ISSN 2414-3146

Received 27 February 2016 Accepted 12 March 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; Cedrus atlantica; β himachalene; *p*-toluenesulfonyl; absolute structure.

CCDC reference: 1465135

Structural data: full structural data are available from iucrdata.iucr.org

(1*S*,3*R*,8*R*,9*S*,10*R*)-2,2-Dichloro-3,7,7,10-tetramethyltricyclo[6.4.0.0^{1,3}]dodecan-9-yl 4-methylbenzene-1-sulfonate

Ahmed Benharref,^a* Lahcen El Ammari,^b Mohamed Saadi,^b Abdelouahd Oukhrib^a and Moha Berraho^a

^aLaboratoire de Chimie des Substances Naturelles, "Unité Associé au CNRST (URAC16)", Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, Université Cadi Ayyad, 40000 Marrakech, Morocco, and ^bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta BP 1014 Rabat, Morocco. *Correspondence e-mail: benharref@uca.ma

The title compound, $C_{23}H_{31}Cl_2O_3S$, was synthesized in three steps from β -himachalene (3,5,5,9-tetramethyl-2,4a,5,6,7,8-hexahydro-1*H*-benzocycloheptene), which was isolated from essential oil of the Atlas cedar (*Cedrus atlantica*). The fused six- and seven-membered rings have boat conformations: the dihedral angle between the mean planes of the rings is 88.03 (12)%. The absolute structure was established unambiguously from anomalous dispersion effects. There are no directional interactions in the crystal.

Structure description

The Atlas cedar (*Cedrus atlantica*), native to Morocco, is the source of essential oils made up mainly (75%) of bicyclic sesquiterpene hydrocarbons, among which is found the compound β -himachalene (El Haib *et al.*, 2011). The reactivity of this sesquiterpene and its derivatives has been studied extensively by our team in order to prepare new products with potential biological properties (El Jamili *et al.*, 2002; Zaki *et al.*, 2014; Benharref *et al.*, 2015). For example, these compounds have been tested for their potential anti-fungal activity against the phytopathogen *Botrytis cinerea* (Daoubi *et al.*, 2004).

The structure of the title compound was determined as part of our ongoing studies in this area. The molecule is built up from two fused six- and seven-membered rings which is linked to a three-membered ring. An additional toluensulfonic acid group system is attached to the six-membered ring (Fig. 1). The six- and seven- membered rings display boat conformations, as indicated by the total puckering amplitude $Q_{\rm T} = 0.730$ (2) Å and

The molecular structure of the title compound, showing the the atomlabelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

spherical polar angle $\theta = 88.03 (14)^{\circ}$ with $\varphi = -170.60 (14)^{\circ}$ for the six-membered ring and $Q_{\rm T} = 1.134 (2)$ Å, $\theta = 88.22 (10)$, $\varphi_2 = -51.43 (10)$ and $\varphi_3 = -62.95 (3)^{\circ}$ for the seven-membered ring. Owing to the presence of Cl and S atoms, the absolute configuration was confirmed as C1(1*S*, C3(*R*), C8(*R*), C9(*S*)and C10(*R*). No directional interactions beyond typical van der Waals contacts could be identified in the crystal.

Synthesis and crystallization

Diborane was prepared by addition at 0°C of 2.5 g (17 mmol) of boron trifluoride etherate in 0.5 g (12.6 mmol) of sodium borohydride in 30 ml of diglyme. The diborane formed was driven by a stream of dry nitrogen in 2 g (7 mmol) of (1S,3R,8R)-2,2-dichloro-3,7,7,10-tetramethyltricyclo-[6.4.0.01,3]dodec-9-ene (El Jamili et al., 2002) dissolved in 20 ml of tetrahydrofuran at 273 K. This took about 4 h, then 2 ml of sodium hydroxide 3 N was added carefully between 263 K and 273 K in 15 minutes, and then 2 ml of 30% hydrogen peroxide in the vicinity of 298 K. The reaction mixture was then extracted with diethyl ether. The organic phase was washed to neutrality and the solvent was evaporated under vacuum. The residue obtained was chromatographed on a column of silica gel with pentane-ethyl acetate (95/5), which allowed the isolation of pure (1S,3R,8R,9S,10R)-2,2-dichloro-3,7,7,10-tetramethyltosyltricyclo[6.4.0.01,3]dodecan-9-ol. 1 g (3.3 mmol) of the latter compound was dissolved in pyridine (10 ml). The solution was cooled to 10°C and tosyl chloride (0.6 g, 3.3 mmol) in pyridine (4 ml) was added dropwise. The reaction mixture was stirred overnight and treated with 10 ml of water and extracted with dichlormethane. The organic phase was evaporated and the residue obtained was chromatographed on a column of silica gel with hexane and ethyl acetate (97/3) as eluent to give the sesquiterpene tosylate, with a yield of 87% (1.3 g, 2.8 mmol). The title compound was recrystallized from its ethyl acetate solution.

Fable	1	
Experi	mental	details.

Crystal data	
Chemical formula	$C_{23}H_{32}Cl_2O_3S$
M _r	459.44
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Temperature (K)	298
a, b, c (Å)	9.410 (5), 9.667 (5), 25.285 (5)
$V(Å^3)$	2300.1 (18)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.40
Crystal size (mm)	$0.30\times0.26\times0.18$
Data collection	
Diffractometer	Bruker X8 APEX
Absorption correction	Multi-scan (SADABS; Sheldrick, 2003)
T_{\min}, T_{\max}	0.658, 0.747
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	23145, 4695, 4050
$R_{\rm c}$	0.042
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.625
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.030, 0.069, 0.97
No. of reflections	4695
No. of parameters	267
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.24, -0.20
Absolute structure	Flack & Bernardinelli (2000), 1527 Friedel pairs
Absolute structure parameter	-0.02(2)

Computer programs: APEX2 and SAINT-Plus (Bruker, 2009), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and publCIF (Westrip, 2010).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

- Benharref, A., El Ammari, L., Saadi, M. & Berraho, M. (2015). Acta Cryst. E71, 0284–0285.
- Bruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Daoubi, M., Durán-Patrón, R., Hmamouchi, M., Hernández-Galán, R., Benharref, A. & Collado, I. G. (2004). *Pest Manag. Sci.* 60, 927– 932.
- El Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). *Tetrahedron Asymmetry*, 22, 101–108.
- El Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). *Tetrahedron Lett.* **43**, 6645–6648.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148. Sheldrick, G. M. (2003). SADABS. University of Göttingen,
- Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Zaki, M., Benharref, A., Daran, J.-C. & Berraho, M. (2014). Acta Cryst. E70, o526.

full crystallographic data

IUCrData (2016). **1**, x160422 [doi:10.1107/S2414314616004223]

(1*S*,3*R*,8*R*,9*S*,10*R*)-2,2-Dichloro-3,7,7,10-tetramethyltricyclo-[6.4.0.0^{1,3}]dodecan-9-yl 4-methylbenzene-1-sulfonate

Ahmed Benharref, Lahcen El Ammari, Mohamed Saadi, Abdelouahd Oukhrib and Moha Berraho

(1*S*,3*R*,8*R*,9*S*,10*R*)-2,2-Dichloro-3,7,7,10-tetramethyltricyclo[6.4.0.0^{1,3}]dodecan-9-yl 4-methylbenzene-1-sulfonate

Crystal data

 $C_{23}H_{32}Cl_2O_3S$ $M_r = 459.44$ Orthorhombic, $P2_12_12_1$ a = 9.410 (5) Å b = 9.667 (5) Å c = 25.285 (5) Å V = 2300.1 (18) Å³ Z = 4F(000) = 976

Data collection

Bruker X8 APEX diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2003) $T_{\min} = 0.658, T_{\max} = 0.747$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.069$ S = 0.974695 reflections 267 parameters 0 restraints Hydrogen site location: inferred from neighbouring sites $D_x = 1.327 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4695 reflections $\theta = 2.3-26.4^{\circ}$ $\mu = 0.40 \text{ mm}^{-1}$ T = 298 KPrism, colourless $0.30 \times 0.26 \times 0.18 \text{ mm}$

23145 measured reflections 4695 independent reflections 4050 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ $\theta_{max} = 26.4^\circ, \theta_{min} = 2.3^\circ$ $h = -10 \rightarrow 11$ $k = -12 \rightarrow 11$ $l = -31 \rightarrow 31$

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0379P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.24 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.20 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack & Bernardinelli (2000), **1527** Friedel pairs Absolute structure parameter: -0.02 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S	0.30361 (7)	1.09730 (7)	0.32932 (3)	0.04508 (18)
Cl2	0.09152 (7)	1.01208 (7)	0.49466 (2)	0.04986 (19)
Cl1	-0.13706 (9)	1.18643 (9)	0.52767 (3)	0.0642 (2)
O3	0.18685 (16)	1.12166 (18)	0.37229 (6)	0.0404 (4)
O2	0.2495 (2)	1.1256 (2)	0.27804 (8)	0.0676 (7)
01	0.4254 (2)	1.1701 (2)	0.34718 (10)	0.0734 (7)
C17	0.3410 (2)	0.9205 (3)	0.33419 (9)	0.0352 (5)
C9	0.0330 (2)	1.1402 (3)	0.35953 (9)	0.0361 (6)
Н9	0.0216	1.1448	0.3210	0.043*
C7	-0.1280 (3)	0.9254 (3)	0.33748 (9)	0.0413 (6)
C1	-0.1474 (2)	1.0598 (3)	0.42624 (9)	0.0360 (6)
C20	0.4280 (3)	0.6460 (3)	0.34090 (10)	0.0432 (6)
C3	-0.1941 (3)	0.9480 (3)	0.46591 (10)	0.0444 (6)
C8	-0.0504(2)	1.0149 (3)	0.38083 (8)	0.0331 (5)
H8	0.0207	0.9536	0.3967	0.040*
C6	-0.2455 (3)	0.8346 (3)	0.36231 (11)	0.0554 (8)
H6A	-0.3190	0.8963	0.3753	0.066*
H6B	-0.2874	0.7803	0.3341	0.066*
C19	0.3883 (3)	0.7190 (3)	0.38560 (10)	0.0450 (6)
H19	0.3899	0.6749	0.4183	0.054*
C22	0.3759 (3)	0.8483 (3)	0.28896 (9)	0.0463 (7)
H22	0.3696	0.8909	0.2561	0.056*
C21	0.4200 (3)	0.7126 (3)	0.29281 (10)	0.0474 (7)
H21	0.4451	0.6650	0.2622	0.057*
C18	0.3464 (3)	0.8555 (3)	0.38292 (9)	0.0419 (6)
H18	0.3220	0.9034	0.4135	0.050*
C2	-0.0890 (3)	1.0568 (3)	0.48186 (9)	0.0416 (6)
C12	-0.2463 (3)	1.1782 (3)	0.41175 (11)	0.0497 (7)
H12A	-0.2872	1.2166	0.4437	0.060*
H12B	-0.3234	1.1430	0.3901	0.060*
C15	-0.0172 (3)	0.8332 (3)	0.31048 (11)	0.0590 (8)
H15A	-0.0638	0.7714	0.2864	0.089*
H15B	0.0328	0.7806	0.3368	0.089*
H15C	0.0490	0.8900	0.2914	0.089*
C4	-0.1418 (3)	0.8026 (3)	0.45579 (11)	0.0528 (7)
H4A	-0.1628	0.7458	0.4864	0.063*
H4B	-0.0394	0.8046	0.4514	0.063*
C10	-0.0069 (3)	1.2782 (3)	0.38320 (11)	0.0448 (6)
H10	0.0226	1.2779	0.4204	0.054*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C5	-0.2087 (4)	0.7361 (3)	0.40679 (12)	0.0606 (8)
H5A	-0.1436	0.6669	0.3932	0.073*
H5B	-0.2948	0.6885	0.4175	0.073*
C11	-0.1684 (3)	1.2921 (3)	0.38159 (12)	0.0584 (8)
H11A	-0.1993	1.2908	0.3450	0.070*
H11B	-0.1948	1.3810	0.3964	0.070*
C23	0.4820 (4)	0.5012 (3)	0.34478 (13)	0.0660 (8)
H23A	0.5837	0.5013	0.3416	0.099*
H23B	0.4416	0.4465	0.3169	0.099*
H23C	0.4556	0.4627	0.3784	0.099*
C16	-0.2018 (3)	1.0110 (4)	0.29404 (11)	0.0631 (8)
H16A	-0.2716	1.0705	0.3098	0.095*
H16B	-0.2475	0.9498	0.2694	0.095*
H16C	-0.1325	1.0659	0.2758	0.095*
C13	0.0668 (4)	1.3991 (3)	0.35583 (14)	0.0702 (9)
H13A	0.0357	1.4044	0.3197	0.105*
H13B	0.1679	1.3854	0.3568	0.105*
H13C	0.0434	1.4836	0.3738	0.105*
C14	-0.3432 (3)	0.9518 (4)	0.48932 (12)	0.0682 (9)
H14A	-0.3733	1.0462	0.4931	0.102*
H14B	-0.3428	0.9078	0.5233	0.102*
H14C	-0.4076	0.9039	0.4662	0.102*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S	0.0336 (3)	0.0400 (4)	0.0617 (4)	0.0032 (3)	0.0093 (3)	0.0097 (3)
Cl2	0.0466 (4)	0.0585 (4)	0.0445 (3)	-0.0001 (3)	-0.0142 (3)	0.0013 (3)
Cl1	0.0760 (5)	0.0677 (5)	0.0489 (4)	0.0035 (4)	0.0103 (3)	-0.0171 (3)
O3	0.0280 (8)	0.0453 (11)	0.0480 (9)	0.0045 (8)	-0.0025 (7)	-0.0001 (8)
O2	0.0667 (14)	0.0767 (16)	0.0595 (12)	0.0271 (12)	0.0190 (10)	0.0305 (12)
O1	0.0382 (11)	0.0457 (13)	0.136 (2)	-0.0081 (10)	0.0087 (12)	-0.0020 (13)
C17	0.0277 (12)	0.0373 (14)	0.0407 (13)	0.0008 (10)	0.0015 (9)	0.0006 (11)
C9	0.0281 (12)	0.0447 (16)	0.0355 (12)	0.0063 (11)	-0.0033 (9)	0.0020 (11)
C7	0.0332 (13)	0.0497 (17)	0.0408 (13)	-0.0021 (12)	-0.0090 (11)	-0.0065 (12)
C1	0.0288 (12)	0.0407 (15)	0.0384 (12)	0.0015 (11)	-0.0024 (10)	-0.0007 (10)
C20	0.0372 (14)	0.0379 (14)	0.0546 (15)	-0.0008 (12)	0.0044 (11)	-0.0060 (12)
C3	0.0401 (14)	0.0509 (16)	0.0422 (13)	-0.0050 (13)	0.0015 (11)	0.0010 (12)
C8	0.0272 (12)	0.0357 (14)	0.0365 (11)	0.0055 (10)	-0.0067 (9)	-0.0017 (10)
C6	0.0416 (15)	0.069 (2)	0.0560 (16)	-0.0130 (15)	-0.0076 (12)	-0.0125 (16)
C19	0.0496 (16)	0.0430 (16)	0.0424 (13)	0.0051 (13)	0.0064 (12)	0.0039 (11)
C22	0.0462 (16)	0.0580 (19)	0.0347 (12)	-0.0003 (14)	0.0031 (11)	0.0024 (12)
C21	0.0446 (15)	0.0531 (18)	0.0444 (14)	-0.0006 (14)	0.0026 (12)	-0.0163 (13)
C18	0.0443 (14)	0.0465 (16)	0.0349 (12)	0.0080 (13)	0.0053 (10)	-0.0051 (11)
C2	0.0412 (14)	0.0460 (15)	0.0375 (12)	0.0042 (12)	0.0017 (11)	-0.0025 (11)
C12	0.0356 (14)	0.0618 (19)	0.0516 (15)	0.0159 (14)	0.0021 (11)	-0.0013 (14)
C15	0.0505 (17)	0.068 (2)	0.0589 (17)	-0.0063 (16)	-0.0041 (14)	-0.0267 (16)
C4	0.0553 (17)	0.0485 (18)	0.0547 (15)	-0.0102 (14)	-0.0010 (14)	0.0124 (13)

data reports

C10	0.0448 (15)	0.0375 (15)	0.0519 (15)	0.0108 (12)	0.0048 (12)	0.0042 (12)
C5	0.0636 (19)	0.0540 (19)	0.0643 (18)	-0.0226 (16)	0.0013 (16)	-0.0056 (15)
C11	0.0517 (18)	0.0526 (18)	0.0710 (18)	0.0258 (15)	0.0033 (14)	0.0116 (15)
C23	0.076 (2)	0.0416 (18)	0.081 (2)	0.0097 (16)	0.0080 (17)	-0.0073 (15)
C16	0.0575 (17)	0.086 (2)	0.0461 (14)	-0.0003 (19)	-0.0169 (13)	-0.0009 (16)
C13	0.076 (2)	0.0390 (17)	0.096 (2)	0.0072 (17)	0.0169 (18)	0.0115 (17)
C14	0.0506 (18)	0.090 (3)	0.0639 (18)	-0.0135 (18)	0.0151 (14)	0.0001 (18)

Geometric parameters (Å, °)

<u>S—01</u>	1.418 (2)	C22—C21	1.379 (4)
S—O2	1.420 (2)	C22—H22	0.9300
S—O3	1.5631 (18)	C21—H21	0.9300
S—C17	1.750 (3)	C18—H18	0.9300
Cl2—C2	1.782 (3)	C12—C11	1.527 (4)
Cl1—C2	1.766 (3)	C12—H12A	0.9700
O3—C9	1.494 (3)	C12—H12B	0.9700
C17—C22	1.379 (3)	C15—H15A	0.9600
C17—C18	1.384 (3)	C15—H15B	0.9600
C9—C10	1.509 (4)	C15—H15C	0.9600
C9—C8	1.541 (3)	C4—C5	1.531 (4)
С9—Н9	0.9800	C4—H4A	0.9700
C7—C15	1.532 (4)	C4—H4B	0.9700
C7—C16	1.541 (4)	C10—C13	1.526 (4)
C7—C6	1.544 (4)	C10—C11	1.526 (4)
C7—C8	1.576 (3)	C10—H10	0.9800
C1—C2	1.510 (3)	С5—Н5А	0.9700
C1—C12	1.520 (4)	С5—Н5В	0.9700
C1—C8	1.530 (3)	C11—H11A	0.9700
C1—C3	1.538 (4)	C11—H11B	0.9700
C20—C21	1.378 (4)	С23—Н23А	0.9600
C20—C19	1.384 (4)	С23—Н23В	0.9600
C20—C23	1.493 (4)	С23—Н23С	0.9600
C3—C2	1.499 (4)	C16—H16A	0.9600
C3—C4	1.511 (4)	C16—H16B	0.9600
C3—C14	1.524 (4)	C16—H16C	0.9600
C8—H8	0.9800	C13—H13A	0.9600
C6—C5	1.514 (4)	С13—Н13В	0.9600
C6—H6A	0.9700	C13—H13C	0.9600
C6—H6B	0.9700	C14—H14A	0.9600
C19—C18	1.379 (4)	C14—H14B	0.9600
С19—Н19	0.9300	C14—H14C	0.9600
O1—S—O2	119.02 (15)	C3—C2—Cl2	120.5 (2)
O1—S—O3	105.77 (12)	C1—C2—Cl2	121.38 (17)
O2—S—O3	110.71 (11)	Cl1—C2—Cl2	107.28 (13)
O1—S—C17	107.45 (13)	C1—C12—C11	111.7 (2)
O2—S—C17	108.93 (13)	C1—C12—H12A	109.3

O3—S—C17	103.87 (11)	C11—C12—H12A	109.3
C9—O3—S	123.30 (14)	C1—C12—H12B	109.3
C22—C17—C18	120.0 (2)	C11—C12—H12B	109.3
C22—C17—S	118.92 (19)	H12A—C12—H12B	107.9
C18—C17—S	120.87 (19)	С7—С15—Н15А	109.5
O3—C9—C10	105.2 (2)	С7—С15—Н15В	109.5
O3—C9—C8	108.89 (18)	H15A—C15—H15B	109.5
С10—С9—С8	115.4 (2)	С7—С15—Н15С	109.5
О3—С9—Н9	109.1	H15A—C15—H15C	109.5
С10—С9—Н9	109.1	H15B—C15—H15C	109.5
С8—С9—Н9	109.1	C3—C4—C5	113.2 (3)
C15—C7—C16	107.6 (2)	C3—C4—H4A	108.9
C15—C7—C6	109.8 (2)	C5—C4—H4A	108.9
C16—C7—C6	105.8 (2)	C3—C4—H4B	108.9
C15—C7—C8	108.25 (19)	C5—C4—H4B	108.9
C16—C7—C8	114.2 (2)	H4A—C4—H4B	107.8
C6—C7—C8	111.2 (2)	C9—C10—C13	112.6 (2)
C2—C1—C12	117.5 (2)	C9—C10—C11	108.4 (2)
C2—C1—C8	118.4 (2)	C13—C10—C11	111.9 (2)
C12—C1—C8	113.5 (2)	С9—С10—Н10	107.9
C2—C1—C3	58.89 (16)	C13—C10—H10	107.9
C12—C1—C3	120.7 (2)	C11—C10—H10	107.9
C8—C1—C3	117.4 (2)	C6—C5—C4	115.5 (3)
C21—C20—C19	117.9 (2)	С6—С5—Н5А	108.4
C21—C20—C23	121.0 (2)	С4—С5—Н5А	108.4
C19—C20—C23	121.1 (3)	С6—С5—Н5В	108.4
C2—C3—C4	118.9 (2)	С4—С5—Н5В	108.4
C2—C3—C14	119.1 (2)	H5A—C5—H5B	107.5
C4—C3—C14	112.9 (3)	C10—C11—C12	113.6 (2)
C2—C3—C1	59.63 (16)	C10-C11-H11A	108.8
C4—C3—C1	116.7 (2)	C12—C11—H11A	108.8
C14—C3—C1	120.0 (3)	C10-C11-H11B	108.8
C1—C8—C9	110.1 (2)	C12—C11—H11B	108.8
C1—C8—C7	113.63 (19)	H11A—C11—H11B	107.7
C9—C8—C7	115.13 (19)	С20—С23—Н23А	109.5
C1—C8—H8	105.7	С20—С23—Н23В	109.5
С9—С8—Н8	105.7	H23A—C23—H23B	109.5
С7—С8—Н8	105.7	С20—С23—Н23С	109.5
C5—C6—C7	119.7 (2)	H23A—C23—H23C	109.5
С5—С6—Н6А	107.4	H23B—C23—H23C	109.5
С7—С6—Н6А	107.4	C7—C16—H16A	109.5
С5—С6—Н6В	107.4	C7—C16—H16B	109.5
С7—С6—Н6В	107.4	H16A—C16—H16B	109.5
H6A—C6—H6B	106.9	C7—C16—H16C	109.5
C18—C19—C20	121.7 (2)	H16A—C16—H16C	109.5
C18—C19—H19	119.2	H16B—C16—H16C	109.5
C20—C19—H19	119.2	C10—C13—H13A	109.5
C17—C22—C21	119.6 (2)	C10-C13-H13B	109.5

C17—C22—H22	120.2	H13A—C13—H13B	109.5
C21—C22—H22	120.2	C10—C13—H13C	109.5
C20—C21—C22	121.5 (2)	H13A—C13—H13C	109.5
C20—C21—H21	119.2	H13B—C13—H13C	109.5
C22—C21—H21	119.2	C3—C14—H14A	109.5
C19—C18—C17	119.2 (2)	C3—C14—H14B	109.5
C19—C18—H18	120.4	H14A—C14—H14B	109.5
C17—C18—H18	120.4	C3—C14—H14C	109.5
C3—C2—C1	61.48 (16)	H14A—C14—H14C	109.5
C3—C2—Cl1	120.36 (19)	H14B—C14—H14C	109.5
C1—C2—Cl1	120.26 (18)		