ISSN 2414-3146

Received 1 April 2016 Accepted 15 April 2016

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; Zn-MOF; muconate; di(pyridin-2-yl)amine; hydrogen bonds.

CCDC reference: 1474269

Structural data: full structural data are available from iucrdata.iucr.org

catena-Poly[[[[bis(pyridin-2-yl- κN)amine]zinc(II)]- μ_2 -(2*E*,4*E*)-hexa-2,4-dienedioato- $\kappa^4O^1,O^1':O^6,O^{6'}$] monohydrate]

Do Nam Lee^a and Youngmee Kim^b*

^aDivision of General Education (Chemistry), Kwangwoon University, Seoul 01897, Republic of Korea, and ^bDepartment of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea. *Correspondence e-mail: ymeekim@ewha.ac.kr

In the title compound, $\{[Zn(C_6H_4O_4)(C_{10}H_9N_3)]\cdot H_2O\}_n$, the di(pyridin-2-yl)amine (dpa) ligands chelate the Zn^{II} ions, forming $[Zn(dpa)]^{2+}$ units which are connected by two independent bridging muconate [(2E,4E)-hexa-2,4-dienedioate] ligands to form chains. A crystallographic inversion centre is located at the mid-point of the central C–C bond of each muconate ligand. The carboxylate groups of the muconate ligands bridge the Zn^{II} ions in asymmetric chelating modes. The Zn^{II} ion is coordinated by four O atoms of two chelating carboxylate groups and two pyridyl N atoms in a distorted octahedral coordination environment. In the crystal, N–H···O and O–H···O hydrogen bonds connect chains and solvent water molecules, forming a two-dimensional network parallel to (101).

Structure description

Metal–organic frameworks (MOFs), constructed from metal ions and polytopic bridging ligands, have been used for selective gas sorption, heterogeneous catalysis, separation, sensors, drug delivery and biological imaging. Dicarboxylates have provided structures of various dimensionalities with different coordination modes and pore sizes. Rigid aromatic dicarboxylates (Sumida *et al.*, 2012) have been used for the synthesis of MOFs, and flexible cyclohexanedicarboxylates (Lee *et al.* 2011; Kim *et al.* 2011) have also been used. One particular group of flexible dicarboxylates, α,ω -alkane-dicarboxylates, has been shown to be particularly suitable as ligands in MOFs of various topologies. Though less frequently employed in MOFs than aromatic dicarboxylates, recently a systematic investigation of MOFs containing these α,ω -alkane (or alkene)-dicarboxylate has been

data reports

Table 1Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N22-H22 N ···O1 W^{i} O1 W -H1 WB ···O12	0.88 0.93 (1)	1.97 1.88 (1)	2.835 (3) 2.791 (3)	168 165 (3)
$O1W-H1WA\cdots O13^{n}$	0.93 (1)	1.89 (1)	2.816 (3)	172 (3)

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

A fragment of the one-dimensional structure of the title compound showing displacement ellipsoids at the 50% probability level [symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 - x, -y, -z].

Figure 2

The one-dimensional structure of the title compound. Solvent water molecules are omitted for clarity.

Part of the crystal structure showing a hydrogen-bonded layer parallel to (101). Hydrogen bonds are shown as green dotted lines.

Tal	ble	2	
Ex	peri	mental	details.

Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å) β (°)

V (Å³) ZRadiation type μ (mm⁻¹) Crystal size (mm)

Data collection Diffractometer No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections R_{int} $(\sin \theta/\lambda)_{\text{max}} (\text{\AA}^{-1})$

Refinement $R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S No. of reflections No. of parameters No. of restraints H-atom treatment

 $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$

 $[Zn(C_6H_4O_4)(C_{10}H_9N_3)] \cdot H_2O$ 394.68 Monoclinic, $P2_1/n$ 170 8.9885 (13), 15.430 (2), 11.4182 (16) 91.806 (2) 1582.8 (4) 4 Μο Κα 1.59 $0.20 \times 0.08 \times 0.08$ Bruker APEX CCD 8674, 3089, 2391 0.074 0.617 0.034, 0.083, 0.91 3089 232 2 H atoms treated by a mixture of independent and constrained refinement 0.82, -0.51

Computer programs: SMART and SAINT (Bruker, 1997), SHELXS97 and SHELXTL (Sheldrick, 2008) and SHELXL2013 (Sheldrick, 2015).

reported (Hyun *et al.* 2013; Hwang *et al.*, 2012, 2013; Lee *et al.* 2014). We report herein the crystal structure of the title compound.

A fragment of the one-dimensional title compound, in which 2,2'-dipyridylamine ligands chelate Zn^{II} ions to form $[Zn(C_{10}H_9N_3)]^{2+}$ units, is shown in Fig. 1. The units are connected by two independent bridging muconate ligands, forming chains along [011] (Fig. 2). The carboxylate groups of the muconate ligands bridge Zn^{II} ions in asymmetric chelating modes. A crystallographic inversion centre is located at the mid-point of the central C—-C bond of each muconate ligand. The Zn^{II} ion is coordinated by four O atoms of two chelating carboxyaltes and two pyridyl N atoms in a distorted octahedral coordination environment.

In the crystal, $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds (Table 1) connect the chains and solvent water molecules, forming a two-dimensional network parallel to (101) (Fig. 3).

Synthesis and crystallization

Muconic acid (0.1 mmol, 14.2 mg) and $Zn(NO_3)_2 \cdot 6H_2O$ (0.1 mmol, 30.4 mg) were dissolved in 4 ml H₂O and carefully layered with a 4 ml acetonitrile solution of 2,2'-dipyridylaime (0.2 mmol, 34.2 mg). Suitable crystals of the title compound were obtained in a few weeks.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

Financial support from Kwangwoon University in the year 2016 is gratefully acknowledged.

References

- Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hwang, I. H., Bae, J. M., Kim, W.-S., Jo, Y. D., Kim, C., Kim, Y., Kim, S.-J. & Huh, S. (2012). *Dalton Trans.* 41, 12759–12765.
- Hwang, I. H., Kim, H.-Y., Lee, M. M., Na, Y. J., Kim, J. H., Kim, H.-C., Kim, C., Huh, S., Kim, Y. & Kim, S.-J. (2013). *Cryst. Growth Des.* 13, 4815–4823.
- Hyun, M. Y., Hwang, I. H., Lee, M. M., Kim, H., Kim, K. B., Kim, C., Kim, H.-Y., Kim, Y. & Kim, S.-J. (2013). Polyhedron, 53, 166– 171.
- Kim, E. Y., Park, H. M., Kim, H.-Y., Kim, J. H., Hyun, M. Y., Lee, J. H., Kim, C., Kim, S.-J. & Kim, Y. (2011). J. Mol. Struct. 994, 335– 342.
- Lee, M. M., Kim, H.-Y., Hwang, I. H., Bae, J. M., Kim, C., Yo, C.-H., Kim, Y. & Kim, S.-J. (2014). Bull. Korean Chem. Soc. 35, 1777– 1783.
- Lee, Y. J., Kim, E. Y., Kim, S. H., Jang, S. P., Lee, T. G., Kim, C., Kim, S.-J. & Kim, Y. (2011). *New J. Chem.* **35**, 833–841.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Sumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., Bae, T.-H. & Long, J. R. (2012). Chem. Rev. 112, 724–781.

full crystallographic data

IUCrData (2016). **1**, x160636 [doi:10.1107/S2414314616006362]

catena-Poly[[[[bis(pyridin-2-yl- κ N)amine]zinc(II)]- μ_2 -(2*E*,4*E*)-hexa-2,4dienedioato- $\kappa^4 O^1, O^1': O^6, O^{6'}$] monohydrate]

Do Nam Lee and Youngmee Kim

catena-Poly[[[[bis(pyridin-2-yl- κN)amine]zinc(II)]- μ_2 -(2*E*,4*E*)-hexa-2,4-dienedioato- κ^4O^1 , O^1 ': O^6 , O^6 '] monohydrate]

F(000) = 808

 $\theta = 2.2 - 26.2^{\circ}$

 $\mu = 1.59 \text{ mm}^{-1}$

Rod, colorless

 $0.20 \times 0.08 \times 0.08$ mm

T = 170 K

 $D_{\rm x} = 1.656 {\rm Mg} {\rm m}^{-3}$

Mo *Ka* radiation. $\lambda = 0.71073$ Å

Cell parameters from 2966 reflections

Crystal data

 $[Zn(C_6H_4O_4)(C_{10}H_9N_3)] \cdot H_2O$ $M_r = 394.68$ Monoclinic, $P2_1/n$ a = 8.9885 (13) Å b = 15.430 (2) Å c = 11.4182 (16) Å $\beta = 91.806 (2)^{\circ}$ $V = 1582.8 (4) \text{ Å}^3$ Z = 4

Data collection

Bruker APEX CCD	$R_{\rm int} = 0.074$
diffractometer	$\theta_{\rm max} = 26.0^\circ, \ \theta_{\rm min} = 2.2^\circ$
φ and ω scans	$h = -11 \rightarrow 10$
8674 measured reflections	$k = -17 \rightarrow 19$
3089 independent reflections	$l = -14 \rightarrow 14$
2391 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.034$	and constrained refinement
$wR(F^2) = 0.083$	$w = 1/[\sigma^2(F_o^2) + (0.0386P)^2]$
<i>S</i> = 0.91	where $P = (F_o^2 + 2F_c^2)/3$
3089 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
232 parameters	$\Delta \rho_{\rm max} = 0.82 \text{ e } \text{\AA}^{-3}$
2 restraints	$\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
Zn1	0.23460 (3)	0.17315 (2)	0.36458 (3)	0.01835 (11)
O11	0.4060 (2)	0.23845 (11)	0.43746 (16)	0.0230 (4)
O12	0.2405 (2)	0.34027 (13)	0.39400 (17)	0.0275 (5)
O13	0.3294 (2)	0.08005 (12)	0.25952 (15)	0.0220 (4)
O14	0.3079 (2)	0.20738 (12)	0.17690 (17)	0.0271 (5)
N21	0.0120 (2)	0.19005 (13)	0.34368 (18)	0.0171 (5)
N22	-0.0519 (2)	0.12860 (14)	0.52676 (18)	0.0202 (5)
H22N	-0.1257	0.1249	0.5754	0.024*
N23	0.2028 (2)	0.09561 (14)	0.50930 (18)	0.0186 (5)
C11	0.3651 (3)	0.31814 (17)	0.4334 (2)	0.0203 (6)
C12	0.4757 (3)	0.38258 (17)	0.4777 (2)	0.0210 (6)
H12	0.5701	0.3626	0.5062	0.025*
C13	0.4478 (3)	0.46740 (16)	0.4790 (2)	0.0189 (6)
H13	0.3528	0.4863	0.4505	0.023*
C14	0.4636 (3)	0.01539 (17)	0.0515 (2)	0.0183 (6)
H14	0.4374	-0.0258	0.1092	0.022*
C15	0.4311 (3)	0.09863 (18)	0.0699 (2)	0.0214 (6)
H15	0.4604	0.1398	0.0133	0.026*
C16	0.3517 (3)	0.13086 (18)	0.1738 (2)	0.0190 (6)
C21	-0.0364 (3)	0.22925 (18)	0.2433 (2)	0.0227 (6)
H21	0.0344	0.2430	0.1862	0.027*
C22	-0.1815 (3)	0.24981 (18)	0.2204 (3)	0.0278 (7)
H22	-0.2112	0.2756	0.1478	0.033*
C23	-0.2856 (3)	0.23254 (18)	0.3048 (2)	0.0242 (6)
H23	-0.3873	0.2472	0.2912	0.029*
C24	-0.2399 (3)	0.19425 (17)	0.4073 (2)	0.0201 (6)
H24	-0.3090	0.1831	0.4667	0.024*
C25	-0.0897 (3)	0.17159 (16)	0.4240 (2)	0.0180 (6)
C26	0.0778 (3)	0.09022 (16)	0.5689 (2)	0.0173 (6)
C27	0.0723 (3)	0.04551 (18)	0.6760 (2)	0.0228 (6)
H27	-0.0181	0.0420	0.7166	0.027*
C28	0.1984 (3)	0.00719 (18)	0.7208 (2)	0.0255 (7)
H28	0.1970	-0.0226	0.7935	0.031*
C29	0.3296 (3)	0.01208 (18)	0.6589 (2)	0.0242 (6)
H29	0.4182	-0.0152	0.6876	0.029*
C210	0.3272 (3)	0.05701 (17)	0.5565 (2)	0.0227 (6)
H210	0.4172	0.0618	0.5156	0.027*
O1W	0.2013 (2)	0.40671 (13)	0.16781 (17)	0.0265 (5)
H1WA	0.197 (3)	0.4654 (5)	0.186 (2)	0.040*
H1WB	0.204 (3)	0.3763 (17)	0.2381 (14)	0.040*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	U^{23}
Znl	0.01736 (17)	0.01915 (19)	0.01871 (18)	-0.00168 (13)	0.00328 (12)	-0.00258 (14)

011	0.0260 (11)	0.0143 (10)	0.0287 (11)	-0.0055 (8)	0.0006 (8)	-0.0032 (8)
012	0.0220 (11)	0.0287 (12)	0.0314 (11)	-0.0029 (9)	-0.0040 (9)	-0.0058 (9)
013	0.0299 (11)	0.0186 (10)	0.0180 (10)	-0.0006 (8)	0.0080 (8)	-0.0018 (8)
O14	0.0357 (12)	0.0176 (11)	0.0284 (11)	0.0087 (9)	0.0061 (9)	-0.0021 (9)
N21	0.0192 (12)	0.0143 (12)	0.0180 (12)	-0.0003 (9)	0.0028 (9)	-0.0014 (9)
N22	0.0177 (12)	0.0263 (14)	0.0168 (12)	0.0004 (10)	0.0057 (9)	0.0050 (10)
N23	0.0182 (12)	0.0177 (12)	0.0200 (12)	0.0000 (9)	0.0009 (9)	-0.0011 (10)
C11	0.0259 (15)	0.0195 (15)	0.0158 (14)	-0.0055 (12)	0.0051 (11)	-0.0025 (12)
C12	0.0195 (14)	0.0193 (15)	0.0241 (15)	-0.0027 (12)	0.0006 (11)	-0.0029 (12)
C13	0.0182 (14)	0.0204 (15)	0.0182 (14)	-0.0023 (12)	0.0007 (11)	-0.0015 (12)
C14	0.0162 (13)	0.0191 (15)	0.0196 (14)	-0.0027 (11)	0.0033 (11)	0.0002 (12)
C15	0.0240 (15)	0.0202 (15)	0.0203 (15)	-0.0002 (12)	0.0055 (11)	0.0003 (12)
C16	0.0157 (13)	0.0235 (16)	0.0178 (15)	-0.0009 (12)	0.0001 (11)	-0.0028 (12)
C21	0.0259 (16)	0.0203 (15)	0.0223 (15)	0.0004 (12)	0.0069 (12)	0.0022 (12)
C22	0.0324 (17)	0.0268 (17)	0.0244 (16)	0.0056 (13)	0.0015 (13)	0.0066 (13)
C23	0.0201 (15)	0.0238 (16)	0.0288 (17)	0.0054 (12)	-0.0004 (12)	-0.0002 (13)
C24	0.0197 (14)	0.0191 (15)	0.0217 (14)	0.0000 (11)	0.0056 (11)	0.0000 (12)
C25	0.0226 (14)	0.0122 (13)	0.0193 (14)	-0.0002 (11)	0.0003 (11)	-0.0039 (11)
C26	0.0204 (14)	0.0142 (14)	0.0174 (14)	-0.0020 (11)	-0.0013 (11)	-0.0048 (11)
C27	0.0202 (14)	0.0274 (16)	0.0212 (15)	-0.0007 (12)	0.0055 (11)	0.0006 (12)
C28	0.0325 (17)	0.0252 (16)	0.0189 (15)	-0.0006 (13)	-0.0013 (12)	0.0042 (13)
C29	0.0237 (15)	0.0223 (16)	0.0264 (16)	0.0039 (13)	-0.0045 (12)	0.0016 (13)
C210	0.0174 (14)	0.0215 (16)	0.0292 (16)	0.0022 (11)	0.0025 (12)	-0.0015 (12)
O1W	0.0296 (11)	0.0208 (11)	0.0296 (12)	0.0023 (9)	0.0080 (9)	-0.0014 (9)

Geometric parameters (Å, °)

Zn1—011	2.0000 (18)	C14—C14 ⁱⁱ	1.444 (5)
Zn1—N21	2.024 (2)	C14—H14	0.9500
Zn1—N23	2.067 (2)	C15—C16	1.489 (4)
Zn1—O13	2.0719 (18)	C15—H15	0.9500
Zn1—014	2.3225 (19)	C21—C22	1.359 (4)
Zn1—C16	2.535 (3)	C21—H21	0.9500
011—C11	1.284 (3)	C22—C23	1.390 (4)
O12—C11	1.242 (3)	C22—H22	0.9500
O13—C16	1.275 (3)	C23—C24	1.363 (4)
O14—C16	1.246 (3)	C23—H23	0.9500
N21—C25	1.346 (3)	C24—C25	1.402 (4)
N21—C21	1.356 (3)	C24—H24	0.9500
N22—C26	1.381 (3)	C26—C27	1.406 (4)
N22—C25	1.381 (3)	C27—C28	1.364 (4)
N22—H22N	0.8800	C27—H27	0.9500
N23—C26	1.335 (3)	C28—C29	1.396 (4)
N23—C210	1.362 (3)	C28—H28	0.9500
C11—C12	1.484 (3)	C29—C210	1.358 (4)
C12—C13	1.333 (4)	C29—H29	0.9500
С12—Н12	0.9500	C210—H210	0.9500
C13—C13 ⁱ	1.447 (5)	O1W—H1WA	0.929 (2)

C13—H13	0.9500	O1W—H1WB	0.930 (2)
C14—C15	1.335 (4)		
O11—Zn1—N21	136.85 (8)	C14—C15—H15	118.0
O11—Zn1—N23	94.76 (8)	C16—C15—H15	118.0
N21—Zn1—N23	90.45 (8)	O14—C16—O13	120.2 (2)
O11—Zn1—O13	105.36 (7)	O14—C16—C15	120.0 (2)
N21—Zn1—O13	116.36 (8)	O13—C16—C15	119.8 (2)
N23—Zn1—O13	97.54 (8)	O14—C16—Zn1	65.86 (14)
O11—Zn1—O14	91.85 (7)	O13—C16—Zn1	54.45 (13)
N21—Zn1—O14	99.78 (8)	C15—C16—Zn1	173.3 (2)
N23—Zn1—O14	156.86 (8)	N21—C21—C22	123.2 (3)
O13—Zn1—O14	59.32 (7)	N21—C21—H21	118.4
O11—Zn1—C16	98.74 (8)	C22—C21—H21	118.4
N21—Zn1—C16	111.57 (8)	C21—C22—C23	119.0 (3)
N23—Zn1—C16	127.56 (9)	C21—C22—H22	120.5
O13—Zn1—C16	30.05 (8)	С23—С22—Н22	120.5
O14—Zn1—C16	29.31 (7)	C24—C23—C22	119.2 (3)
C11—O11—Zn1	104.57 (17)	C24—C23—H23	120.4
C16—O13—Zn1	95.50 (16)	С22—С23—Н23	120.4
C16—O14—Zn1	84.84 (16)	C23—C24—C25	119.2 (3)
C25—N21—C21	117.6 (2)	C23—C24—H24	120.4
C25—N21—Zn1	125.63 (18)	С25—С24—Н24	120.4
C21—N21—Zn1	116.55 (18)	N21—C25—N22	121.8 (2)
C26—N22—C25	133.2 (2)	N21—C25—C24	121.8 (2)
C26—N22—H22N	113.4	N22—C25—C24	116.4 (2)
C25—N22—H22N	113.4	N23—C26—N22	120.7 (2)
C26—N23—C210	117.7 (2)	N23—C26—C27	121.8 (2)
C26—N23—Zn1	125.69 (18)	N22—C26—C27	117.5 (2)
C210—N23—Zn1	115.92 (18)	C28—C27—C26	119.2 (2)
O12—C11—O11	122.0 (2)	С28—С27—Н27	120.4
O12—C11—C12	121.8 (2)	С26—С27—Н27	120.4
O11—C11—C12	116.2 (2)	C27—C28—C29	119.5 (3)
C13—C12—C11	122.5 (2)	С27—С28—Н28	120.3
C13—C12—H12	118.7	С29—С28—Н28	120.3
C11—C12—H12	118.7	C210—C29—C28	118.2 (3)
C12-C13-C13 ⁱ	124.5 (3)	С210—С29—Н29	120.9
C12—C13—H13	117.8	С28—С29—Н29	120.9
C13 ⁱ —C13—H13	117.8	C29—C210—N23	123.7 (3)
C15—C14—C14 ⁱⁱ	123.5 (3)	С29—С210—Н210	118.2
C15—C14—H14	118.3	N23—C210—H210	118.2
C14 ⁱⁱ —C14—H14	118.3	H1WA—O1W—H1WB	107 (3)
C14—C15—C16	124.0 (2)		

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N22—H22N····O1W ⁱⁱⁱ	0.88	1.97	2.835 (3)	168
O1 <i>W</i> —H1 <i>WB</i> ···O12	0.93 (1)	1.88 (1)	2.791 (3)	165 (3)
$O1W$ — $H1WA$ ···O 13^{iv}	0.93 (1)	1.89 (1)	2.816 (3)	172 (3)

Symmetry codes: (iii) x-1/2, -y+1/2, z+1/2; (iv) -x+1/2, y+1/2, -z+1/2.