

ISSN 2414-3146

Received 7 March 2016 Accepted 8 April 2016

Edited by P. C. Healy, Griffith University, Australia

‡ Emeritus Scientist.

Keywords: crystal structure; indole; hydrogen bonding.

CCDC reference: 1472998

Structural data: full structural data are available from iucrdata.iucr.org

5-(2-Hydroxybenzoyl)-2-(1*H*-indol-3-yl)pyridine-3carbonitrile

K. S. Ezhilarasi,^a Nataraj Poomathi,^b P. T. Perumal,^b‡ R. Vasanthi^a and G. Usha^c*

^aPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamil Nadu, India, ^bOrganic Chemistry Division, CSIR Central Leather Research Institute, Chennai 600 020, Tamil Nadu, India, and ^cPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India. *Correspondence e-mail: guqmc@yahoo.com

In the title compound, $C_{21}H_{13}N_3O_2$, the indole and pyridine rings are planar. The pyridine ring is in an antiperiplanar (-ap) orientation with the indole ring system and an antiperiplanar (+ap) orientation with the hydroxyphenyl ring. An intramolecular $O-H \cdots O$ hydrogen bond stabilizes the molecular structure. In the crystal, $N-H \cdots N$ hydrogen bonds involving the indole NH group and the cyanide nitrogen atom lead to the formation of a two-dimensional supramolecular network lying parallel to (011).

Structure description

Indole ring systems have become an important structural component in many pharmaceutical agents (Sundberg, 1996). Substituted indoles have been refered to as privileged structures since they are capable of binding to many receptors with high affinity (Evans *et al.*, 1988). Some indole derivatives possess cytotoxic activity (Muratake *et al.*, 1994). Indole and its bioisosters and derivatives have antimicrobial activity against Gramnegative and Gram-positive bacteria, the yeast *Candida albicans* and *Enterobacter*, *Pseudomonas aeruginosa*, *E. coli*, and *Staphylococcus epidermidis* (Biswal *et al.*, 2012).

The structure of the title compound is shown in Fig. 1. The C–N distances range from 1.345 (2) to 1.370 (2) Å, and are in good agreement with the related reported values (Vishnupriya *et al.*, 2014). The C14–O1 and C21–N3 bond lengths are 1.2347 (14) Å and 1.1413 (16) Å, respectively, in agreement with values reported by Vimala *et al.* (2015), confirming the presence of double and triple bonds. The pyridine ring (C9/N2/C10–C13) is in an antiperiplanar (*-ap*) orientation with the indole ring system (C1/N1/C2–C8) and in an antiperiplanar (*+ap*) orientation with the hydroxyphenyl ring (C15–C20), as evidenced by the torsion angles C7–C8–C9–C13 = -163.54 (11)° and C10–

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

 $C11-C14-C15 = 155.15 (11)^{\circ}$, respectively. An intramolecular $O-H \cdots O$ hydrogen bond (Table 1) stabilizes the molecular structure.

In the crystal, $N-H \cdots N$ hydrogen bonds (Table 1) between the indole NH group and the cyanide nitrogen atom result in a two-dimensional supramolecular network lying parallel to (011) (Fig. 2).

Synthesis and crystallization

A mixture of 3-formylchromone (1 mmol), cyanoacetylindole (1 mmol) and ammonium acetate (1 mmol) in DMF and a catalytic amount of $SnCl_2 \cdot 2H_2O$ (0.020 mol%) was added and refluxed for about 3 h. After completion of the reaction, the solvent was removed under reduced pressure and the residue was purified by column chromatography on siliga gel (3:97% ethyl acetate and petetroleum ether) to afford pure product in 94% yield. The purified compound was recrystallized from ethanol through slow evaporation of the solvent.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Figure 2

The packing of the molecules in the crystal structure. The dashed lines indicate hydrogen bonds.

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N1-H1A\cdots N3^{i}$	0.86	2.15	3.0016 (17)	171
$O2-H2\cdots O1$	0.82	1.84	2.5653 (14)	146

Symmetry code: (i) -x + 1, $y + \frac{1}{2}$, $-z - \frac{1}{2}$.

Table 2

Experimental details.

•	
Crystal data	
Chemical formula	$C_{21}H_{13}N_3O_2$
M _r	339.34
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	298
a, b, c (Å)	12.4764 (6), 7.8471 (3), 16.7265 (8)
β (°)	90.478 (2)
$V(Å^3)$	1637.53 (13)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.09
Crystal size (mm)	$0.35 \times 0.28 \times 0.15$
Data collection	
Diffractometer	Bruker Kappa APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2008)
T_{\min}, T_{\max}	0.969, 0.986
No. of measured, independent and	10911, 4105, 2665
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.019
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.669
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.041, 0.121, 1.57
No. of reflections	4105
No. of parameters	237
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.19, -0.17

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS97 and SHELXL97 (Sheldrick, 2008) and ORTEP-3 for Windows (Farrugia, 2012).

Acknowledgements

The authors thank SAIF, IIT Madras, for providing the X-ray data collection facility.

References

- Biswal, S., Sahoo, U., Sethy, S., Kumar, H. K. S. & Banerjee, M. (2012). *Asia. J. Pharm. Clin. Res.* **5**, 1–6.
- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Evans, B. E., Rittle, K. E., Bock, M. G., DiPardo, R. M., Freidinger, R. M., Whitter, W. L., Lundell, G. F., Verber, D. F., Anderson, P. S., Chang, R. S., Lotti, V. J., Cerino, D. H., Chen, T. B., Kling, P. J., Kunkel, K. A., Springer, J. P. & Hirshfield, J. (1988). *J. Med. Chem.* **31**, 2235–2246.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Muratake, H., Mikawa, A., Seino, T. & Natsume, M. (1994). Chem. Pharm. Bull. 42, 854–864.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sundberg, R. J. (1996). Best Synthetic Methods, Indoles; Academic Press: New York, pp. 7-11.
- Vimala, G., Poomathi, N., AaminaNaaz, Y., Perumal, P. T. & SubbiahPandi, A. (2015). Acta Cryst. E71, 0822–0823.
- Vishnupriya, R., Suresh, J., Bharkavi, S., Perumal, S. & Lakshman, P. L. N. (2014). *Acta Cryst.* E**70**, 0968–0969.

full crystallographic data

IUCrData (2016). **1**, x160586 [doi:10.1107/S2414314616005861]

5-(2-Hydroxybenzoyl)-2-(1H-indol-3-yl)pyridine-3-carbonitrile

K. S. Ezhilarasi, Nataraj Poomathi, P. T. Perumal, R. Vasanthi and G. Usha

5-(2-Hydroxybenzoyl)-2-(1H-indol-3-yl)pyridine-3-carbonitrile

Crystal data

C₂₁H₁₃N₃O₂ $M_r = 339.34$ Monoclinic, P2₁/c Hall symbol: -P 2ybc a = 12.4764 (6) Å b = 7.8471 (3) Å c = 16.7265 (8) Å $\beta = 90.478$ (2)° V = 1637.53 (13) Å³ Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scan Absorption correction: multi-scan (*SADABS*; Bruker, 2008) $T_{\min} = 0.969, T_{\max} = 0.986$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.121$ S = 1.574105 reflections 237 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 704 $D_x = 1.377 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2665 reflections $\theta = 1.6-28.4^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 298 KBlock, colorless $0.35 \times 0.28 \times 0.15 \text{ mm}$

10911 measured reflections 4105 independent reflections 2665 reflections with $I > 2\sigma(I)$ $R_{int} = 0.019$ $\theta_{max} = 28.4^\circ, \ \theta_{min} = 1.6^\circ$ $h = -16 \rightarrow 13$ $k = -10 \rightarrow 9$ $l = -22 \rightarrow 15$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0486P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.020$ $\Delta\rho_{max} = 0.19$ e Å⁻³ $\Delta\rho_{min} = -0.17$ e Å⁻³ Extinction correction: *SHELXL*, Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0087 (17)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.53477 (11)	0.87467 (16)	-0.13362 (8)	0.0454 (3)
H1	0.4722	0.8559	-0.1629	0.054*
C2	0.69959 (10)	0.96028 (15)	-0.10314 (8)	0.0443 (3)
C3	0.80237 (11)	1.02854 (18)	-0.10597 (10)	0.0611 (4)
H3	0.8296	1.0746	-0.1528	0.073*
C4	0.86139 (12)	1.0249 (2)	-0.03697 (12)	0.0765 (5)
H4	0.9300	1.0710	-0.0364	0.092*
C5	0.82078 (12)	0.9534 (2)	0.03258 (11)	0.0775 (6)
Н5	0.8632	0.9525	0.0786	0.093*
C6	0.71998 (10)	0.88427 (19)	0.03513 (9)	0.0574 (4)
H6	0.6944	0.8362	0.0821	0.069*
C7	0.65674 (10)	0.88730 (15)	-0.03363 (8)	0.0407 (3)
C8	0.54967 (9)	0.82906 (14)	-0.05491 (7)	0.0364 (3)
C9	0.47648 (9)	0.74161 (13)	-0.00264 (7)	0.0345 (3)
C10	0.43851 (9)	0.66464 (15)	0.12686 (7)	0.0409 (3)
H10	0.4578	0.6690	0.1807	0.049*
C11	0.34536 (9)	0.57542 (15)	0.10706 (7)	0.0376 (3)
C12	0.32069 (9)	0.56672 (15)	0.02623 (7)	0.0392 (3)
H12	0.2611	0.5054	0.0089	0.047*
C13	0.38481 (9)	0.64939 (14)	-0.02888 (7)	0.0364 (3)
C14	0.28746 (11)	0.48524 (15)	0.17204 (8)	0.0430 (3)
C15	0.17239 (10)	0.44727 (16)	0.16690 (7)	0.0424 (3)
C16	0.12797 (11)	0.32598 (17)	0.21906 (9)	0.0510 (4)
C17	0.02012 (12)	0.2849 (2)	0.21349 (10)	0.0673 (5)
H17	-0.0082	0.2017	0.2468	0.081*
C18	-0.04463 (13)	0.3656 (2)	0.15956 (11)	0.0717 (5)
H18	-0.1169	0.3368	0.1564	0.086*
C19	-0.00423 (11)	0.4898 (2)	0.10947 (9)	0.0632 (4)
H19	-0.0493	0.5464	0.0738	0.076*
C20	0.10269 (11)	0.52865 (18)	0.11289 (8)	0.0498 (4)
H20	0.1298	0.6110	0.0786	0.060*
C21	0.35909 (10)	0.62929 (17)	-0.11168 (8)	0.0438 (3)
N1	0.62325 (9)	0.95015 (13)	-0.16227 (6)	0.0499 (3)
H1A	0.6308	0.9865	-0.2104	0.060*
N2	0.50172 (8)	0.74344 (12)	0.07581 (6)	0.0392 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

data reports

N3	0.33755 (10)	0.60956 (18)	-0.17749 (7)	0.0645 (4)
O1	0.34049 (8)	0.44114 (13)	0.23117 (6)	0.0621 (3)
O2	0.18699 (9)	0.24606 (14)	0.27537 (7)	0.0697 (3)
H2	0.2482	0.2840	0.2753	0.105*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
C1	0.0571 (8)	0.0470 (7)	0.0320 (8)	-0.0046 (6)	0.0009 (6)	-0.0008 (5)
C2	0.0465 (8)	0.0416 (7)	0.0451 (9)	0.0062 (5)	0.0104 (6)	0.0042 (5)
C3	0.0499 (9)	0.0560 (9)	0.0778 (12)	0.0058 (6)	0.0199 (8)	0.0196 (7)
C4	0.0375 (8)	0.0842 (12)	0.1078 (15)	-0.0035 (7)	-0.0015 (9)	0.0368 (10)
C5	0.0478 (9)	0.0969 (12)	0.0875 (14)	-0.0088(8)	-0.0205 (9)	0.0371 (10)
C6	0.0441 (8)	0.0715 (9)	0.0564 (10)	-0.0035 (6)	-0.0074 (7)	0.0228 (7)
C7	0.0402 (7)	0.0400 (6)	0.0419 (8)	0.0065 (5)	0.0047 (6)	0.0050 (5)
C8	0.0402 (7)	0.0386 (6)	0.0305 (7)	0.0043 (5)	0.0017 (5)	-0.0006 (5)
C9	0.0381 (6)	0.0364 (6)	0.0291 (7)	0.0063 (5)	0.0006 (5)	-0.0018 (5)
C10	0.0465 (7)	0.0479 (7)	0.0282 (7)	0.0030 (5)	-0.0016 (6)	0.0013 (5)
C11	0.0410 (7)	0.0396 (6)	0.0324 (7)	0.0033 (5)	0.0039 (5)	-0.0006 (5)
C12	0.0397 (7)	0.0429 (6)	0.0349 (8)	-0.0001 (5)	0.0019 (6)	-0.0058 (5)
C13	0.0383 (7)	0.0421 (6)	0.0289 (7)	0.0044 (5)	0.0014 (5)	-0.0046 (5)
C14	0.0524 (8)	0.0439 (7)	0.0327 (8)	0.0001 (5)	0.0032 (6)	-0.0010 (5)
C15	0.0483 (7)	0.0458 (7)	0.0332 (8)	-0.0002 (5)	0.0100 (6)	-0.0021 (5)
C16	0.0582 (9)	0.0535 (7)	0.0415 (9)	0.0012 (6)	0.0142 (7)	0.0014 (6)
C17	0.0595 (10)	0.0708 (10)	0.0719 (13)	-0.0104 (7)	0.0225 (9)	0.0100 (8)
C18	0.0482 (9)	0.0942 (13)	0.0730 (13)	-0.0084 (8)	0.0133 (9)	-0.0017 (10)
C19	0.0504 (9)	0.0874 (11)	0.0521 (10)	0.0078 (8)	0.0042 (7)	0.0025 (8)
C20	0.0529 (8)	0.0564 (8)	0.0403 (8)	0.0034 (6)	0.0101 (6)	0.0018 (6)
C21	0.0402 (7)	0.0572 (8)	0.0342 (8)	-0.0042 (5)	0.0034 (6)	-0.0070 (6)
N1	0.0678 (8)	0.0498 (6)	0.0323 (7)	-0.0033 (5)	0.0102 (6)	0.0029 (5)
N2	0.0430 (6)	0.0465 (6)	0.0282 (6)	-0.0023 (4)	-0.0006 (5)	0.0015 (4)
N3	0.0605 (8)	0.0974 (10)	0.0357 (8)	-0.0149 (7)	-0.0007 (6)	-0.0136 (6)
01	0.0644 (6)	0.0780 (7)	0.0438 (6)	-0.0103 (5)	-0.0053 (5)	0.0185 (5)
02	0.0717 (7)	0.0794 (7)	0.0583 (8)	-0.0027 (6)	0.0100 (6)	0.0290 (6)

Geometric parameters (Å, °)

C1—N1	1.3446 (17)	C11—C12	1.3857 (16)
C1—C8	1.3754 (17)	C11—C14	1.4891 (18)
C1—H1	0.9300	C12—C13	1.3867 (17)
C2—N1	1.3697 (16)	C12—H12	0.9300
C2—C3	1.3908 (19)	C13—C21	1.4278 (17)
C2—C7	1.4057 (18)	C14—O1	1.2347 (14)
C3—C4	1.364 (2)	C14—C15	1.4680 (18)
С3—Н3	0.9300	C15—C20	1.4025 (18)
C4—C5	1.391 (2)	C15—C16	1.4079 (19)
C4—H4	0.9300	C16—O2	1.3458 (16)
C5—C6	1.371 (2)	C16—C17	1.386 (2)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5 115	0.0200	C17 C19	1 2 (2 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С5—Н3	0.9300	C17_U17	1.302 (2)
C6-H6 0.9300 $C18-C19$ 1.383 (2) C7-C8 1.4532 (17) C18-H18 0.9300 C8-C9 1.4431 (18) C19-C20 1.3690 (19) C9-C13 1.4199 (16) C20-H19 0.9300 C9-C13 1.4199 (16) C21-N3 1.1413 (16) C10-N2 1.3294 (16) N1-H1A 0.8600 C10-H10 0.9300 O2-H2 0.8200 N1-C1-C8 10.55 (11) C13-C12-H12 120.0 N1-C2-C3 129.31 (13) C12-C13-C21 117.84 (10) C3-C2-C7 107.86 (12) C12-C13-C21 117.84 (10) C4-C3-C2 117.03 (15) O1-C14-C11 117.25 (11) C4-C3-H3 121.5 C15-C14-C11 117.25 (11) C2-C3-H3 121.5 C15-C14 113.81 (12) C5-C4-H4 119.4 C20-C15-C16 117.50 (12) C3-C4-F5 121.22 (14) C20-C15-C14 113.81 (12) C5-C4-H4 119.4 C16-C15 122.20 (10) C3-C4-F5 12		1.3895 (17)		0.9300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С6—Н6	0.9300	C18—C19	1.383 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С7—С8	1.4532 (17)	C18—H18	0.9300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—C9	1.4431 (18)	C19—C20	1.3690 (19)
C9—C13 1.4199 (16) C20—H20 0.9300 C10—N2 1.3209 (16) C21—N3 1.1413 (16) C10—C11 1.3943 (16) N1—H1A 0.8600 C10—H10 0.9300 O2—H2 0.8200 N1—C1—C8 110.55 (11) C13—C12—C11 120.06 (11) N1—C1—H1 124.7 C13—C12—H12 120.0 C8—C1—H1 124.7 C11—C12—H12 120.0 N1—C2—C3 129.31 (13) C12—C13—C9 120.04 (11) N1—C2—C7 107.86 (12) C12—C13—C21 117.84 (10) C3—C2—C7 122.83 (13) C9—C13—C21 122.01 (11) C4—C3—H3 121.5 O1—C14—C15 120.48 (12) C4—C3—H3 121.5 O1—C14—C11 117.25 (11) C3—C4—C5 121.22 (14) C20—C15—C16 117.50 (12) C3—C4—C5 121.22 (14) C20—C15—C14 123.11 (12) C5—C4—H4 119.4 C16—C15—C14 123.81 (1) C6—C5—C4 121.76 (15) O2—C16—C15 122.06 (13) C5—C	C9—N2	1.3469 (15)	С19—Н19	0.9300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C13	1.4199 (16)	С20—Н20	0.9300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10—N2	1.3209 (16)	C21—N3	1.1413 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10—C11	1.3943 (16)	N1—H1A	0.8600
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C10—H10	0.9300	O2—H2	0.8200
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C1—C8	110.55 (11)	C13—C12—C11	120.06 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C1—H1	124.7	C13—C12—H12	120.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—C1—H1	124.7	C11—C12—H12	120.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1-C2-C3	129.31 (13)	C12—C13—C9	120.04 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1-C2-C7	107.86(12)	C12 - C13 - C21	117 84 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{3} C_{2} C_{7}	122.83 (13)	$C_{12} = C_{13} = C_{21}$	122.01(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{4} - C_{3} - C_{2}$	122.03(15) 117.03(15)	01 - C14 - C15	122.01(11) 120.48(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_4 = C_3 = C_2$	121.5	01 - C14 - C11	120.48(12) 117.25(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{1} = C_{2} = H_{2}$	121.5	$C_{15} = C_{14} = C_{11}$	117.25(11) 122.26(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_2 = C_3 = C_5$	121.3 121.22(14)	$C_{13} - C_{14} - C_{11}$	122.20(10)
C3-C4-H4119.4C20-C13-C14123.11 (12)C5-C4-H4119.4C16-C15-C14119.38 (11)C6-C5-C4121.76 (15)O2-C16-C17117.64 (13)C6-C5-H5119.1O2-C16-C15122.20 (12)C4-C5-H5119.1C17-C16-C15120.16 (13)C5-C6-C7118.83 (14)C18-C17-C16120.44 (15)C5-C6-H6120.6C18-C17-H17119.8C7-C6-H6120.6C16-C17-H17119.8C6-C7-C2118.32 (12)C17-C18-C19120.77 (14)C6-C7-C8135.38 (12)C17-C18-H18119.6C1-C8-C9128.49 (11)C20-C19-C18119.45 (14)C1-C8-C7105.62 (11)C20-C19-H19120.3C9-C8-C7125.89 (11)C18-C19-H19120.3N2-C9-C13119.19 (11)C19-C20-H10119.2C13-C9-C8124.56 (11)C15-C20-H20119.2C13-C9-C8124.56 (11)C15-C20-H20119.2C13-C9-C8124.56 (11)C15-C20-H20119.2C10-H10117.2C1-N1-C2109.65 (11)C10-H10117.2C1-N1-H14125.2	$C_3 = C_4 = C_3$	121.22 (14)	$C_{20} = C_{13} = C_{10}$	117.30(12)
C5C4H4119.4C16C15C14119.38 (11)C6C5C4121.76 (15) 02 C16C17117.64 (13)C6C5H5119.1 02 C16C15122.20 (12)C4C5H5119.1C17C16C15120.16 (13)C5C6C7118.83 (14)C18C17C16120.44 (15)C5C6H6120.6C18C17H17119.8C7C6H6120.6C16C17H17119.8C6C7C2118.32 (12)C17C18C19120.77 (14)C6C7C8135.38 (12)C17C18H18119.6C1C8C9128.49 (11)C20C19C18119.45 (14)C1C8C7105.62 (11)C20C19H19120.3C9C8C7125.89 (11)C18C19H19120.3N2C9C13119.19 (11)C19C20C15121.61 (14)N2C9C8124.56 (11)C15C20H20119.2C13C9C8124.56 (11)C15C20H20119.2N2C10H10117.2C1N1C2109.65 (11)N2C10H10117.2C1N1C2109.65 (11)	C_{3} — C_{4} — H_{4}	119.4	$C_{20} = C_{15} = C_{14}$	123.11(12)
C6—C5—C4121.76 (15) 02 —C16—C17117.64 (13)C6—C5—H5119.1 02 —C16—C15122.20 (12)C4—C5—H5119.1C17—C16—C15120.16 (13)C5—C6—C7118.83 (14)C18—C17—C16120.44 (15)C5—C6—H6120.6C16—C17—H17119.8C7—C6—H6120.6C16—C17—H17119.8C6—C7—C2118.32 (12)C17—C18—C19120.77 (14)C6—C7—C8135.38 (12)C17—C18—H18119.6C2—C7—C8106.30 (11)C19—C18—H18119.6C1—C8—C9128.49 (11)C20—C19—C18119.45 (14)C1—C8—C7105.62 (11)C10—C19—H19120.3C9—C8—C7125.89 (11)C18—C19—H19120.3N2—C9—C13119.19 (11)C19—C20—C15121.61 (14)N2—C9—C8116.18 (10)C19—C20—H20119.2C13—C9—C8124.56 (11)C15—C20—H20119.2N2—C10—C11125.62 (11)N3—C21—C13178.40 (14)N2—C10—H10117.2C1—N1—C2109.65 (11)C11—C10—H10117.2C1—N1—C2109.65 (11)	C5—C4—H4	119.4		119.38 (11)
C6—C5—H5119.1O2—C16—C15122.20 (12)C4—C5—H5119.1C17—C16—C15120.16 (13)C5—C6—C7118.83 (14)C18—C17—C16120.44 (15)C5—C6—H6120.6C16—C17—H17119.8C7—C6—H6120.6C16—C17—H17119.8C6—C7—C2118.32 (12)C17—C18—C19120.77 (14)C6—C7—C8135.38 (12)C17—C18—H18119.6C1—C8—C9128.49 (11)C20—C19—C18119.45 (14)C1—C8—C7105.62 (11)C20—C19—H19120.3C9—C8—C7125.89 (11)C18—C19—H19120.3N2—C9—C13119.19 (11)C19—C20—C15121.61 (14)N2—C9—C8116.18 (10)C19—C20—H20119.2C13—C9—C8124.56 (11)C15—C20—H20119.2N2—C10—C11125.62 (11)N3—C21—C13178.40 (14)N2—C10—H10117.2C1—N1—C2109.65 (11)C11—C10—H10117.2C1—N1—C1125.2	C6—C5—C4	121.76 (15)	02	117.64 (13)
C4—C5—H5119.1C17—C16—C15120.16 (13)C5—C6—C7118.83 (14)C18—C17—C16120.44 (15)C5—C6—H6120.6C18—C17—H17119.8C7—C6—H6120.6C16—C17—H17119.8C6—C7—C2118.32 (12)C17—C18—C19120.77 (14)C6—C7—C8135.38 (12)C17—C18—H18119.6C2—C7—C8106.30 (11)C19—C18—H18119.6C1—C8—C9128.49 (11)C20—C19—C18119.45 (14)C1—C8—C7105.62 (11)C20—C19—H19120.3C9—C8—C7125.89 (11)C18—C19—H19120.3N2—C9—C13119.19 (11)C19—C20—C15121.61 (14)N2—C9—C8116.18 (10)C19—C20—H20119.2C13—C9—C8124.56 (11)C15—C20—H20119.2N2—C10—C11125.62 (11)N3—C21—C13178.40 (14)N2—C10—H10117.2C1—N1—C2109.65 (11)C11—C10—H10117.2C1—N1—H14125.2	С6—С5—Н5	119.1	O2—C16—C15	122.20 (12)
C5—C6—C7118.83 (14)C18—C17—C16120.44 (15)C5—C6—H6120.6C18—C17—H17119.8C7—C6—H6120.6C16—C17—H17119.8C6—C7—C2118.32 (12)C17—C18—C19120.77 (14)C6—C7—C8135.38 (12)C17—C18—H18119.6C2—C7—C8106.30 (11)C19—C18—H18119.6C1—C8—C9128.49 (11)C20—C19—C18119.45 (14)C1—C8—C7105.62 (11)C20—C19—H19120.3C9—C8—C7125.89 (11)C18—C19—H19120.3N2—C9—C13119.19 (11)C19—C20—C15121.61 (14)N2—C9—C8116.18 (10)C19—C20—H20119.2C13—C9—C8124.56 (11)C15—C20—H20119.2N2—C10—C11125.62 (11)N3—C21—C13178.40 (14)N2—C10—H10117.2C1—N1—C2109.65 (11)C11—C10—H10117.2C1—N1—H1A125.2	C4—C5—H5	119.1	C17—C16—C15	120.16 (13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C6—C7	118.83 (14)	C18—C17—C16	120.44 (15)
C7C6H6120.6C16C17H17119.8C6C7C2118.32 (12)C17C18C19120.77 (14)C6C7C8135.38 (12)C17C18H18119.6C2C7C8106.30 (11)C19C18H18119.6C1C8C9128.49 (11)C20C19C18119.45 (14)C1C8C7105.62 (11)C20C19H19120.3C9C8C7125.89 (11)C18C19H19120.3N2C9C13119.19 (11)C19C20C15121.61 (14)N2C9C8116.18 (10)C19C20H20119.2C13C9C8124.56 (11)C15C20H20119.2N2C10C11125.62 (11)N3C21C13178.40 (14)N2C10H10117.2C1N1C2109.65 (11)C11C10H10117.2C1N1C2109.65 (11)	С5—С6—Н6	120.6	C18—C17—H17	119.8
C6—C7—C2118.32 (12)C17—C18—C19120.77 (14)C6—C7—C8135.38 (12)C17—C18—H18119.6C2—C7—C8106.30 (11)C19—C18—H18119.6C1—C8—C9128.49 (11)C20—C19—C18119.45 (14)C1—C8—C7105.62 (11)C20—C19—H19120.3C9—C8—C7125.89 (11)C18—C19—H19120.3N2—C9—C13119.19 (11)C19—C20—C15121.61 (14)N2—C9—C8116.18 (10)C19—C20—H20119.2C13—C9—C8124.56 (11)C15—C20—H20119.2N2—C10—C11125.62 (11)N3—C21—C13178.40 (14)N2—C10—H10117.2C1—N1—C2109.65 (11)C11—C10—H10117.2C1—N1—H1A125.2	С7—С6—Н6	120.6	С16—С17—Н17	119.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C7—C2	118.32 (12)	C17—C18—C19	120.77 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C7—C8	135.38 (12)	C17—C18—H18	119.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C7—C8	106.30 (11)	C19—C18—H18	119.6
C1—C8—C7 105.62 (11) C20—C19—H19 120.3 C9—C8—C7 125.89 (11) C18—C19—H19 120.3 N2—C9—C13 119.19 (11) C19—C20—C15 121.61 (14) N2—C9—C8 116.18 (10) C19—C20—H20 119.2 C13—C9—C8 124.56 (11) C15—C20—H20 119.2 N2—C10—C11 125.62 (11) N3—C21—C13 178.40 (14) N2—C10—H10 117.2 C1—N1—C2 109.65 (11) C11—C10—H10 117.2 C1—N1—H1A 125.2	C1—C8—C9	128.49 (11)	C20—C19—C18	119.45 (14)
C9—C8—C7 125.89 (11) C18—C19—H19 120.3 N2—C9—C13 119.19 (11) C19—C20—C15 121.61 (14) N2—C9—C8 116.18 (10) C19—C20—H20 119.2 C13—C9—C8 124.56 (11) C15—C20—H20 119.2 N2—C10—C11 125.62 (11) N3—C21—C13 178.40 (14) N2—C10—H10 117.2 C1—N1—C2 109.65 (11)	C1—C8—C7	105.62 (11)	С20—С19—Н19	120.3
N2—C9—C13 119.19 (11) C19—C20—C15 121.61 (14) N2—C9—C8 116.18 (10) C19—C20—H20 119.2 C13—C9—C8 124.56 (11) C15—C20—H20 119.2 N2—C10—C11 125.62 (11) N3—C21—C13 178.40 (14) N2—C10—H10 117.2 C1—N1—C2 109.65 (11) C11—C10—H10 117.2 C1—N1—H1A 125.2	C9—C8—C7	125.89 (11)	С18—С19—Н19	120.3
N2 - C9 - C8 116.18 (10) C19 - C20 - H20 119.2 C13 - C9 - C8 124.56 (11) C15 - C20 - H20 119.2 N2 - C10 - C11 125.62 (11) N3 - C21 - C13 178.40 (14) N2 - C10 - H10 117.2 C1 - N1 - C2 109.65 (11) C11 - C10 - H10 117.2 C1 - N1 - H1A 125.2	N2-C9-C13	119.19 (11)	C19—C20—C15	121.61 (14)
C13-C9-C8 124.56 (11) C15-C20-H20 119.2 N2-C10-C11 125.62 (11) N3-C21-C13 178.40 (14) N2-C10-H10 117.2 C1-N1-C2 109.65 (11) C11-C10-H10 117.2 C1-N1-H1A 125.2	N2-C9-C8	116 18 (10)	C19 - C20 - H20	119.2
N2-C10-C11 125.62 (11) N3-C21-C13 178.40 (14) N2-C10-H10 117.2 C1-N1-C2 109.65 (11) C11-C10-H10 117.2 C1-N1-H1A 125.2	$C_{13} - C_{9} - C_{8}$	124 56 (11)	$C_{15} = C_{20} = H_{20}$	119.2
N2-C10-H10 117.2 $C1-N1-C2$ $109.65(11)$ C11-C10-H10 117.2 $C1-N1-H1A$ 125.2	N_{2} C_{10} C_{11}	125.62 (11)	N_{3} C_{21} C_{13}	178 40 (14)
C11_C10_H10 117.2 C1_N1_H1A 125.2	$N_2 - C_{10} - H_{10}$	117.2	C1-N1-C2	109.65(11)
	$C_{11} = C_{10} = H_{10}$	117.2	C1 $N1$ $H1A$	105.05 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{12} C_{11} C_{10}	117.2	$C_2 = N_1 = H_1 \Lambda$	125.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{12} = C_{11} = C_{10}$	113.73(11) 125.71(11)	$C_2 - N_1 - M_A$	123.2 110 27 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{12} C_{11} C_{14} C_{14}	123.71(11) 118 27 (11)	$C_{10} = N_2 = C_7$	119.27 (10)
10-01-014 $110.27(11)$ $00-02-H2$ 109.5	010-011-014	110.27 (11)	010-02-112	107.3
N1—C2—C3—C4 178.70 (13) C8—C9—C13—C12 178.66 (10)	N1—C2—C3—C4	178.70 (13)	C8—C9—C13—C12	178.66 (10)
C7—C2—C3—C4 –1.0 (2) N2—C9—C13—C21 –174.18 (10)	C7—C2—C3—C4	-1.0 (2)	N2-C9-C13-C21	-174.18 (10)
C2-C3-C4-C5 1.0 (2) $C8-C9-C13-C21$ 2.61 (18)	C2—C3—C4—C5	1.0 (2)	C8—C9—C13—C21	2.61 (18)

C3—C4—C5—C6	-0.3 (3)	C12—C11—C14—O1	148.20 (13)
C4—C5—C6—C7	-0.5 (3)	C10-C11-C14-O1	-25.54 (17)
C5—C6—C7—C2	0.5 (2)	C12—C11—C14—C15	-31.12 (18)
C5—C6—C7—C8	179.75 (15)	C10-C11-C14-C15	155.15 (11)
N1—C2—C7—C6	-179.50 (11)	O1—C14—C15—C20	163.36 (13)
C3—C2—C7—C6	0.29 (19)	C11—C14—C15—C20	-17.35 (19)
N1—C2—C7—C8	1.05 (13)	O1—C14—C15—C16	-15.49 (19)
C3—C2—C7—C8	-179.16 (12)	C11—C14—C15—C16	163.80 (12)
N1—C1—C8—C9	-178.21 (11)	C20-C15-C16-O2	-177.12 (13)
N1—C1—C8—C7	1.71 (13)	C14—C15—C16—O2	1.8 (2)
C6—C7—C8—C1	179.03 (14)	C20-C15-C16-C17	3.0 (2)
C2C7C8C1	-1.66 (13)	C14—C15—C16—C17	-178.12 (12)
C6—C7—C8—C9	-1.1 (2)	O2-C16-C17-C18	177.76 (15)
C2—C7—C8—C9	178.26 (10)	C15—C16—C17—C18	-2.3 (2)
C1—C8—C9—N2	-166.77 (11)	C16—C17—C18—C19	0.0 (3)
C7—C8—C9—N2	13.34 (17)	C17—C18—C19—C20	1.7 (3)
C1—C8—C9—C13	16.36 (19)	C18—C19—C20—C15	-0.9 (2)
C7—C8—C9—C13	-163.54 (11)	C16—C15—C20—C19	-1.3 (2)
N2-C10-C11-C12	1.95 (18)	C14—C15—C20—C19	179.78 (13)
N2-C10-C11-C14	176.31 (11)	C8-C1-N1-C2	-1.10 (14)
C10-C11-C12-C13	-2.43 (16)	C3—C2—N1—C1	-179.80 (13)
C14—C11—C12—C13	-176.31 (11)	C7—C2—N1—C1	-0.02 (14)
C11—C12—C13—C9	0.66 (17)	C11—C10—N2—C9	0.53 (18)
C11—C12—C13—C21	176.88 (11)	C13—C9—N2—C10	-2.44 (16)
N2—C9—C13—C12	1.88 (16)	C8—C9—N2—C10	-179.49 (10)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	D—H···A
N1—H1A····N3 ⁱ	0.86	2.15	3.0016 (17)	171
O2—H2…O1	0.82	1.84	2.5653 (14)	146

Symmetry code: (i) -x+1, y+1/2, -z-1/2.