

ISSN 2414-3146

Received 7 April 2016 Accepted 11 April 2016

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; coumarin; hydrogen bond.

CCDC reference: 1473298

Structural data: full structural data are available from iucrdata.iucr.org

7-Hydroxy-4-(hydroxymethyl)coumarin

Jun-Hua Bai and Jin-Long Dong*

Department of Chemistry, Taiyuan Normal University, Taiyuan 030031, People's Republic of China. *Correspondence e-mail: dongjinlong20123@163.com

In the title compound, $C_{10}H_8O_4$, the almost planar coumarin ring system (r.m.s. deviation = 0.0216 Å from the plane through all 11 non-H atoms of the system) has hydroxymethyl and hydroxyl substituents at the 4- and 7-positions, respectively. In the crystal, two classical $O-H \cdots O$ hydrogen bonds generate a three-dimensional network structure.

Structure description

The design and synthesis of coumarin derivatives have attracted considerable attention because of their diverse pharmaceutical applications, including antivirus, anti-HIV and anti-neoplasm activities (Cherng *et al.*, 2008; Nawrot-Modranka *et al.*, 2007; Nakagawa-Goto *et al.*, 2007). In 2008, Zhang and co-workers described the preparation of 3-(*p*-methoxyphenyl)-4-hydroxymethyl-6-bromo-7-hydroxycoumarin co-crystallized from methanol (Jiang *et al.*, 2008). It is well known that variations in substituent groups can alter the biological properties and we have therefore synthesized the title coumarin derivative and report its structure here.

In the title coumarin derivative (Fig. 1), the C1–C5/C11 and O2/C4/C5/C7C9 rings are inclined to one another at an angle of 0.77 (4)°. The C10 and O4 atoms of the hydroxymethyl and the O1 atom of the hydroxyl substituent all lie close to the plane of the ring system with a maximum deviation of 0.055 (1) Å for O4. Bond lengths and angles observed here are closely similar to those found for 3-(*p*-methoxyphenyl)-4-hydroxymethyl-6-bromo-7-hydroxycoumarin (Jiang *et al.*, 2008). In the crystal, adjacent molecules are aggregated into a three-dimensional supramolecular network by $O-H \cdots O$ hydrogen bonds (Table 1 and Fig. 2).

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Synthesis and crystallization

Freshly prepared acetyl chloride (1.10 g, 14.02 mmol) was added dropwise to a mixture of 1-(2,4-dihydroxyphenyl)-2chloroethanone (1.03 g, 5.61 mmol) and K_2CO_3 (7.73 g, 56.1 mmol) in acetonitrile (70 ml). The mixture was filtered after refluxing for 6 h. The filtrate was neutralized with 2*M* HCl and extracted with ethyl acetate. The organic layer was washed with Na₂CO₃ (aq.) and water, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to yield a yellow oil. The crude product was purified by chromatography to give the title compound as white solid. Colorless crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of this solid in methanol at room temperature for 5 days (yield 0.51 g, 45%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Figure 2 Part of the crystal structure, viewed along *a*, with hydrogen bonds drawn as dashed lines.

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O4-H4\cdots O3^{i}$	0.82	1.88	2.696 (2)	179
$O1-H1\cdots O4^{ii}$	0.82	1.83	2.654 (2)	180

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) $-x + \frac{1}{2}$, -y, $z - \frac{1}{2}$.

Table 2Experimental details.

$C_{10}H_8O_4$
192.16
Orthorhombic, Pbca
296
13.217 (10), 9.831 (7), 13.627 (9)
1771 (2)
8
Μο Κα
0.11
$0.33 \times 0.30 \times 0.30$
Bruker SMART APEX CCD area- detector
Multi-scan (<i>SADABS</i> ; Sheldrick, 1996)
0.964, 0.967
9109, 1543, 1273
, ,
0.027
0.595
0.033, 0.078, 1.01
1543
130
H-atom parameters constrained
0.15, -0.13

Computer programs: SMART and SAINT (Bruker, 2007), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008).

Acknowledgements

Financial support from the Science and Technology project of Shanxi Province (No. 20110321044) is gratefully acknowledged.

References

- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cherng, J.-M., Chiang, W. & Chiang, L.-C. (2008). Food Chem. 106, 944–950.
- Jiang, H., Zou, H., Xia, P. & Zhang, Q. (2008). *Chin. J. Struct. Chem.* **27**, 1423–1426.
- Nakagawa-Goto, K., Yamada, K., Nakamura, S., Chen, T. H., Chiang, P. C., Bastow, K. F., Wang, S. C., Spohn, B., Hung, M. C., Lee, F. Y., Lee, F. C. & Lee, K. H. (2007). *Bioorg. Med. Chem. Lett.* **17**, 5204– 5209.
- Nawrot-Modranka, J., Nawrot, E. & Graczyk, J. (2007). Eur. J. Med. Chem. 42, 891–891.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

full crystallographic data

IUCrData (2016). 1, x160598 [doi:10.1107/S2414314616005988]

7-Hydroxy-4-(hydroxymethyl)coumarin

Jun-Hua Bai and Jin-Long Dong

7-Hydroxy-4-(hydroxymethyl)-2-oxo-2H-chromene

Crystal data

 $C_{10}H_8O_4$ $M_r = 192.16$ Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab a = 13.217 (10) Å b = 9.831 (7) Å c = 13.627 (9) Å $V = 1771 (2) \text{ Å}^3$ Z = 8

Data collection

Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.964, T_{\max} = 0.967$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.078$ S = 1.011543 reflections 130 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 800 $D_x = 1.442 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2954 reflections $\theta = 3.0-26.6^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 296 KBlock, colorless $0.33 \times 0.30 \times 0.30 \text{ mm}$

9109 measured reflections 1543 independent reflections 1273 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 3.0^{\circ}$ $h = -15 \rightarrow 10$ $k = -11 \rightarrow 11$ $l = -12 \rightarrow 16$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0246P)^2 + 0.7759P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.15$ e Å⁻³ $\Delta\rho_{min} = -0.13$ e Å⁻³ Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc²\lambda³/sin(2 θ)]^{-1/4} Extinction coefficient: 0.0102 (14)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.37748 (11)	0.30023 (12)	0.36743 (8)	0.0518 (4)
H1	0.3289	0.2962	0.3301	0.078*
O2	0.50816 (9)	0.10367 (10)	0.65278 (7)	0.0422 (3)
O3	0.58112 (10)	0.01787 (12)	0.78346 (8)	0.0520 (4)
O4	0.27929 (10)	-0.28639 (10)	0.74612 (8)	0.0453 (3)
H4	0.3219	-0.3459	0.7377	0.068*
C1	0.36957 (14)	0.20140 (15)	0.43601 (11)	0.0400 (4)
C2	0.29307 (14)	0.10429 (16)	0.43439 (11)	0.0435 (4)
H2	0.2454	0.1051	0.3842	0.052*
C3	0.28770 (14)	0.00731 (16)	0.50660 (11)	0.0417 (4)
H3	0.2360	-0.0568	0.5048	0.050*
C4	0.35857 (13)	0.00311 (14)	0.58290 (10)	0.0348 (4)
C5	0.43436 (12)	0.10092 (15)	0.58148 (10)	0.0355 (4)
C7	0.51031 (14)	0.00963 (16)	0.72671 (11)	0.0406 (4)
C8	0.43095 (14)	-0.08943 (15)	0.72989 (11)	0.0399 (4)
H8	0.4299	-0.1520	0.7811	0.048*
C9	0.35823 (13)	-0.09497 (14)	0.66163 (10)	0.0357 (4)
C10	0.27631 (14)	-0.20065 (15)	0.66317 (11)	0.0413 (4)
H10A	0.2112	-0.1553	0.6612	0.050*
H10B	0.2820	-0.2561	0.6045	0.050*
C11	0.44128 (14)	0.19958 (15)	0.50994 (11)	0.0407 (4)
H11	0.4931	0.2636	0.5113	0.049*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0544 (9)	0.0540 (7)	0.0471 (7)	-0.0047 (6)	-0.0053 (6)	0.0131 (5)
O2	0.0395 (7)	0.0415 (6)	0.0456 (6)	-0.0050 (5)	-0.0093 (5)	0.0024 (5)
O3	0.0456 (8)	0.0535 (7)	0.0569 (7)	-0.0042 (6)	-0.0191 (6)	0.0042 (5)
O4	0.0475 (9)	0.0418 (7)	0.0465 (6)	0.0018 (5)	0.0060 (5)	0.0042 (5)
C1	0.0449 (11)	0.0395 (9)	0.0356 (8)	0.0042 (7)	0.0035 (7)	0.0004 (6)
C2	0.0475 (11)	0.0458 (9)	0.0373 (8)	-0.0010 (8)	-0.0084 (7)	-0.0019 (7)
C3	0.0437 (11)	0.0398 (8)	0.0416 (8)	-0.0042 (8)	-0.0051 (7)	-0.0036 (6)
C4	0.0366 (10)	0.0322 (8)	0.0356 (8)	0.0030 (7)	0.0010 (7)	-0.0045 (6)
C5	0.0322 (9)	0.0378 (8)	0.0366 (8)	0.0040 (7)	-0.0021 (7)	-0.0051 (6)
C7	0.0396 (11)	0.0385 (9)	0.0438 (9)	0.0038 (7)	-0.0052 (8)	-0.0027 (7)
C8	0.0422 (11)	0.0359 (8)	0.0416 (8)	0.0014 (7)	-0.0023 (7)	0.0003 (6)
C9	0.0367 (10)	0.0324 (8)	0.0380 (8)	0.0041 (7)	0.0018 (7)	-0.0063 (6)
C10	0.0404 (11)	0.0399 (9)	0.0437 (8)	-0.0013 (7)	-0.0025 (7)	-0.0002 (7)
C11	0.0385 (11)	0.0394 (9)	0.0441 (8)	-0.0024 (7)	0.0022 (7)	-0.0003 (7)

Geometric parameters (Å, °)

1.3521 (18) 0.8200 1.3676 (19)	C3—H3 C4—C5	0.9300
0.8200 1.3676 (19)	C4—C5	1380(2)
1.3676 (19)		1.307 (2)
	C4—C9	1.442 (2)
1.377 (2)	C5—C11	1.378 (2)
1.217 (2)	С7—С8	1.432 (3)
1.4106 (19)	C8—C9	1.339 (2)
0.8200	C8—H8	0.9300
1.383 (2)	C9—C10	1.501 (2)
1.391 (3)	C10—H10A	0.9700
1.372 (2)	C10—H10B	0.9700
0.9300	C11—H11	0.9300
1.400 (2)		
109.5	O3—C7—O2	116.05 (15)
121.41 (13)	O3—C7—C8	126.12 (15)
109.5	O2—C7—C8	117.83 (14)
117.37 (15)	C9—C8—C7	122.18 (15)
122.58 (15)	С9—С8—Н8	118.9
120.05 (15)	С7—С8—Н8	118.9
120.22 (15)	C8—C9—C4	119.16 (15)
119.9	C8—C9—C10	122.45 (14)
119.9	C4—C9—C10	118.38 (14)
121.23 (16)	O4—C10—C9	113.87 (14)
119.4	O4C10H10A	108.8
119.4	C9—C10—H10A	108.8
116.87 (14)	O4—C10—H10B	108.8
118.39 (14)	C9—C10—H10B	108.8
124.74 (15)	H10A—C10—H10B	107.7
115.99 (14)	C5—C11—C1	118.60 (15)
120.98 (13)	C5—C11—H11	120.7
123.03 (15)	C1-C11-H11	120.7
	$\begin{array}{c} 1.3676 (19) \\ 1.377 (2) \\ 1.217 (2) \\ 1.4106 (19) \\ 0.8200 \\ 1.383 (2) \\ 1.391 (3) \\ 1.372 (2) \\ 0.9300 \\ 1.400 (2) \\ \end{array}$ $\begin{array}{c} 109.5 \\ 121.41 (13) \\ 109.5 \\ 121.41 (13) \\ 109.5 \\ 122.58 (15) \\ 120.05 (15) \\ 120.22 (15) \\ 119.9 \\ 119.9 \\ 119.9 \\ 119.4 \\ 116.87 (14) \\ 118.39 (14) \\ 124.74 (15) \\ 115.99 (14) \\ 120.98 (13) \\ 123.03 (15) \\ \end{array}$	1.3676(19) $C4-C9$ $1.377(2)$ $C5-C11$ $1.217(2)$ $C7-C8$ $1.4106(19)$ $C8-C9$ 0.8200 $C8-H8$ $1.383(2)$ $C9-C10$ $1.391(3)$ $C10-H10A$ $1.372(2)$ $C10-H10B$ 0.9300 $C11-H11$ $1.400(2)$ 109.5 $O3-C7-O2$ $121.41(13)$ $O3-C7-C8$ 109.5 $O2-C7-C8$ $117.37(15)$ $C9-C8-C7$ $122.58(15)$ $C9-C8-H8$ $120.05(15)$ $C7-C8-H8$ $120.22(15)$ $C8-C9-C10$ 119.9 $C4-C9-C10$ 119.9 $C4-C9-C10$ 119.4 $O4-C10-H10A$ 119.4 $C9-C10-H10A$ $118.39(14)$ $C9-C10-H10B$ $118.39(14)$ $C9-C10-H10B$ $124.74(15)$ $H10A-C10-H10B$ $115.99(14)$ $C5-C11-C1$ $120.98(13)$ $C5-C11-H11$ $123.03(15)$ $C1-C11-H11$

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
O4—H4…O3 ⁱ	0.82	1.88	2.696 (2)	179
01—H1…O4 ⁱⁱ	0.82	1.83	2.654 (2)	180

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*+3/2; (ii) -*x*+1/2, -*y*, *z*-1/2.