuran- $\kappa^2 O:O$ -bis[(tetrahydrofuran- κO)sodium(I)] bis(μ -3,6-dichlorobenzene-1,2-dithiolato- $\kappa^3 S,S':S$)bis[(3,6-dichlorobenzene-1,2-dithiolato- $\kappa^2 S,S'$)iron(III)]

Jesús Barrio,^a Esther Delgado,^a Diego Hernández,^a Elisa Hernández,^a Josefina Perles^b* and Félix Zamora^a

^aDepartamento de Química Inorgánica, Universidad Autónoma de Madrid, 28049 Madrid, Spain, and ^bLaboratorio de Difracción de Rayos X de Monocristal, Servicio Interdepartamental de Investigación, Universidad Autónoma de Madrid, 28049 Madrid, Spain. *Correspondence e-mail: josefina.perles@uam.es

The title compound, $[Na_2(C_3H_7NO)_2(C_4H_8O)_5][Fe_2(C_6H_2Cl_2S_2)_4]$, was synthesized and its crystal structure was solved. The ionic crystal contains a $[Fe_2(S_2C_6H_2Cl_2)_4]^{2-}$ dimeric anion and a $[Na_2(THF)_4(\mu-THF)(\mu-DMF)_2]^{2+}$ cation, where THF is tetrahydrofuran and DMF is dimethylformamide, comprising two sodium atoms joined by one THF and two DMF molecules bridging through their O atoms. The five-coordinate environment of each Na site is completed by two terminal THF molecules. The asymmetric unit contains half a cationic unit (as the cation is placed on a twofold axis) and half an anion, as there is an inversion centre at the midpoint of the Fe–Fe vectors. The cationic and anionic moieties are linked by C–H···Cl and C–H···S interactions.

Structure description

In the title compound (Fig. 1) the $[Fe^{III}(Cl_2-bdt)_2]^-$ anion $(Cl_2-bdt is 3,6-dichloro-1,2-benzenedithiolate)$ forms a centrosymmetric dimer supported by two $Fe^{III}-S$ bonds [Fe1-S4 = 2.4885 (16) Å] in which each iron atom shows the expected 4 + 1 square-pyramidal geometry. This is the typical coordination mode displayed by most of the iron bis(dithiolato) compounds, which is due to the strong dimerization tendency of the monoanionic $[Fe(dithiolate)_2]^-$ species (Amo-Ochoa *et al.*, 2013; Chen *et al.*, 2012;

0	
Hydrogen-bond geometry (A, °).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C9-H9\cdots Cl2^{i}$	0.95	2.86	3.645 (6)	141
$C16-H16A\cdots Cl3^{ii}$	0.99	2.96	3.836 (15)	148
C23-H23···Cl2 ⁱⁱⁱ	0.95	2.92	3.787 (7)	152
$C25-H25B\cdots S4^{iv}$	0.98	2.79	3.744 (6)	165
$C25-H25C\cdots S3^{iii}$	0.98	2.98	3.711 (7)	132

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $-x, y + 1, -z + \frac{1}{2}$; (iii) x, y + 1, z; (iv) -x, -y + 1, -z.

Sproules & Wieghardt, 2010; Cerdeira et al., 2008). The basal Fe-S bond lengths [Fe1-S1 = 2.2219(15), Fe1-S2 =2.2101(16), Fe1-S3 = 2.2256(15) and Fe1-S4 =2.2296 (15) Å] are shorter than the axial one, 2.4885 (16) Å. On the other hand, the two sodium atoms in the cation $[Na_2(THF)_4(\mu$ -THF) $(\mu$ -DMF)₂]²⁺ are bridged by one THF and two DMF molecules. To complete the pentacoordination

Figure 1

Ellipsoid plot (at 50% probability) of the $[Na_2(THF)_4(\mu-THF)(\mu-THF)]$ DMF)₂]²⁺ cation with non-hydrogen atoms labelled.

Figure 2

Ellipsoid plot (at 50% probability) of the $[Na_2(THF)_4(\mu-THF)(\mu-THF)]$ DMF_{2}^{2+} cation with non-hydrogen atoms labelled.

sphere (Fig. 2), each sodium atom is additionally bonded to two terminal THF molecules, at normal distances (Benmansour et al., 2015; Raja et al., 2014; Thirumurugan et al., 2010).

In the crystal, the supramolecular packing is determined by $C-H\cdots Cl$ and $C-H\cdots S$ interactions between anionic and cationic species (Table 1), yielding a three-dimensional network.

Synthesis and crystallization

An amount of 1,2-HSC₆H₂Cl₂SH (238 mg, 1.1 mmol) was treated with an aqueous solution (10 ml) of NaOH, (5% by weight). Then, FeCl₃·6H₂O (150 mg, 0.37 mmol) in 10 ml of ethanol/water (1:1) was slowly added. The mixture was stirred at room temperature for 30 min. The solid formed was collected by filtration and washed several times with water and *n*-hexane. Suitable crystals for X-ray analysis of the title compound were obtained from a solution in THF-DMF/nhexane, at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Several C atoms from the THF molecules coordinated to the Na⁺ cation (mainly for the bridging THF, see Fig. 2) present high displacement parameters. Alternative positions for disordered C atoms could not be located.

Table 2	
Experimental details.	
Crystal data	
Chemical formula	$[Na_2(C_3H_7NO)_2(C_4H_8O)_5]$ - $[Fe_2(C_6H_2Cl_2S_2)_4]$
Mr	1500.77
Crystal system, space group	Monoclinic, $C2/c$
Temperature (K)	100
a, b, c (Å)	29.063 (2), 9.9393 (6), 25.645 (3)
β (°)	121.609 (3)
$V(Å^3)$	6309.0 (9)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	1.13
Crystal size (mm)	$0.19 \times 0.12 \times 0.02$
Data collection	
Diffractometer	Bruker Kappa APEXII
Absorption correction	Multi-scan (SADABS; Bruker, 2009)
T_{\min}, T_{\max}	0.81, 0.98
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	43114, 5765, 3785
R _{int}	0.101
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.602
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.062, 0.169, 1.04
No. of reflections	5762
No. of parameters	359
No. of restraints	2
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	1.26, -0.46

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXS2013 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and Mercury (Macrae et al., 2008).

References

- Amo-Ochoa, P., Delgado, E., Gómez-García, C. J., Hernández, D., Hernández, E., Martin, A. & Zamora, F. (2013). *Inorg. Chem.* 52, 5943–5950.
- Benmansour, S., Delgado, E., Gómez-García, C. J., Hernández, D., Hernández, E., Martin, A., Perles, J. & Zamora, F. (2015). *Inorg. Chem.* 54, 2243–2252.
- Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cerdeira, A. C., Simão, D., Santos, I. C., Machado, A., Pereira, L. C. J., Waerenborgh, J. C., Henriques, R. T. & Almeida, M. (2008). *Inorg. Chim. Acta*, **361**, 3836–3841.

- Chen, X., Lingam, H. K., Meyers, E. A. & Shore, S. G. (2012). J. Organomet. Chem. 721-722, 137-143.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Raja, D.-S., Luo, J.-H., Yeh, C.-T., Jiang, Y.-C., Hsu, K.-F. & Lin, C.-H. (2014). CrystEngComm, 16, 1985–1994.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Sproules, S. & Wieghardt, K. (2010). Coord. Chem. Rev. 254, 1358– 1382.
- Thirumurugan, A., Tan, J.-C. & Cheetham, A. K. (2010). Cryst. Growth Des. 10, 1736–1741.

full crystallographic data

IUCrData (2016). **1**, x160643 [doi:10.1107/S241431461600643X]

Di- μ -dimethylformamide- $\kappa^4 O:O-\mu$ -tetrahydrofuran- $\kappa^2 O:O$ -bis[(tetrahydrofuran- κO)sodium(I)] bis(μ -3,6-dichlorobenzene-1,2-dithiolato- $\kappa^3 S,S':S$)bis[(3,6-di-chlorobenzene-1,2-dithiolato- $\kappa^2 S,S'$)iron(III)]

Jesús Barrio, Esther Delgado, Diego Hernández, Elisa Hernández, Josefina Perles and Félix Zamora

Di- μ -dimethylformamide- $\kappa^4 O:O-\mu$ -tetrahydrofuran- $\kappa^2 O:O$ -bis[(tetrahydrofuran- κO)sodium(I)] bis(μ -3,6-dichlorobenzene-1,2-dithiolato- $\kappa^3 S, S':S$)bis[(3,6-dichlorobenzene-1,2-dithiolato- $\kappa^2 S, S'$)iron(III)]

Crystal data

 $[Na_{2}(C_{3}H_{7}NO)_{2}(C_{4}H_{8}O)_{5}][Fe_{2}(C_{6}H_{2}Cl_{2}S_{2})_{4}]$ $M_{r} = 1500.77$ Monoclinic, C2/c a = 29.063 (2) Å b = 9.9393 (6) Å c = 25.645 (3) Å $\beta = 121.609$ (3)° V = 6309.0 (9) Å³ Z = 4

Data collection

Bruker Kappa APEXII diffractometer Radiation source: molybdenum, x-ray tube Graphite monochromator θ and φ scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\min} = 0.81, T_{\max} = 0.98$ 43114 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.062$ $wR(F^2) = 0.169$ S = 1.045762 reflections 359 parameters 2 restraints Primary atom site location: structure-invariant direct methods F(000) = 3080 $D_x = 1.580 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3584 reflections $\theta = 2.2-22.1^{\circ}$ $\mu = 1.13 \text{ mm}^{-1}$ T = 100 KPrismatic, deep purple $0.19 \times 0.12 \times 0.02 \text{ mm}$

5765 independent reflections 3785 reflections with $I > 2\sigma(I)$ $R_{int} = 0.101$ $\theta_{max} = 25.4^{\circ}, \ \theta_{min} = 1.7^{\circ}$ $h = -34 \rightarrow 34$ $k = -11 \rightarrow 11$ $l = -30 \rightarrow 30$ 5765 standard reflections every 908 min intensity decay: 0.0 (2)

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0854P)^2 + 20.9273P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 1.26$ e Å⁻³ $\Delta\rho_{min} = -0.46$ e Å⁻³

Special details

Refinement. There is some disorder in atoms from the coordinated THF molecules, specially in the positions occupied by C21 and C22

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.1205 (2)	0.5476 (6)	0.1796 (2)	0.0255 (13)
C2	0.1666 (2)	0.6228 (6)	0.2206 (3)	0.0324 (14)
C3	0.2126 (2)	0.5608 (7)	0.2674 (3)	0.0382 (16)
Н3	0.2437	0.6124	0.2942	0.046*
C4	0.2125 (2)	0.4236 (7)	0.2746 (3)	0.0370 (16)
H4	0.2438	0.38	0.3063	0.044*
C5	0.1673 (2)	0.3495 (6)	0.2359 (3)	0.0328 (14)
C6	0.1201 (2)	0.4095 (6)	0.1884 (2)	0.0257 (13)
C7	-0.1128 (2)	0.3851 (6)	-0.0270 (2)	0.0248 (13)
C8	-0.1619 (2)	0.3163 (6)	-0.0633 (3)	0.0334 (14)
С9	-0.2079 (2)	0.3846 (7)	-0.1069 (3)	0.0377 (16)
Н9	-0.2406	0.3363	-0.1316	0.045*
C10	0.2067 (2)	0.4793 (7)	0.1147 (3)	0.0387 (17)
H10	0.2386	0.433	0.1437	0.046*
C11	0.1589 (2)	0.4098 (6)	0.0804 (3)	0.0314 (14)
C12	0.1114 (2)	0.4770 (6)	0.0375 (2)	0.0274 (13)
C11	0.16741 (7)	0.79653 (16)	0.21324 (7)	0.0429 (4)
C12	0.16885 (6)	0.17555 (17)	0.24562 (7)	0.0452 (4)
C13	-0.16552 (6)	0.14461 (18)	-0.05570 (7)	0.0456 (4)
Cl4	0.15827 (6)	0.23673 (17)	0.08984 (7)	0.0393 (4)
Fe1	0.01139 (3)	0.45371 (7)	0.06272 (3)	0.0205 (2)
S1	0.06380 (5)	0.62436 (14)	0.11780 (6)	0.0229 (3)
S2	0.06183 (5)	0.31766 (14)	0.14040 (6)	0.0267 (3)
S3	-0.05458 (5)	0.30212 (14)	0.02869 (6)	0.0265 (3)
S4	0.04882 (5)	0.39247 (14)	-0.00191 (6)	0.0231 (3)
C13	0.0826 (5)	1.1857 (10)	0.3275 (6)	0.105 (4)
H13A	0.0671	1.1971	0.283	0.126*
H13B	0.0531	1.1929	0.3359	0.126*
C14	0.1240 (7)	1.2872 (13)	0.3620 (7)	0.148 (6)
H14A	0.1343	1.332	0.3351	0.177*
H14B	0.11	1.3564	0.3779	0.177*
C15	0.1627 (3)	1.0772 (10)	0.3994 (4)	0.076 (3)
H15A	0.19	1.0432	0.3906	0.091*
H15B	0.1674	1.0287	0.4356	0.091*
C16	0.1703 (6)	1.2210 (14)	0.4120 (7)	0.121 (5)
H16A	0.1728	1.2413	0.4512	0.146*
H16B	0.2039	1.2518	0.4148	0.146*
C17	0.1423 (4)	0.6789 (11)	0.4322 (4)	0.082 (3)
H17A	0.1119	0.6231	0.4269	0.099*
H17B	0.1475	0.7541	0.4601	0.099*
C18	0.1906 (3)	0.5988 (9)	0.4591 (4)	0.069 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H18A	0.1826	0.5041	0.4635	0.083*
H18B	0.218	0.634	0.4999	0.083*
C19	0.2101 (4)	0.6087 (10)	0.4164 (4)	0.081 (3)
H19A	0.2472	0.6455	0.4377	0.098*
H19B	0.2103	0.5188	0.4	0.098*
C20	0.1741 (5)	0.6957 (13)	0.3685 (5)	0.112 (4)
H20A	0.1607	0.6507	0.3286	0.135*
H20B	0.1936	0.7782	0.3695	0.135*
C23	0.0411 (3)	0.9659 (7)	0.1732 (3)	0.0423 (16)
H23	0.0786	0.9867	0.1968	0.051*
C24	0.0492 (3)	0.9917 (7)	0.0845 (3)	0.0398 (16)
H24A	0.0869	1.011	0.1158	0.06*
H24B	0.0339	1.068	0.0563	0.06*
H24C	0.0476	0.9109	0.0617	0.06*
C25	-0.0394 (3)	0.9425 (6)	0.0737 (3)	0.0408 (16)
H25A	-0.0577	0.9574	0.0962	0.061*
H25B	-0.0447	0.849	0.0596	0.061*
H25C	-0.0546	1.0031	0.0383	0.061*
N1	0.0182 (2)	0.9694 (5)	0.1138 (2)	0.0317 (12)
Na1	0.05894 (11)	0.8688 (3)	0.30354 (12)	0.0485 (7)
01	0.1100 (2)	1.0542 (6)	0.3483 (3)	0.0744 (17)
O2	0.1294 (2)	0.7314 (6)	0.3744 (3)	0.0757 (18)
O3	0.01874 (19)	0.9381 (4)	0.2015 (2)	0.0431 (11)
O4	0	0.6850 (7)	0.25	0.061 (2)
C21	0.0153 (4)	0.5972 (8)	0.2171 (5)	0.080 (3)
H21A	-0.0079	0.6157	0.1727	0.096*
H21B	0.0532	0.6163	0.2295	0.096*
C22	0.0109 (9)	0.4696 (10)	0.2273 (8)	0.227 (11)
H22A	0.0464	0.424	0.2462	0.272*
H22B	-0.0148	0.423	0.1886	0.272*

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.014 (3)	0.049 (4)	0.010 (3)	0.001 (2)	0.004 (2)	-0.005 (2)
C2	0.026 (3)	0.048 (4)	0.021 (3)	-0.008 (3)	0.011 (3)	-0.011 (3)
C3	0.020 (3)	0.071 (5)	0.021 (3)	-0.013 (3)	0.009 (3)	-0.012 (3)
C4	0.017 (3)	0.073 (5)	0.011 (3)	0.005 (3)	0.001 (3)	0.004 (3)
C5	0.026 (3)	0.048 (4)	0.021 (3)	0.006 (3)	0.010 (3)	0.006 (3)
C6	0.014 (3)	0.045 (4)	0.012 (3)	0.006 (2)	0.003 (2)	-0.005 (2)
C7	0.013 (3)	0.044 (3)	0.015 (3)	-0.002 (2)	0.006 (2)	-0.005 (2)
C8	0.022 (3)	0.055 (4)	0.022 (3)	-0.006 (3)	0.011 (3)	-0.010 (3)
C9	0.013 (3)	0.073 (5)	0.019 (3)	-0.009 (3)	0.003 (3)	-0.018 (3)
C10	0.016 (3)	0.075 (5)	0.014 (3)	0.010 (3)	0.001 (3)	-0.007 (3)
C11	0.018 (3)	0.055 (4)	0.018 (3)	0.007 (3)	0.007 (3)	-0.002 (3)
C12	0.013 (3)	0.051 (4)	0.016 (3)	0.002 (2)	0.006 (2)	-0.006 (3)
Cl1	0.0403 (9)	0.0505 (10)	0.0307 (9)	-0.0171 (7)	0.0136 (7)	-0.0104 (7)
C12	0.0358 (9)	0.0544 (10)	0.0291 (9)	0.0132 (8)	0.0057 (7)	0.0141 (7)

C13	0.0338 (9)	0.0593 (11)	0.0357 (9)	-0.0211 (8)	0.0127 (8)	-0.0123 (8)
Cl4	0.0278 (8)	0.0548 (10)	0.0284 (9)	0.0184 (7)	0.0100 (7)	0.0074 (7)
Fe1	0.0155 (4)	0.0280 (4)	0.0147 (4)	0.0012 (3)	0.0056 (3)	-0.0010 (3)
S 1	0.0184 (7)	0.0303 (7)	0.0161 (7)	-0.0007 (5)	0.0063 (6)	-0.0019 (6)
S2	0.0203 (7)	0.0322 (7)	0.0187 (7)	0.0009 (6)	0.0041 (6)	0.0020 (6)
S3	0.0206 (7)	0.0329 (8)	0.0195 (7)	-0.0050 (6)	0.0059 (6)	-0.0009 (6)
S4	0.0163 (7)	0.0303 (8)	0.0179 (7)	0.0036 (5)	0.0057 (6)	-0.0008 (6)
C13	0.132 (10)	0.066 (7)	0.118 (10)	-0.026 (7)	0.066 (8)	-0.010 (6)
C14	0.221 (19)	0.094 (10)	0.165 (16)	-0.054 (11)	0.127 (15)	-0.058 (10)
C15	0.045 (5)	0.109 (8)	0.082 (7)	-0.018 (5)	0.039 (5)	-0.006 (6)
C16	0.118 (11)	0.127 (12)	0.143 (13)	-0.065 (9)	0.085 (10)	-0.055 (10)
C17	0.073 (6)	0.129 (9)	0.046 (5)	0.035 (6)	0.032 (5)	0.030 (5)
C18	0.067 (6)	0.075 (6)	0.054 (5)	-0.008 (5)	0.023 (5)	-0.004 (4)
C19	0.073 (7)	0.091 (7)	0.061 (6)	-0.017 (5)	0.022 (5)	-0.006 (5)
C20	0.114 (9)	0.175 (12)	0.091 (8)	0.075 (9)	0.084 (8)	0.061 (8)
C23	0.048 (4)	0.050 (4)	0.027 (4)	-0.001 (3)	0.019 (3)	0.002 (3)
C24	0.045 (4)	0.044 (4)	0.040 (4)	-0.001 (3)	0.029 (3)	0.002 (3)
C25	0.050 (4)	0.039 (4)	0.036 (4)	-0.012 (3)	0.024 (3)	-0.010 (3)
N1	0.042 (3)	0.035 (3)	0.028 (3)	-0.001 (2)	0.024 (3)	-0.002 (2)
Na1	0.0597 (18)	0.0594 (17)	0.0355 (16)	0.0062 (14)	0.0313 (14)	0.0059 (13)
01	0.074 (4)	0.073 (4)	0.075 (4)	-0.015 (3)	0.038 (4)	-0.007 (3)
O2	0.086 (4)	0.097 (4)	0.055 (4)	0.029 (4)	0.045 (3)	0.030 (3)
03	0.054 (3)	0.054 (3)	0.034 (3)	-0.001 (2)	0.032 (2)	0.003 (2)
O4	0.115 (7)	0.047 (4)	0.072 (5)	0	0.084 (5)	0
C21	0.129 (9)	0.074 (6)	0.102 (8)	0.003 (6)	0.105 (7)	-0.016 (5)
C22	0.55 (3)	0.060 (7)	0.36 (2)	0.010 (12)	0.44 (3)	0.004 (10)

Geometric parameters (Å, °)

C1—C6	1.393 (8)	S4—Fe1 ⁱ	2.2296 (15)
C1—C2	1.407 (8)	C13—C14	1.461 (16)
C1—S1	1.753 (5)	C13—O1	1.477 (12)
C2—C3	1.388 (8)	C14—C16	1.442 (18)
C2-Cl1	1.739 (7)	C15—O1	1.419 (10)
C3—C4	1.376 (9)	C15—C16	1.456 (15)
C4—C5	1.374 (8)	C17—O2	1.425 (9)
C5—C6	1.402 (7)	C17—C18	1.436 (11)
C5—Cl2	1.745 (6)	C18—C19	1.473 (12)
C6—S2	1.742 (5)	C19—C20	1.416 (12)
C7-C12 ⁱ	1.402 (8)	C20—O2	1.428 (10)
С7—С8	1.407 (8)	C23—O3	1.236 (7)
C7—S3	1.746 (5)	C23—N1	1.303 (8)
С8—С9	1.390 (9)	C24—N1	1.462 (7)
C8—Cl3	1.727 (7)	C25—N1	1.458 (8)
C9-C10 ⁱ	1.371 (9)	Na1—O1	2.265 (6)
C10-C9 ⁱ	1.372 (9)	Na1—O3 ⁱⁱ	2.298 (5)
C10-C11	1.377 (8)	Na1—O2	2.336 (6)
C11—C12	1.403 (8)	Na1—O3	2.341 (5)

C11—Cl4	1.739 (7)	Na1—O4	2.385 (6)
C12—C7 ⁱ	1.402 (8)	Na1—Na1 ⁱⁱ	3.069 (5)
C12—S4	1.764 (6)	O3—Na1 ⁱⁱ	2.298 (5)
Fe1—S2	2.2101 (16)	O4—C21 ⁱⁱ	1.438 (7)
Fe1—S1	2.2219 (15)	O4—C21	1.438 (7)
Fe1—S3	2.2256 (15)	O4—Na1 ⁱⁱ	2.385 (6)
Fe1—S4 ⁱ	2.2296 (15)	C21—C22	1.315 (11)
Fe1—S4	2.4885 (16)	C22—C22 ⁱⁱ	1.593 (17)
C6—C1—C2	119.2 (5)	C14—C13—O1	106.0 (11)
C6—C1—S1	119.5 (4)	C16—C14—C13	108.2 (12)
C2—C1—S1	121.4 (5)	O1—C15—C16	109.1 (9)
C3—C2—C1	121.3 (6)	C14—C16—C15	106.8 (11)
C3—C2—C11	118.2 (5)	O2—C17—C18	111.1 (7)
C1-C2-C11	120.5 (5)	C17—C18—C19	105.4 (8)
C4-C3-C2	119.2 (6)	C_{20} C_{19} C_{18}	106.8 (8)
$C_{5}-C_{4}-C_{3}$	1201(6)	$C_{19} - C_{20} - O_{2}$	1110(8)
C4-C5-C6	122.0 (6)	$03-C^{23}-N^{1}$	1260(7)
C4-C5-C12	122.0(0) 119.0(5)	C_{23} N1- C_{25}	120.0(7) 1210(5)
C_{1}^{-} C_{2}^{-} C_{12}^{-}	119.0 (5)	C_{23} N1 C_{24}	121.0(5) 121.9(6)
C_{1} C_{2} C_{1} C_{2} C_{1} C_{2} C_{2	119.1(5) 118.2(5)	$C_{25} = N_1 = C_{24}$	121.9(0) 117.0(5)
$C_1 = C_0 = C_3$	110.2(3) 110.3(4)	$01 N_{2}1 O_{3}^{ii}$	117.0(3)
$C_1 = C_0 = S_2$	119.5 (4)	$O1 N_{2} O2$	90.3(2)
$C_{12i} = C_{7} = C_{8}$	122.3(5) 117.9(5)	O_1^{ii} Na1 O_2^{ii}	30.4(3)
$C_{12} = C_7 = C_8$	117.9(3) 120.5(4)	$O_3 = Na_1 = O_2$	130.9(2)
$C_{12} = C_{7} = S_{3}$	120.3(4) 121.6(5)	O_1^{ii} Na1 O_2^{ii}	97.9 (2) 87.03 (10)
$C_{0} = C_{1} = S_{3}$	121.0(5) 120.7(6)	$O_2 = N_{01} = O_3$	37.03(19)
$C_{9} = C_{8} = C_{12}$	120.7(0) 118.0(5)	O_2 —Na1— O_3	139.0(2)
$C_{2} = C_{3} = C_{13}$	110.9(3)	O_1 Na1 O_4	173.4(2)
$C_{10i} = C_{0} = C_{0}$	120.4(3)	$O_2 = Na1 = O_4$	79.00(10)
$C_{10} = C_{9} = C_{8}$	120.8(0)	O_2 No1 O_4	94.2(2)
$C_{2} = C_{10} = C_{11} = C_{12}$	119.7(0) 120.7(6)	O_3 —Na1—O4	78.10(13)
C10-C11-C12	120.7(0)	O1—Na1—Na1"	123.35(17)
C10-C11-C14	119.2 (5)	O_3^{m} Na1—Na1"	49.18 (13)
C12 - C11 - C14	120.1 (5)	O_2 —Na1—Na1"	143.93 (18)
$C11 - C12 - C/^{2}$	120.1 (5)	O_3 —Nal—Nal"	47.98 (13)
C11—C12—S4	121.2 (5)	O4—Nal—Nal"	49.97 (12)
C/	118.7 (4)		107.9(7)
S2—Fel—S1	89.09 (6)	CI5—OI—Nal	134.7 (6)
S2—Fe1—S3	88.13 (6)	CI3—OI—Nal	116.8 (6)
SI-Fel-S3	158.23 (7)	C17—O2—C20	105.1 (6)
S2—Fe1—S4 ¹	163.07 (7)	C17—O2—Na1	132.0 (5)
S1—Fe1—S4 ⁱ	86.93 (6)	C20—O2—Na1	122.6 (5)
S3—Fe1—S4 ⁱ	89.48 (6)	C23—O3—Na1 ⁱⁱ	147.1 (4)
S2—Fe1—S4	97.79 (6)	C23—O3—Na1	128.0 (4)
S1—Fe1—S4	102.52 (6)	Na1 ⁿ —O3—Na1	82.83 (18)
S3—Fe1—S4	99.25 (6)	C21 ⁱⁱ —O4—C21	105.3 (8)
S4 ⁱ —Fe1—S4	99.13 (5)	C21 ⁱⁱ —O4—Na1 ⁱⁱ	116.9 (4)
C1—S1—Fe1	104.4 (2)	C21—O4—Na1 ⁱⁱ	118.5 (4)

data reports

C6—S2—Fe1	104.9 (2)	C21 ⁱⁱ —O4—Na1	118.5 (4)
C7—S3—Fe1	105.5 (2)	C21—O4—Na1	116.9 (4)
C12—S4—Fe1 ⁱ	105.7 (2)	Na1 ⁱⁱ —O4—Na1	80.1 (2)
C12—S4—Fe1	100.46 (18)	C22—C21—O4	112.1 (7)
Fe1 ⁱ —S4—Fe1	80.87 (5)	C21—C22—C22 ⁱⁱ	105.3 (5)

Symmetry codes: (i) -x, -y+1, -z; (ii) -x, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
С9—Н9…Сl2 ^{ііі}	0.95	2.86	3.645 (6)	141
C16—H16A···Cl3 ^{iv}	0.99	2.96	3.836 (15)	148
C23—H23···Cl2 ^v	0.95	2.92	3.787 (7)	152
C25—H25 <i>B</i> ···S4 ⁱ	0.98	2.79	3.744 (6)	165
C25—H25 C ···S3 ^v	0.98	2.98	3.711 (7)	132

Symmetry codes: (i) -*x*, -*y*+1, -*z*; (iii) *x*-1/2, -*y*+1/2, *z*-1/2; (iv) -*x*, *y*+1, -*z*+1/2; (v) *x*, *y*+1, *z*.