

ISSN 2414-3146

Received 9 April 2016 Accepted 18 April 2016

Edited by H. Ishida, Okayama University, Japan

Keywords: crystal structure; Schiff base; isatin.

CCDC reference: 909982

Structural data: full structural data are available from iucrdata.iucr.org

(*Z*)-2-(5-Fluoro-2-oxoindolin-3-ylidene)-*N*-methylhydrazinecarbothioamide

Amna Qasem Ali,^a Naser Eltaher Eltayeb^{b*} and Siang Guan Teoh^c

^aDepartment of Chemistry, Faculty of Science, Sebha University, Libya, ^bDepartment of Chemistry, Rabigh College of Science and Arts, King Abdulaziz University, PO Box 344, Rabigh 21911, Saudi Arabia, and ^cSchool of Chemical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia. *Correspondence e-mail: nasertaha90@hotmail.com

In the title compound, $C_{10}H_9FN_4OS$, which is approximately planar with a maximum deviation of 0.0881 (10) Å from the mean plane of the non-H atoms, an intramolecular $N-H\cdots O$ hydrogen bond generates an S(6) ring. In the crystal, molecules are linked *via* $N-H\cdots O$ hydrogen bonds, forming a helical chain along the *a* axis. The chains are linked by $N-H\cdots S$, $C-H\cdots S$ and $C-H\cdots F$ hydrogen bonds and $C-H\cdots \pi$ interactions into a three-dimensional network.

Structure description

The title Schiff base was synthesized by the condensation reaction of 5-fluoroisatin with 4-methyl-3-thiosemicarbazide. In numerous cases, isatins react with nucleophiles, even in the absence of any catalyst, either at room temperature or by heating for a few hours (Singh & Desta, 2012). Thiosemicarbazones are a class of small molecules that display numerous biological activities as antivirals and as anticancer therapeutics, as well as parasiticidal action against *Plasmodium falciparum* and *Trypanasoma cruzi* which are the causative agents of malaria and Chagas's disease, respectively (Er *et al.*, 2008). The crystal structures of (*Z*)-2-(5-fluoro-2-oxoindolin-3-ylidene)-*N*-phenylhydrazinecarbothioamide (Ali *et al.*, 2012*a*) and bis[2-(2-oxoindolin-3-ylidene)-*N*-phenylhydrazinecarbothio-amidato- $\kappa^3 O$, N^2 ,S]nickel(II) dimethylformamide monosolvate (Ali *et al.*, 2012*b*), closely related to the title compound, have been reported.

The title compound is approximately planar (Fig. 1); the dihedral angle between the benzene C1–C6 ring and the five-membered ring C1/C6/N1/C7/C8 is 1.24 (7)°, and the C8–N2–N3–C9, N2–N3–C9–N4 and N2–N3–C9–S1 torsion angles are 176.91 (12), 0.33 (18) and -178.81 (9)°, respectively.

Table 1	1		
Hydrog	en-bond geomet	ry (Å,	°).

Cg2 is the centroid of the C1–C6 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N3−H1 <i>N</i> 3···O1	0.83 (2)	2.09 (2)	2.7407 (15)	135 (2)
$N1 - H1N1 \cdots O1^{i}$	0.86 (2)	1.96 (2)	2.8173 (15)	178 (3)
$N4-H1N4\cdots S1^{ii}$	0.86 (2)	2.67 (2)	3.4718 (11)	157.0 (19)
$C2-H2A\cdots S1^{ii}$	0.95	2.78	3.6979 (13)	163
$C10-H10C\cdots F1^{iii}$	0.98	2.55	3.1746 (19)	122
$C4-H4A\cdots Cg2^{iv}$	0.95	2.62	3.4291 (15)	143

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, -z$; (ii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (iv) $x - \frac{1}{2}, -y + \frac{3}{2}, -z$.

In the crystal (Fig. 2), the molecules are linked through $N1-H1N1\cdotsO1^{i}$

hydrogen bonds, forming a helical chain along the *a* axis. The chains are linked by N4–H1N4···S1ⁱⁱ, C2–H2A···S1ⁱⁱ and C10–H10C···F1ⁱⁱⁱ hydrogen bonds and a C4–H4A···Cg2^{iv} interaction (symmetry codes as given in Table 1), forming a three-dimensional network. No significant aromatic π - π stacking

Figure 1

The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

The crystal packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.

(

F

Crystal data	
Chemical formula	C10H9FN4OS
1 _r	252.27
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Cemperature (K)	100
, b, c (Å)	5.7058 (1), 10.6201 (2), 18.8688 (4)
$V(Å^3)$	1143.38 (4)
2	4
Radiation type	Μο Κα
$\iota (\mathrm{mm}^{-1})$	0.29
Crystal size (mm)	$0.53\times0.30\times0.17$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2005)
T_{\min}, T_{\max}	0.782, 0.854
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	16340, 4144, 3953
R _{int}	0.019
$\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.758
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.027, 0.069, 1.05
No. of reflections	4144
Vo. of parameters	167
I-atom treatment	H atoms treated by a mixture of independent and constrained
$\lambda_{0} = \lambda_{0} = (0 $	0.21 0.10
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (CA)$	Elock x determined using 1502
	quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	0.031 (15)

Computer programs: *APEX2* and *SAINT* (Bruker, 2005), *SHELXS2014* and *SHELXTL* (Sheldrick, 2008), *SHELXL2014* (Sheldrick, 2015) and *PLATON* (Spek, 2009).

interactions are observed, the shortest centroid–centroid separation being 4.715 Å.

Synthesis and crystallization

The title compound was synthesized by refluxing the reaction mixture of hot ethanolic solutions (30 ml each) of 4-methyl-3-thiosemicarbazide (0.01 mol) and 5-fluoroisatin (0.01 mol) for 2 h. The precipitates formed during reflux were filtered and washed with cold ethanol and finally stored in a vacuum desiccator over P_2O_5 (yield 94%, m.p. 512.4–513.8 K). Yellow crystals were grown from acetone–dimethylformamide (3:1) by slow evaporation at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia for the RU research grant (1001/PKIMIA/ 815067). AQA thanks the Ministry of Higher Education and the University of Sabha (Libya) for a scholarship. References

- Ali, A. Q., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2012a). Acta Cryst. E68, 0285–0286.
- Ali, A. Q., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2012b). Acta Cryst. E68, m538-m539.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Er, M., Ünver, Y., Sancak, K. & Dügdü, E. (2008). *ARKIVOC*, **xv**, 99–120.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Singh, G. S. & Desta, Z. Y. (2012). Chem. Rev. 112, 6104-6155.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

full crystallographic data

IUCrData (2016). **1**, x160659 [doi:10.1107/S2414314616006593]

(Z)-2-(5-Fluoro-2-oxoindolin-3-ylidene)-N-methylhydrazinecarbothioamide

Amna Qasem Ali, Naser Eltaher Eltayeb and Siang Guan Teoh

(Z) - 2 - (5 - Fluoro - 2 - oxoindolin - 3 - ylidene) - N - methyl hydrazine carbothio a mide

Crystal data	
$C_{10}H_9FN_4OS$ $M_r = 252.27$ Orthorhombic, $P2_12_12_1$ a = 5.7058 (1) Å b = 10.6201 (2) Å c = 18.8688 (4) Å V = 1143.38 (4) Å ³ Z = 4 F(000) = 520	$D_x = 1.466 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9924 reflections $\theta = 3.7-32.6^{\circ}$ $\mu = 0.28 \text{ mm}^{-1}$ T = 100 K Block, yellow $0.53 \times 0.30 \times 0.17 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005) $T_{\min} = 0.782, T_{\max} = 0.854$ 16340 measured reflections	4144 independent reflections 3953 reflections with $I > 2\sigma(I)$ $R_{int} = 0.019$ $\theta_{max} = 32.6^{\circ}, \ \theta_{min} = 2.2^{\circ}$ $h = -8 \rightarrow 8$ $k = -16 \rightarrow 14$ $l = -28 \rightarrow 28$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.069$ S = 1.05 4144 reflections 167 parameters 0 restraints Hydrogen site location: mixed	H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0376P)^2 + 0.2071P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.31$ e Å ⁻³ $\Delta\rho_{min} = -0.19$ e Å ⁻³ Absolute structure: Flack <i>x</i> determined using 1583 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et</i> <i>al.</i> , 2013) Absolute structure parameter: 0.031 (15)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.74472 (6)	0.26837 (3)	0.22344 (2)	0.01730 (8)	
F1	-0.37420 (18)	0.87584 (8)	0.12143 (5)	0.0246 (2)	
01	0.13905 (19)	0.26894 (10)	0.06783 (5)	0.0189 (2)	
N1	-0.1734 (2)	0.39611 (11)	0.03438 (6)	0.0166 (2)	
N2	0.2390 (2)	0.48908 (9)	0.16490 (5)	0.01366 (19)	
N3	0.3829 (2)	0.39002 (10)	0.17279 (6)	0.0149 (2)	
N4	0.6013 (2)	0.50266 (10)	0.25329 (6)	0.0156 (2)	
C1	-0.1048 (2)	0.57160 (12)	0.10271 (6)	0.0129 (2)	
C2	-0.1426 (2)	0.69283 (12)	0.12782 (7)	0.0150 (2)	
H2A	-0.0423	0.7308	0.1619	0.018*	
C3	-0.3354 (2)	0.75503 (12)	0.10026 (7)	0.0165 (2)	
C4	-0.4878 (3)	0.70357 (13)	0.05128 (7)	0.0176 (3)	
H4A	-0.6193	0.7504	0.0352	0.021*	
C5	-0.4470 (2)	0.58177 (13)	0.02560 (7)	0.0166 (2)	
H5A	-0.5480	0.5444	-0.0084	0.020*	
C6	-0.2538 (3)	0.51798 (11)	0.05173 (6)	0.0140 (2)	
C7	0.0219 (2)	0.36665 (12)	0.07190 (7)	0.0150 (2)	
C8	0.0724 (2)	0.47780 (12)	0.11870 (6)	0.0135 (2)	
C9	0.5714 (2)	0.39599 (11)	0.21827 (7)	0.0135 (2)	
C10	0.7908 (3)	0.52261 (14)	0.30366 (8)	0.0211 (3)	
H10A	0.7855	0.6095	0.3211	0.032*	
H10B	0.9414	0.5074	0.2802	0.032*	
H10C	0.7730	0.4644	0.3436	0.032*	
H1N3	0.362 (4)	0.324 (2)	0.1503 (10)	0.022 (5)*	
H1N1	-0.234 (5)	0.346 (2)	0.0038 (11)	0.035 (6)*	
H1N4	0.502 (4)	0.562 (2)	0.2464 (12)	0.027 (5)*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.01617 (14)	0.01296 (12)	0.02276 (14)	0.00254 (12)	-0.00245 (14)	0.00152 (10)
F1	0.0294 (5)	0.0163 (4)	0.0280 (4)	0.0105 (4)	-0.0010 (4)	-0.0041 (3)
01	0.0242 (5)	0.0144 (4)	0.0181 (4)	0.0039 (4)	0.0004 (4)	-0.0035 (4)
N1	0.0205 (6)	0.0137 (4)	0.0157 (5)	-0.0002 (4)	-0.0029 (4)	-0.0032 (4)
N2	0.0144 (5)	0.0122 (4)	0.0144 (4)	0.0011 (4)	0.0003 (4)	0.0011 (3)
N3	0.0164 (5)	0.0117 (4)	0.0167 (5)	0.0019 (4)	-0.0028 (4)	-0.0011 (4)
N4	0.0152 (5)	0.0137 (5)	0.0180 (5)	0.0008 (4)	-0.0015 (4)	-0.0002 (4)
C1	0.0139 (5)	0.0125 (5)	0.0125 (5)	0.0002 (4)	0.0003 (4)	0.0001 (4)
C2	0.0168 (6)	0.0133 (5)	0.0150 (5)	0.0023 (4)	-0.0005 (5)	-0.0010 (4)
C3	0.0178 (6)	0.0142 (5)	0.0175 (5)	0.0045 (5)	0.0023 (5)	-0.0001 (4)
C4	0.0142 (6)	0.0200 (6)	0.0186 (5)	0.0028 (5)	0.0005 (5)	0.0038 (5)
C5	0.0141 (6)	0.0193 (6)	0.0163 (5)	-0.0013 (5)	-0.0017 (5)	0.0018 (4)
C6	0.0152 (5)	0.0135 (4)	0.0131 (4)	-0.0013 (5)	0.0007 (5)	0.0002 (4)
C7	0.0195 (6)	0.0129 (5)	0.0125 (5)	-0.0002 (5)	0.0003 (5)	-0.0018 (4)
C8	0.0157 (6)	0.0119 (4)	0.0129 (5)	0.0012 (4)	0.0009 (4)	-0.0011 (4)

data reports

C9	0.0134 (5)	0.0130 (5)	0.0140 (5)	0.0001 (4)	0.0010 (4)	0.0021 (4)
C10	0.0189 (7)	0.0212 (6)	0.0232 (6)	-0.0033 (5)	-0.0049 (5)	-0.0026 (5)

Geometric parameters (Å, °)

\mathbf{F}			
S1—C9	1.6804 (13)	C1—C6	1.4043 (18)
F1—C3	1.3618 (15)	C1—C8	1.4509 (18)
O1—C7	1.2366 (16)	C2—C3	1.3843 (19)
N1—C7	1.3567 (18)	C2—H2A	0.9500
N1—C6	1.4116 (16)	C3—C4	1.3819 (19)
N1—H1N1	0.86 (2)	C4—C5	1.4009 (19)
N2—C8	1.2957 (17)	C4—H4A	0.9500
N2—N3	1.3426 (15)	C5—C6	1.3847 (19)
N3—C9	1.3775 (17)	C5—H5A	0.9500
N3—H1N3	0.83 (2)	C7—C8	1.5020 (17)
N4—C9	1.3225 (16)	C10—H10A	0.9800
N4—C10	1.4549 (18)	C10—H10B	0.9800
N4—H1N4	0.86 (2)	C10—H10C	0.9800
C1—C2	1.3887 (17)		
C7—N1—C6	110.94 (11)	C6—C5—C4	117.45 (12)
C7—N1—H1N1	122.6 (16)	C6—C5—H5A	121.3
C6—N1—H1N1	126.5 (16)	C4—C5—H5A	121.3
C8—N2—N3	116.80 (10)	C5—C6—C1	121.83 (12)
N2—N3—C9	120.70 (11)	C5—C6—N1	128.66 (12)
N2—N3—H1N3	121.2 (15)	C1—C6—N1	109.51 (12)
C9—N3—H1N3	118.1 (14)	O1—C7—N1	127.23 (12)
C9—N4—C10	123.16 (12)	O1—C7—C8	126.33 (12)
C9—N4—H1N4	117.9 (15)	N1—C7—C8	106.43 (11)
C10—N4—H1N4	118.9 (15)	N2—C8—C1	126.00 (11)
C2—C1—C6	121.04 (12)	N2—C8—C7	127.51 (12)
C2—C1—C8	132.37 (12)	C1—C8—C7	106.49 (11)
C6—C1—C8	106.60 (11)	N4—C9—N3	116.83 (11)
C3—C2—C1	115.96 (12)	N4—C9—S1	125.88 (10)
C3—C2—H2A	122.0	N3—C9—S1	117.29 (9)
C1—C2—H2A	122.0	N4—C10—H10A	109.5
F1—C3—C4	117.79 (12)	N4—C10—H10B	109.5
F1—C3—C2	117.95 (12)	H10A—C10—H10B	109.5
C4—C3—C2	124.24 (13)	N4—C10—H10C	109.5
C3—C4—C5	119.46 (13)	H10A—C10—H10C	109.5
C3—C4—H4A	120.3	H10B—C10—H10C	109.5
C5—C4—H4A	120.3		
C8—N2—N3—C9	176.91 (12)	C6—N1—C7—O1	-177.89 (13)
C6—C1—C2—C3	0.79 (19)	C6—N1—C7—C8	0.88 (14)
C8—C1—C2—C3	-179.31 (13)	N3—N2—C8—C1	178.69 (12)
C1—C2—C3—F1	-177.62 (11)	N3—N2—C8—C7	-0.75 (19)
C1—C2—C3—C4	0.7 (2)	C2C1C8N2	2.3 (2)

F1—C3—C4—C5	176.88 (12)	C6—C1—C8—N2	-177.77 (13)	
C2—C3—C4—C5	-1.4 (2)	C2-C1-C8-C7	-178.15 (14)	
C3—C4—C5—C6	0.64 (19)	C6—C1—C8—C7	1.76 (13)	
C4—C5—C6—C1	0.80 (19)	O1—C7—C8—N2	-3.3 (2)	
C4—C5—C6—N1	-179.45 (13)	N1-C7-C8-N2	177.88 (13)	
C2—C1—C6—C5	-1.56 (19)	O1—C7—C8—C1	177.15 (13)	
C8—C1—C6—C5	178.52 (12)	N1-C7-C8-C1	-1.64 (14)	
C2-C1-C6-N1	178.64 (12)	C10—N4—C9—N3	179.35 (12)	
C8—C1—C6—N1	-1.28 (14)	C10—N4—C9—S1	-1.59 (19)	
C7—N1—C6—C5	-179.55 (13)	N2—N3—C9—N4	0.33 (18)	
C7—N1—C6—C1	0.23 (15)	N2—N3—C9—S1	-178.81 (9)	

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.

D—H···A	<i>D</i> —Н	H···A	D···A	D—H···A
N3—H1 <i>N</i> 3…O1	0.83 (2)	2.09 (2)	2.7407 (15)	135 (2)
N1—H1N1···O1 ⁱ	0.86 (2)	1.96 (2)	2.8173 (15)	178 (3)
N4—H1 <i>N</i> 4···S1 ⁱⁱ	0.86 (2)	2.67 (2)	3.4718 (11)	157.0 (19)
C2—H2A···S1 ⁱⁱ	0.95	2.78	3.6979 (13)	163
C10—H10 <i>C</i> …F1 ⁱⁱⁱ	0.98	2.55	3.1746 (19)	122
C4—H4 A ···Cg2 ^{iv}	0.95	2.62	3.4291 (15)	143

Symmetry codes: (i) x-1/2, -y+1/2, -z; (ii) -x+1, y+1/2, -z+1/2; (iii) -x, y-1/2, -z+1/2; (iv) x-1/2, -y+3/2, -z.