ISSN 2414-3146

Received 11 April 2016 Accepted 14 April 2016

Edited by J. Simpson, University of Otago, New Zealand

**Keywords:** crystal structure; 1,2,4-triazole; benzylidene–acetohydrazide.

CCDC reference: 1473996

Structural data: full structural data are available from iucrdata.iucr.org

# *N'*-Benzylidene-2-({5-[(4-chlorophenoxy)methyl]-4phenyl-4*H*-1,2,4-triazol-3-yl}sulfanyl)acetohydrazide hemihydrate

Joel T. Mague,<sup>a</sup> Shaaban K. Mohamed,<sup>b,c</sup> Mehmet Akkurt,<sup>d</sup> Etify A. Bakhite<sup>e</sup> and Mustafa R. Albayati<sup>f</sup>\*

<sup>a</sup>Department of Chemistry, Tulane University, New Orleans, LA 70118, USA, <sup>b</sup>Chemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, <sup>c</sup>Chemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, <sup>d</sup>Department of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, <sup>c</sup>Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt, and <sup>f</sup>Kirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq. \*Correspondence e-mail: shaabankamel@yahoo.com

The title compound,  $C_{24}H_{20}ClN_5O_2S\cdot 0.5H_2O$ , has three independent molecules in the asymmetric unit and two water molecules of crystallization, one of which is equally disordered over two sites. The three unique organic molecules differ in the conformations of the substituents on the pyrazole ring. In the crystal, extensive  $O-H\cdots O$ ,  $O-H\cdots N$ ,  $N-H\cdots O$  and  $C-H\cdots O$  hydrogen bonding generates a three-dimensional network and  $C-H\cdots \pi$  interactions are also observed.



## Structure description

1,2,4-Triazole derivatives are known to exhibit antibacterial, antifungal, antitubercular and anticancer properties (Godhani *et al.*, 2015). They also display anti-inflammatory, anticonvulsant, analagesic and antiviral effects (Godhani *et al.*, 2015). We report here the synthesis and crystal structure of the title 1,2,4-triazole compound.

The asymmetric unit consists of three independent molecules (Figs. 1, 2 and 3) which differ in the conformations of the substituents on the pyrazole ring (Table 1). In addition, there are two water molecules of crystallization, one of which is equally disordered over two sites. The packing involves a extensive three-dimensional network of  $O-H\cdots O$ ,  $O-H\cdots N$ ,  $N-H\cdots O$  and  $C-H\cdots O$  hydrogen bonds (Table 2).  $C-H\cdots \pi$  interactions are also observed.



### Table 1

A comparison of the dihedral angles (°) between the ring planes in the three independent molecules in the asymmetric unit of the title compound.

Cg1, Cg5 and Cg9 are the centroids of the 1,2,4-triazole (N1-N3/C8/C9, N6-N8/C32/C33 and N11-N13/C56/C63) rings, Cg2, Cg6 and Cg10 are the centroids of the chlorophenyl (C1-C6, C25-C30 and C49-C54) rings and Cg4, Cg8 and Cg12 are the centroids of the phenyl (C19-C24, C43-C48 and C67-C72) rings.

| $Cg1^{\wedge}Cg2$  | $Cg1^{\wedge}Cg3$                                                                                                             | $Cg1^{\wedge}Cg4$                                                                                                                                                      | $Cg2^{\wedge}Cg3$                                                                                                                                                                                                                                        | $Cg3^{\wedge}Cg4$                                                                                                                                                                                                                                                                                                                           |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 29.81 (9)          | 71.56 (9)                                                                                                                     | 22.16 (9)                                                                                                                                                              | 69.04 (9)                                                                                                                                                                                                                                                | 71.67 (9)                                                                                                                                                                                                                                                                                                                                   |
| $Cg5^{\wedge}Cg6$  | $Cg5^{}Cg7$                                                                                                                   | $Cg5^{}Cg8$                                                                                                                                                            | $Cg6^{\wedge}Cg7$                                                                                                                                                                                                                                        | $Cg7^{\wedge}Cg8$                                                                                                                                                                                                                                                                                                                           |
| 30.04 (9)          | 77.93 (9)                                                                                                                     | 20.61 (9)                                                                                                                                                              | 78.40 (9)                                                                                                                                                                                                                                                | 85.12 (10)                                                                                                                                                                                                                                                                                                                                  |
| $Cg9^{\wedge}Cg10$ | $Cg9^{\wedge}Cg11$                                                                                                            | $Cg9^{\wedge}Cg12$                                                                                                                                                     | $Cg10^{\wedge}Cg11$                                                                                                                                                                                                                                      | $Cg11^{C}g12$                                                                                                                                                                                                                                                                                                                               |
| 36.44 (9)          | 67.00 (9)                                                                                                                     | 20.53 (9)                                                                                                                                                              | 63.12 (9)                                                                                                                                                                                                                                                | 69.55 (9)                                                                                                                                                                                                                                                                                                                                   |
|                    | $\begin{array}{c} Cg1^{\wedge}Cg2\\ 29.81 \ (9)\\ Cg5^{\wedge}Cg6\\ 30.04 \ (9)\\ Cg9^{\wedge}Cg10\\ 36.44 \ (9) \end{array}$ | $Cg1^{\wedge}Cg2$ $Cg1^{\wedge}Cg3$ 29.81 (9)71.56 (9) $Cg5^{\wedge}Cg6$ $Cg5^{\wedge}Cg7$ 30.04 (9)77.93 (9) $Cg9^{\wedge}Cg10$ $Cg9^{\wedge}Cg11$ 36.44 (9)67.00 (9) | $Cg1^{\wedge}Cg2$ $Cg1^{\wedge}Cg3$ $Cg1^{\wedge}Cg4$ 29.81 (9)71.56 (9)22.16 (9) $Cg5^{\wedge}Cg6$ $Cg5^{\wedge}Cg7$ $Cg5^{\wedge}Cg8$ 30.04 (9)77.93 (9)20.61 (9) $Cg9^{\wedge}Cg10$ $Cg9^{\wedge}Cg11$ $Cg9^{\wedge}Cg12$ 36.44 (9)67.00 (9)20.53 (9) | $Cg1^{\wedge}Cg2$ $Cg1^{\wedge}Cg3$ $Cg1^{\wedge}Cg4$ $Cg2^{\wedge}Cg3$ 29.81 (9)71.56 (9)22.16 (9)69.04 (9) $Cg5^{\wedge}Cg6$ $Cg5^{\wedge}Cg7$ $Cg5^{\wedge}Cg8$ $Cg6^{\wedge}Cg7$ 30.04 (9)77.93 (9)20.61 (9)78.40 (9) $Cg9^{\wedge}Cg10$ $Cg9^{\wedge}Cg11$ $Cg9^{\wedge}Cg12$ $Cg10^{\wedge}Cg11$ 36.44 (9)67.00 (9)20.53 (9)63.12 (9) |



Figure 1

Molecule 1 with the atom-labeling scheme and 50% probability ellipsoids.



Figure 2

Molecule 2 with the atom-labeling scheme and 50% probability ellipsoids.



Figure 3 Molecule 3 with the atom-labeling scheme and 50% probability ellipsoids.

Hydrogen-bond geometry (Å, °).

Cg1 and Cg9 are the centroids of the 1,2,4-triazole rings N1-N3/C8/C9 and N11-N13/C56/C63, Cg2 and Cg10 are the centroids of the chlorophenyl rings C1-C6 and C49-C54, and Cg4 and Cg12 are the centroids of the phenyl rings C19-C24 and C67-C72.

| $D - H \cdot \cdot \cdot A$             | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------------------|------|-------------------------|--------------|--------------------------------------|
| N4 $-$ H4 $N$ ···O7 <sup>i</sup>        | 0.91 | 1.86                    | 2.7527 (19)  | 166                                  |
| C6−H6···O2 <sup>ii</sup>                | 0.95 | 2.36                    | 3.2815 (19)  | 163                                  |
| $C7-H7A\cdots O2^{ii}$                  | 0.99 | 2.35                    | 3.304 (2)    | 162                                  |
| $C30-H30\cdots O4^{i}$                  | 0.95 | 2.48                    | 3.395 (2)    | 161                                  |
| $C31 - H31B \cdot \cdot \cdot O4^{i}$   | 0.99 | 2.44                    | 3.419 (2)    | 170                                  |
| C39−H39···N6 <sup>iii</sup>             | 0.95 | 2.51                    | 3.386 (2)    | 154                                  |
| $N14 - H14N \cdot \cdot \cdot O8$       | 0.91 | 1.98                    | 2.802 (3)    | 149                                  |
| $C54-H54\cdots O6^{i}$                  | 0.95 | 2.41                    | 3.329 (2)    | 163                                  |
| $C55-H55B\cdots O6^{i}$                 | 0.99 | 2.35                    | 3.254 (2)    | 151                                  |
| $O7 - H7D \cdot \cdot \cdot O4^{i}$     | 0.87 | 2.14                    | 2.9668 (19)  | 160                                  |
| $O7 - H7C \cdot \cdot \cdot N1$         | 0.87 | 1.96                    | 2.8239 (19)  | 176                                  |
| $O8-H8A\cdots N11^{ii}$                 | 0.87 | 2.05                    | 2.897 (3)    | 164                                  |
| $O8-H8B\cdots N11^{iv}$                 | 0.87 | 2.16                    | 2.853 (3)    | 136                                  |
| $C15 - H15 \cdots Cg8^{i}$              | 0.95 | 2.74                    | 3.670 (2)    | 168                                  |
| $C35-H35\cdots Cg4^{ii}$                | 0.95 | 2.77                    | 3.709 (2)    | 169                                  |
| $C62 - H62 \cdot \cdot \cdot Cg12^{iv}$ | 0.95 | 2.81                    | 3.714 (2)    | 159                                  |

Symmetry codes: (i) x + 1, y, z; (ii) x - 1, y, z; (iii) -x + 1, -y + 1, -z + 1; (iv) -x + 1, -y + 1, -z.

Table 3

Experimental details.

Crystal data Chemical formula М. Crystal system, space group Temperature (K) a, b, c (Å)

 $V(Å^3)$ Z Radiation type  $\mu \,({\rm mm}^{-1})$ Crystal size (mm)

Data collection Diffractometer

Absorption correction

 $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ 

 $T_{\min}, T_{\max}$ No. of measured, independent and observed  $[I > 2\sigma(I)]$  reflections  $R_{\rm int}$  $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$ Refinement

 $2C_{24}H_{20}CIN_5O_2S \cdot H_2O$ 973.93 Triclinic,  $P\overline{1}$ 150 10.7330 (4), 16.0616 (6), 20.9885 (8) 96.662 (2), 102.673 (1), 98.067 (1) 3454.5 (2) 3 Cu Ka 2.61  $0.19 \times 0.14 \times 0.10$ 

Bruker D8 VENTURE PHOTON 100 CMOS Multi-scan (SADABS; Bruker, 2016) 0.70, 0.78 26548, 12824, 10286

0.029 0.618  $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.040, 0.115, 1.02 No. of reflections 12824 No. of parameters 910 H-atom treatment H-atom parameters constrained

0.36, -0.36

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), DIAMOND (Brandenburg & Putz, 2012) and SHELXTL (Sheldrick, 2008).

# Synthesis and crystallization

An equimolar mixture of 5-[(4-chlorophenoxy)methyl-4phenyl-4H-1,2,4-triazol-3-ylthio], acetohydrazide and benzaldehyde (10 mmol) in ethanol (20 ml) was heated under reflux for 2 h and then allowed to cool. The solid that separated was collected and recrystallized from water/ethanol (1:1  $\nu/\nu$ ) solution. Yield: 86%; m.p.: 445-446 K. IR (KBr)  $\nu$  = 3200 (NH), 1670 (C=O) cm.<sup>-1</sup> NMR (CDCl<sub>3</sub>):  $\delta$  11.0 (*s*, 1H, NH), 7.00–7.80 (15*H*, Ar H and N=CH), 4.95 (*s*, 2H, OCH<sub>2</sub>), 4.00 (*s*, 2H, SCH<sub>2</sub>) p.p.m.

# Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The O8 water molecule is equally disordered over two sites.

# Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the

Tulane Crystallography Laboratory are gratefully acknowl-edged.

# References

- Brandenburg, K. & Putz, H. (2012). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
- Godhani, D. R., Jogel, A. A., Sanghani, A. M. & Mehta, J. P. (2015). *Indian J. Chem. Sect. B*, **54**, 556–564.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

# full crystallographic data

# *IUCrData* (2016). **1**, x160627 [doi:10.1107/S2414314616006271]

*N'*-Benzylidene-2-({5-[(4-chlorophenoxy)methyl]-4-phenyl-4*H*-1,2,4-triazol-3-yl}sulfanyl)acetohydrazide hemihydrate

Joel T. Mague, Shaaban K. Mohamed, Mehmet Akkurt, Etify A. Bakhite and Mustafa R. Albayati

*N'*-Benzylidene-2-({5-[(4-chlorophenoxy)methyl]-4-phenyl-4*H*-1,2,4-triazol-3-yl}sulfanyl)acetohydrazide hemihydrate

# Crystal data

 $2C_{24}H_{20}CIN_5O_2S \cdot H_2O$   $M_r = 973.93$ Triclinic,  $P\overline{1}$  a = 10.7330 (4) Å b = 16.0616 (6) Å c = 20.9885 (8) Å a = 96.662 (2)°  $\beta = 102.673$  (1)°  $\gamma = 98.067$  (1)° V = 3454.5 (2) Å<sup>3</sup>

# Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer
Radiation source: INCOATEC IμS micro–focus source
Mirror monochromator
Detector resolution: 10.4167 pixels mm<sup>-1</sup> ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2016)

# Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.040$  $wR(F^2) = 0.115$ S = 1.0212824 reflections 910 parameters 0 restraints Primary atom site location: structure-invariant direct methods Z = 3 F(000) = 1518  $D_x = 1.404 \text{ Mg m}^{-3}$ Cu K $\alpha$  radiation,  $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9989 reflections  $\theta = 4.3-72.3^{\circ}$   $\mu = 2.61 \text{ mm}^{-1}$  T = 150 KBlock, colourless  $0.19 \times 0.14 \times 0.10 \text{ mm}$ 

 $T_{\min} = 0.70, T_{\max} = 0.78$ 26548 measured reflections
12824 independent reflections
10286 reflections with  $I > 2\sigma(I)$   $R_{\text{int}} = 0.029$   $\theta_{\text{max}} = 72.3^{\circ}, \theta_{\text{min}} = 3.3^{\circ}$   $h = -11 \rightarrow 13$   $k = -18 \rightarrow 19$   $l = -25 \rightarrow 25$ 

Secondary atom site location: difference Fourier map Hydrogen site location: mixed H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0615P)^2 + 0.7789P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.001$  $\Delta\rho_{max} = 0.36$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.36$  e Å<sup>-3</sup>

# Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of F<sup>2</sup> against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F<sup>2</sup>, conventional R-factors R are based on F, with F set to zero for negative F<sup>2</sup>. The threshold expression of F<sup>2</sup> > 2sigma(F<sup>2</sup>) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F<sup>2</sup> are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to nitrogen and oxygen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 and O —H = 0.87 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

|     | x            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|-----|--------------|--------------|--------------|-----------------------------|-----------|
| Cl1 | 0.12794 (4)  | 0.02365 (3)  | 0.07115 (2)  | 0.03665 (12)                |           |
| S1  | 1.12202 (4)  | 0.39667 (3)  | 0.18914 (2)  | 0.02712 (11)                |           |
| 01  | 0.61710 (11) | 0.26313 (7)  | 0.17608 (6)  | 0.0274 (3)                  |           |
| O2  | 1.39656 (11) | 0.42943 (7)  | 0.22596 (6)  | 0.0295 (3)                  |           |
| N1  | 0.81198 (13) | 0.45379 (9)  | 0.23687 (7)  | 0.0231 (3)                  |           |
| N2  | 0.94582 (13) | 0.46910 (8)  | 0.24447 (7)  | 0.0224 (3)                  |           |
| N3  | 0.85927 (13) | 0.36096 (8)  | 0.16435 (7)  | 0.0208 (3)                  |           |
| N4  | 1.43515 (13) | 0.56242 (8)  | 0.28161 (7)  | 0.0222 (3)                  |           |
| H4N | 1.5221       | 0.5628       | 0.2907       | 0.027*                      |           |
| N5  | 1.38571 (13) | 0.63073 (8)  | 0.30537 (6)  | 0.0211 (3)                  |           |
| C1  | 0.49880 (16) | 0.21077 (10) | 0.15014 (8)  | 0.0234 (3)                  |           |
| C2  | 0.50334 (17) | 0.12681 (11) | 0.12928 (10) | 0.0336 (4)                  |           |
| H2  | 0.5846       | 0.1088       | 0.1316       | 0.040*                      |           |
| C3  | 0.38907 (18) | 0.06848 (11) | 0.10493 (10) | 0.0363 (4)                  |           |
| Н3  | 0.3916       | 0.0106       | 0.0904       | 0.044*                      |           |
| C4  | 0.27209 (17) | 0.09580 (11) | 0.10214 (9)  | 0.0273 (4)                  |           |
| C5  | 0.26675 (16) | 0.17952 (11) | 0.12284 (8)  | 0.0260 (4)                  |           |
| Н5  | 0.1853       | 0.1972       | 0.1208       | 0.031*                      |           |
| C6  | 0.38112 (16) | 0.23825 (10) | 0.14684 (8)  | 0.0235 (3)                  |           |
| H6  | 0.3784       | 0.2963       | 0.1607       | 0.028*                      |           |
| C7  | 0.62368 (15) | 0.35041 (10) | 0.16693 (8)  | 0.0239 (3)                  |           |
| H7A | 0.5718       | 0.3792       | 0.1934       | 0.029*                      |           |
| H7B | 0.5899       | 0.3548       | 0.1198       | 0.029*                      |           |
| C8  | 0.76254 (15) | 0.38988 (10) | 0.18931 (8)  | 0.0215 (3)                  |           |
| C9  | 0.97106 (15) | 0.41238 (10) | 0.20090 (8)  | 0.0212 (3)                  |           |
| C10 | 0.84291 (15) | 0.30157 (10) | 0.10504 (8)  | 0.0219 (3)                  |           |
| C11 | 0.7900 (2)   | 0.32576 (11) | 0.04546 (9)  | 0.0336 (4)                  |           |
| H11 | 0.7652       | 0.3802       | 0.0440       | 0.040*                      |           |
| C12 | 0.7733 (2)   | 0.26933 (13) | -0.01246 (9) | 0.0396 (5)                  |           |
| H12 | 0.7362       | 0.2849       | -0.0538      | 0.048*                      |           |
| C13 | 0.81049 (19) | 0.19077 (12) | -0.00990 (9) | 0.0343 (4)                  |           |
| H13 | 0.7990       | 0.1523       | -0.0495      | 0.041*                      |           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| C14  | 0.86450 (19) | 0.16782 (11)             | 0.05028 (10)             | 0.0352 (4)             |
|------|--------------|--------------------------|--------------------------|------------------------|
| H14  | 0.8905       | 0.1138                   | 0.0517                   | 0.042*                 |
| C15  | 0.88101 (18) | 0.22337 (11)             | 0.10867 (9)              | 0.0295 (4)             |
| H15  | 0.9177       | 0.2078                   | 0.1501                   | 0.035*                 |
| C16  | 1.21388 (16) | 0.48887 (11)             | 0.24583 (9)              | 0.0302 (4)             |
| H16A | 1.1873       | 0.5412                   | 0.2305                   | 0.036*                 |
| H16B | 1.1971       | 0.4865                   | 0.2902                   | 0.036*                 |
| C17  | 1.35506 (15) | 0.49070 (10)             | 0.24946 (8)              | 0.0211 (3)             |
| C18  | 1.46994 (16) | 0.69472 (10)             | 0.33807 (8)              | 0.0230 (3)             |
| H18  | 1.5596       | 0.6921                   | 0.3444                   | 0.028*                 |
| C19  | 1.42993 (16) | 0.77148 (10)             | 0.36568 (8)              | 0.0229 (3)             |
| C20  | 1.30025 (17) | 0.77665 (11)             | 0.36287 (9)              | 0.0312 (4)             |
| H20  | 1.2349       | 0.7286                   | 0.3435                   | 0.037*                 |
| C21  | 1.2662 (2)   | 0.85122 (13)             | 0.38814 (11)             | 0.0409 (5)             |
| H21  | 1.1776       | 0.8541                   | 0.3860                   | 0.049*                 |
| C22  | 1.3608 (2)   | 0.92209 (12)             | 0.41674 (10)             | 0.0401 (5)             |
| H22  | 1.3368       | 0.9733                   | 0.4338                   | 0.048*                 |
| C23  | 1 48956 (19) | 0.91764 (11)             | 0 42014 (9)              | 0.0337(4)              |
| H23  | 1 5545       | 0.9658                   | 0.4398                   | 0.040*                 |
| C24  | 1.52427 (17) | 0.84294 (11)             | 0 39491 (8)              | 0.0279(4)              |
| H24  | 1 6131       | 0.8403                   | 0 3975                   | 0.033*                 |
| Cl2  | 1 19206 (5)  | 0.96964 (3)              | 0.58780 (3)              | 0.04395 (13)           |
| S2   | 0.18741(4)   | 0.60384(3)               | 0.46784(2)               | 0.02689(11)            |
| 03   | 0.69930(11)  | 0.73152(7)               | 0.49432(7)               | 0.0311 (3)             |
| 04   | -0.08883(12) | 0.75152(7)               | 0.13782(7)<br>0.43783(7) | 0.0344(3)              |
| N6   | 0.50482(13)  | 0.54226 (8)              | 0.13703(7)<br>0.43110(7) | 0.0311(3)<br>0.0233(3) |
| N7   | 0 36993 (13) | 0.52876 (8)              | 0.13110(7)<br>0.41977(7) | 0.0229(3)              |
| N8   | 0.45090(13)  | 0.63731 (8)              | 0.50012(7)               | 0.0214(3)              |
| N9   | -0.11306(14) | 0.03791(0)<br>0.42286(9) | 0.38391(7)               | 0.0268(3)              |
| H9N  | -0.1999      | 0.4150                   | 0.3808                   | 0.032*                 |
| N10  | -0.05591(14) | 0 36018 (9)              | 0.35767(7)               | 0.022                  |
| C25  | 0.81876 (16) | 0.78290(11)              | 0.52707(7)               | 0.0211(3)<br>0.0258(4) |
| C26  | 0.81619 (18) | 0.86787(12)              | 0.53677(11)              | 0.0220(1)<br>0.0374(5) |
| H26  | 0.7357       | 0.8867                   | 0 5353                   | 0.045*                 |
| C27  | 0.93163(19)  | 0.92568(12)              | 0.55800 (11)             | 0.0406(5)              |
| H27  | 0.9305       | 0.9842                   | 0.5711                   | 0.049*                 |
| C28  | 1.04733 (18) | 0.89747(11)              | 0.55992 (9)              | 0.0309(4)              |
| C29  | 1 05050 (17) | 0.81287(11)              | 0 54099 (9)              | 0.0297(4)              |
| H29  | 1.1311       | 0.7943                   | 0.5423                   | 0.036*                 |
| C30  | 0.93536 (17) | 0.75464(11)              | 0.51990(9)               | 0.0269(4)              |
| H30  | 0.9368       | 0.6961                   | 0 5071                   | 0.032*                 |
| C31  | 0.68888 (16) | 0.64487(10)              | 0.50496 (9)              | 0.0251(3)              |
| H31A | 0.7167       | 0.6416                   | 0.5527                   | 0.030*                 |
| H31B | 0.7439       | 0.6148                   | 0.4813                   | 0.030*                 |
| C32  | 0.55014 (16) | 0.60631 (10)             | 0.47883 (8)              | 0.0216(3)              |
| C33  | 0.34104 (16) | 0.58642(10)              | 0.46116 (8)              | 0.0218(3)              |
| C34  | 0.46277 (16) | 0.69535(10)              | 0.55969 (8)              | 0.0225(3)              |
| C35  | 0.44295(18)  | 0.77783(11)              | 0 55637 (9)              | 0.0225(3)              |
| ~~~  |              | 0.,,,00 (11)             | 0.00001 ())              | 0.0001(1)              |

| H35  | 0.4186        | 0.7969       | 0.5149       | 0.037*       |
|------|---------------|--------------|--------------|--------------|
| C36  | 0.45946 (19)  | 0.83255 (11) | 0.61530 (9)  | 0.0339 (4)   |
| H36  | 0.4458        | 0.8896       | 0.6141       | 0.041*       |
| C37  | 0.49558 (18)  | 0.80473 (11) | 0.67547 (9)  | 0.0320 (4)   |
| H37  | 0.5085        | 0.8429       | 0.7154       | 0.038*       |
| C38  | 0.5128 (2)    | 0.72143 (12) | 0.67754 (9)  | 0.0390 (5)   |
| H38  | 0.5364        | 0.7021       | 0.7189       | 0.047*       |
| C39  | 0.4957 (2)    | 0.66584 (11) | 0.61924 (9)  | 0.0343 (4)   |
| H39  | 0.5064        | 0.6083       | 0.6204       | 0.041*       |
| C40  | 0.10066 (16)  | 0.50658 (11) | 0.41584 (9)  | 0.0289 (4)   |
| H40A | 0.1129        | 0.5070       | 0.3705       | 0.035*       |
| H40B | 0.1351        | 0.4574       | 0.4330       | 0.035*       |
| C41  | -0.04021 (16) | 0.49811 (10) | 0.41444 (8)  | 0.0244 (3)   |
| C42  | -0.13140 (17) | 0.29249 (10) | 0.32632 (8)  | 0.0267 (4)   |
| H42  | -0.2223       | 0.2877       | 0.3218       | 0.032*       |
| C43  | -0.07855 (17) | 0.22218 (11) | 0.29736 (8)  | 0.0267 (4)   |
| C44  | -0.16151 (19) | 0.14566 (11) | 0.26911 (9)  | 0.0335 (4)   |
| H44  | -0.2513       | 0.1404       | 0.2678       | 0.040*       |
| C45  | -0.1132 (2)   | 0.07711 (12) | 0.24294 (10) | 0.0416 (5)   |
| H45  | -0.1697       | 0.0248       | 0.2245       | 0.050*       |
| C46  | 0.0165 (2)    | 0.08484 (13) | 0.24367 (11) | 0.0470 (5)   |
| H46  | 0.0491        | 0.0380       | 0.2252       | 0.056*       |
| C47  | 0.1001 (2)    | 0.16111 (13) | 0.27134 (11) | 0.0436 (5)   |
| H47  | 0.1895        | 0.1663       | 0.2716       | 0.052*       |
| C48  | 0.05301 (18)  | 0.22924 (12) | 0.29835 (9)  | 0.0330 (4)   |
| H48  | 0.1103        | 0.2810       | 0.3176       | 0.040*       |
| C13  | 1.55953 (5)   | 0.98118 (3)  | 0.25967 (3)  | 0.03985 (12) |
| S3   | 0.56870 (4)   | 0.60125 (3)  | 0.15171 (2)  | 0.02948 (11) |
| 05   | 1.06779 (12)  | 0.74449 (7)  | 0.15696 (6)  | 0.0301 (3)   |
| O6   | 0.29150 (13)  | 0.56880 (8)  | 0.11686 (7)  | 0.0385 (3)   |
| N11  | 0.87392 (15)  | 0.55264 (9)  | 0.09435 (7)  | 0.0290 (3)   |
| N12  | 0.74092 (14)  | 0.53513 (9)  | 0.08974 (7)  | 0.0275 (3)   |
| N13  | 0.82988 (14)  | 0.64258 (8)  | 0.17018 (7)  | 0.0242 (3)   |
| N14  | 0.25687 (14)  | 0.43728 (9)  | 0.05974 (7)  | 0.0287 (3)   |
| H14N | 0.1704        | 0.4324       | 0.0573       | 0.034*       |
| N15  | 0.30451 (14)  | 0.37172 (9)  | 0.03053 (7)  | 0.0259 (3)   |
| C49  | 1.18680 (17)  | 0.79586 (11) | 0.18190 (8)  | 0.0257 (4)   |
| C50  | 1.18353 (18)  | 0.88119 (11) | 0.19813 (10) | 0.0350 (4)   |
| H50  | 1.1026        | 0.9004       | 0.1928       | 0.042*       |
| C51  | 1.29814 (19)  | 0.93896 (12) | 0.22214 (10) | 0.0366 (4)   |
| H51  | 1.2964        | 0.9977       | 0.2337       | 0.044*       |
| C52  | 1.41518 (18)  | 0.90970 (11) | 0.22904 (9)  | 0.0296 (4)   |
| C53  | 1.41869 (17)  | 0.82472 (11) | 0.21257 (8)  | 0.0273 (4)   |
| H53  | 1.4997        | 0.8057       | 0.2173       | 0.033*       |
| C54  | 1.30403 (17)  | 0.76661 (11) | 0.18907 (8)  | 0.0258 (4)   |
| H54  | 1.3059        | 0.7078       | 0.1781       | 0.031*       |
| C55  | 1.06298 (17)  | 0.65642 (10) | 0.16225 (9)  | 0.0289 (4)   |
| H55A | 1.1013        | 0.6493       | 0.2083       | 0.035*       |
|      |               |              |              |              |

| H55B | 1.1122       | 0.6301       | 0.1330        | 0.035*         |  |
|------|--------------|--------------|---------------|----------------|--|
| C56  | 0.92447 (17) | 0.61592 (10) | 0.14220 (9)   | 0.0256 (4)     |  |
| C57  | 0.84799 (16) | 0.70182 (10) | 0.22982 (8)   | 0.0243 (3)     |  |
| C58  | 0.91552 (18) | 0.68166 (11) | 0.28860 (9)   | 0.0323 (4)     |  |
| H58  | 0.9507       | 0.6306       | 0.2890        | 0.039*         |  |
| C59  | 0.9313 (2)   | 0.73692 (12) | 0.34699 (9)   | 0.0369 (4)     |  |
| H59  | 0.9777       | 0.7239       | 0.3876        | 0.044*         |  |
| C60  | 0.87920 (19) | 0.81097 (12) | 0.34580 (10)  | 0.0361 (4)     |  |
| H60  | 0.8890       | 0.8484       | 0.3858        | 0.043*         |  |
| C61  | 0.81292 (19) | 0.83065 (12) | 0.28665 (10)  | 0.0356 (4)     |  |
| H61  | 0.7782       | 0.8819       | 0.2862        | 0.043*         |  |
| C62  | 0.79669 (18) | 0.77612 (11) | 0.22779 (9)   | 0.0306 (4)     |  |
| H62  | 0.7514       | 0.7896       | 0.1871        | 0.037*         |  |
| C63  | 0.71809 (17) | 0.59024 (10) | 0.13520 (8)   | 0.0244 (3)     |  |
| C64  | 0.47291 (17) | 0.52112 (11) | 0.08542 (9)   | 0.0313 (4)     |  |
| H64A | 0.4811       | 0.5379       | 0.0424        | 0.038*         |  |
| H64B | 0.5042       | 0.4663       | 0.0890        | 0.038*         |  |
| C65  | 0.33429 (17) | 0.51129 (11) | 0.08923 (8)   | 0.0257 (4)     |  |
| C66  | 0.21972 (17) | 0.30648 (11) | 0.00079 (8)   | 0.0282 (4)     |  |
| H66  | 0.1309       | 0.3067       | -0.0001       | 0.034*         |  |
| C67  | 0.25762 (17) | 0.23198 (11) | -0.03162 (8)  | 0.0268 (4)     |  |
| C68  | 0.16250 (19) | 0.16047 (12) | -0.05987 (9)  | 0.0327 (4)     |  |
| H68  | 0.0748       | 0.1618       | -0.0588       | 0.039*         |  |
| C69  | 0.1956 (2)   | 0.08767 (12) | -0.08947 (10) | 0.0379 (5)     |  |
| H69  | 0.1306       | 0.0392       | -0.1082       | 0.045*         |  |
| C70  | 0.3225 (2)   | 0.08541 (12) | -0.09173 (10) | 0.0414 (5)     |  |
| H70  | 0.3450       | 0.0355       | -0.1120       | 0.050*         |  |
| C71  | 0.4177 (2)   | 0.15634 (13) | -0.06434 (11) | 0.0413 (5)     |  |
| H71  | 0.5050       | 0.1549       | -0.0662       | 0.050*         |  |
| C72  | 0.38555 (18) | 0.22881 (12) | -0.03444 (9)  | 0.0333 (4)     |  |
| H72  | 0.4511       | 0.2769       | -0.0156       | 0.040*         |  |
| 07   | 0.69091 (13) | 0.54516 (11) | 0.32193 (7)   | 0.0521 (4)     |  |
| H7D  | 0.7463       | 0.5584       | 0.3601        | 0.078*         |  |
| H7C  | 0.7313       | 0.5176       | 0.2971        | 0.078*         |  |
| 08   | -0.0028 (3)  | 0.45181 (17) | 0.01102 (13)  | 0.0399 (6) 0.5 |  |
| H8A  | -0.0358      | 0.4901       | 0.0315        | 0.060* 0.5     |  |
| H8B  | 0.0176       | 0.4753       | -0.0215       | 0.060* 0.5     |  |
|      |              |              |               |                |  |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$      | $U^{13}$     | $U^{23}$      |
|-----|------------|------------|------------|---------------|--------------|---------------|
| Cl1 | 0.0285 (2) | 0.0246 (2) | 0.0484 (3) | -0.00373 (16) | 0.00048 (19) | -0.00218 (19) |
| S1  | 0.0215 (2) | 0.0229 (2) | 0.0349 (2) | -0.00075 (15) | 0.01176 (17) | -0.00797 (17) |
| 01  | 0.0212 (6) | 0.0212 (6) | 0.0368 (7) | 0.0024 (4)    | 0.0016 (5)   | 0.0038 (5)    |
| 02  | 0.0255 (6) | 0.0239 (6) | 0.0384 (7) | 0.0071 (5)    | 0.0099 (5)   | -0.0062(5)    |
| N1  | 0.0202 (7) | 0.0225 (7) | 0.0258 (7) | 0.0043 (5)    | 0.0059 (6)   | -0.0012 (6)   |
| N2  | 0.0199 (7) | 0.0210 (7) | 0.0257 (7) | 0.0036 (5)    | 0.0068 (6)   | -0.0017 (6)   |
| N3  | 0.0210 (7) | 0.0179 (6) | 0.0225 (7) | 0.0023 (5)    | 0.0061 (5)   | -0.0020 (5)   |
|     |            |            |            |               |              |               |

IUCrData (2016). 1, x160627

| N4  | 0.0192 (7)  | 0.0215 (7)  | 0.0253 (7)  | 0.0037 (5)    | 0.0066 (6)   | -0.0018 (6)   |
|-----|-------------|-------------|-------------|---------------|--------------|---------------|
| N5  | 0.0244 (7)  | 0.0186 (6)  | 0.0209 (6)  | 0.0054 (5)    | 0.0065 (5)   | 0.0012 (5)    |
| C1  | 0.0209 (8)  | 0.0233 (8)  | 0.0237 (8)  | 0.0011 (6)    | 0.0030 (6)   | 0.0012 (7)    |
| C2  | 0.0249 (9)  | 0.0244 (9)  | 0.0492 (11) | 0.0059 (7)    | 0.0070 (8)   | -0.0019 (8)   |
| C3  | 0.0334 (10) | 0.0197 (8)  | 0.0522 (12) | 0.0042 (7)    | 0.0084 (9)   | -0.0046 (8)   |
| C4  | 0.0270 (9)  | 0.0226 (8)  | 0.0288 (9)  | -0.0004 (6)   | 0.0036 (7)   | 0.0011 (7)    |
| C5  | 0.0210 (8)  | 0.0261 (8)  | 0.0285 (9)  | 0.0052 (6)    | 0.0020 (7)   | 0.0008 (7)    |
| C6  | 0.0245 (8)  | 0.0198 (8)  | 0.0241 (8)  | 0.0041 (6)    | 0.0033 (7)   | -0.0014 (7)   |
| C7  | 0.0214 (8)  | 0.0195 (8)  | 0.0300 (9)  | 0.0051 (6)    | 0.0048 (7)   | 0.0012 (7)    |
| C8  | 0.0222 (8)  | 0.0192 (7)  | 0.0230 (8)  | 0.0050 (6)    | 0.0058 (6)   | 0.0008 (6)    |
| С9  | 0.0222 (8)  | 0.0172 (7)  | 0.0238 (8)  | 0.0012 (6)    | 0.0067 (6)   | 0.0021 (6)    |
| C10 | 0.0223 (8)  | 0.0198 (8)  | 0.0221 (8)  | 0.0007 (6)    | 0.0073 (6)   | -0.0030 (6)   |
| C11 | 0.0498 (12) | 0.0241 (9)  | 0.0275 (9)  | 0.0115 (8)    | 0.0089 (8)   | 0.0011 (7)    |
| C12 | 0.0594 (13) | 0.0358 (10) | 0.0231 (9)  | 0.0134 (9)    | 0.0075 (9)   | 0.0000 (8)    |
| C13 | 0.0432 (11) | 0.0294 (9)  | 0.0283 (9)  | 0.0058 (8)    | 0.0104 (8)   | -0.0069 (8)   |
| C14 | 0.0449 (11) | 0.0233 (9)  | 0.0374 (10) | 0.0121 (8)    | 0.0104 (9)   | -0.0042(8)    |
| C15 | 0.0369 (10) | 0.0232 (8)  | 0.0275 (9)  | 0.0082 (7)    | 0.0056 (8)   | 0.0008 (7)    |
| C16 | 0.0203 (8)  | 0.0251 (8)  | 0.0413 (10) | 0.0034 (6)    | 0.0068 (7)   | -0.0093 (8)   |
| C17 | 0.0220 (8)  | 0.0198 (8)  | 0.0217 (8)  | 0.0046 (6)    | 0.0061 (6)   | 0.0015 (6)    |
| C18 | 0.0209 (8)  | 0.0225 (8)  | 0.0246 (8)  | 0.0017 (6)    | 0.0053 (6)   | 0.0025 (7)    |
| C19 | 0.0268 (8)  | 0.0200 (8)  | 0.0203 (8)  | 0.0033 (6)    | 0.0035 (7)   | 0.0013 (6)    |
| C20 | 0.0256 (9)  | 0.0272 (9)  | 0.0361 (10) | 0.0026 (7)    | 0.0031 (7)   | -0.0041 (8)   |
| C21 | 0.0325 (10) | 0.0352 (10) | 0.0506 (12) | 0.0106 (8)    | 0.0042 (9)   | -0.0068 (9)   |
| C22 | 0.0471 (12) | 0.0247 (9)  | 0.0449 (11) | 0.0113 (8)    | 0.0055 (9)   | -0.0049 (9)   |
| C23 | 0.0398 (11) | 0.0210 (8)  | 0.0337 (10) | -0.0014(7)    | 0.0025 (8)   | -0.0023(8)    |
| C24 | 0.0273 (9)  | 0.0244 (8)  | 0.0289 (9)  | 0.0004 (7)    | 0.0037 (7)   | 0.0022 (7)    |
| Cl2 | 0.0309 (2)  | 0.0311 (2)  | 0.0600 (3)  | -0.00541 (18) | -0.0001(2)   | 0.0009 (2)    |
| S2  | 0.0252 (2)  | 0.0215 (2)  | 0.0330 (2)  | 0.00191 (15)  | 0.01075 (17) | -0.00469 (17) |
| O3  | 0.0234 (6)  | 0.0204 (6)  | 0.0458 (8)  | 0.0027 (5)    | 0.0000 (5)   | 0.0074 (5)    |
| 04  | 0.0289 (7)  | 0.0303 (7)  | 0.0423 (7)  | 0.0089 (5)    | 0.0099 (6)   | -0.0088 (6)   |
| N6  | 0.0246 (7)  | 0.0213 (7)  | 0.0233 (7)  | 0.0045 (5)    | 0.0051 (6)   | 0.0010 (6)    |
| N7  | 0.0254 (7)  | 0.0207 (7)  | 0.0224 (7)  | 0.0039 (5)    | 0.0066 (6)   | 0.0010 (6)    |
| N8  | 0.0228 (7)  | 0.0185 (6)  | 0.0215 (7)  | 0.0025 (5)    | 0.0051 (5)   | -0.0014 (5)   |
| N9  | 0.0238 (7)  | 0.0246 (7)  | 0.0318 (8)  | 0.0044 (5)    | 0.0100 (6)   | -0.0026 (6)   |
| N10 | 0.0287 (7)  | 0.0208 (7)  | 0.0237 (7)  | 0.0059 (5)    | 0.0079 (6)   | 0.0015 (6)    |
| C25 | 0.0247 (8)  | 0.0241 (8)  | 0.0259 (8)  | 0.0026 (6)    | 0.0023 (7)   | 0.0024 (7)    |
| C26 | 0.0262 (9)  | 0.0261 (9)  | 0.0556 (12) | 0.0077 (7)    | 0.0040 (9)   | -0.0039 (9)   |
| C27 | 0.0349 (11) | 0.0227 (9)  | 0.0573 (13) | 0.0042 (7)    | 0.0027 (9)   | -0.0048(9)    |
| C28 | 0.0289 (9)  | 0.0268 (9)  | 0.0323 (9)  | -0.0004 (7)   | 0.0013 (7)   | 0.0028 (8)    |
| C29 | 0.0251 (9)  | 0.0309 (9)  | 0.0325 (9)  | 0.0065 (7)    | 0.0060 (7)   | 0.0027 (8)    |
| C30 | 0.0290 (9)  | 0.0210 (8)  | 0.0302 (9)  | 0.0055 (7)    | 0.0065 (7)   | 0.0013 (7)    |
| C31 | 0.0233 (8)  | 0.0213 (8)  | 0.0293 (9)  | 0.0051 (6)    | 0.0038 (7)   | 0.0022 (7)    |
| C32 | 0.0259 (8)  | 0.0173 (7)  | 0.0224 (8)  | 0.0053 (6)    | 0.0069 (7)   | 0.0018 (6)    |
| C33 | 0.0254 (8)  | 0.0183 (7)  | 0.0212 (8)  | 0.0023 (6)    | 0.0059 (7)   | 0.0019 (6)    |
| C34 | 0.0238 (8)  | 0.0203 (8)  | 0.0228 (8)  | 0.0035 (6)    | 0.0073 (6)   | -0.0025 (7)   |
| C35 | 0.0421 (11) | 0.0232 (8)  | 0.0261 (9)  | 0.0081 (7)    | 0.0074 (8)   | 0.0026 (7)    |
| C36 | 0.0462 (11) | 0.0198 (8)  | 0.0364 (10) | 0.0100 (7)    | 0.0115 (9)   | -0.0015 (8)   |
| C37 | 0.0375 (10) | 0.0287 (9)  | 0.0270 (9)  | 0.0060 (7)    | 0.0077 (8)   | -0.0067 (7)   |

| C38 | 0.0609 (14) | 0.0339 (10) | 0.0232 (9)  | 0.0173 (9)    | 0.0086 (9)   | 0.0000 (8)    |
|-----|-------------|-------------|-------------|---------------|--------------|---------------|
| C39 | 0.0527 (12) | 0.0245 (9)  | 0.0266 (9)  | 0.0145 (8)    | 0.0082 (8)   | 0.0006 (7)    |
| C40 | 0.0236 (8)  | 0.0295 (9)  | 0.0301 (9)  | 0.0050 (7)    | 0.0049 (7)   | -0.0071 (7)   |
| C41 | 0.0278 (9)  | 0.0236 (8)  | 0.0222 (8)  | 0.0072 (6)    | 0.0055 (7)   | 0.0021 (7)    |
| C42 | 0.0263 (9)  | 0.0236 (8)  | 0.0295 (9)  | 0.0020 (6)    | 0.0078 (7)   | 0.0019 (7)    |
| C43 | 0.0324 (9)  | 0.0229 (8)  | 0.0232 (8)  | 0.0027 (7)    | 0.0056 (7)   | 0.0018 (7)    |
| C44 | 0.0367 (10) | 0.0266 (9)  | 0.0326 (10) | -0.0008 (7)   | 0.0061 (8)   | -0.0014 (8)   |
| C45 | 0.0542 (13) | 0.0232 (9)  | 0.0412 (11) | 0.0001 (8)    | 0.0082 (10)  | -0.0058 (8)   |
| C46 | 0.0566 (14) | 0.0323 (11) | 0.0499 (13) | 0.0178 (9)    | 0.0095 (11)  | -0.0087 (10)  |
| C47 | 0.0374 (11) | 0.0392 (11) | 0.0510 (13) | 0.0126 (9)    | 0.0060 (10)  | -0.0044 (10)  |
| C48 | 0.0326 (10) | 0.0278 (9)  | 0.0347 (10) | 0.0049 (7)    | 0.0044 (8)   | -0.0036 (8)   |
| C13 | 0.0333 (2)  | 0.0263 (2)  | 0.0529 (3)  | 0.00035 (17)  | 0.0026 (2)   | -0.0022 (2)   |
| S3  | 0.0289 (2)  | 0.0275 (2)  | 0.0315 (2)  | -0.00109 (16) | 0.01585 (18) | -0.00690 (18) |
| 05  | 0.0264 (6)  | 0.0218 (6)  | 0.0417 (7)  | 0.0053 (5)    | 0.0062 (5)   | 0.0055 (5)    |
| 06  | 0.0343 (7)  | 0.0346 (7)  | 0.0445 (8)  | 0.0133 (6)    | 0.0096 (6)   | -0.0115 (6)   |
| N11 | 0.0312 (8)  | 0.0249 (7)  | 0.0344 (8)  | 0.0077 (6)    | 0.0151 (7)   | 0.0010 (6)    |
| N12 | 0.0311 (8)  | 0.0225 (7)  | 0.0313 (8)  | 0.0042 (6)    | 0.0145 (6)   | 0.0007 (6)    |
| N13 | 0.0274 (7)  | 0.0189 (6)  | 0.0281 (7)  | 0.0035 (5)    | 0.0120 (6)   | 0.0009 (6)    |
| N14 | 0.0276 (8)  | 0.0289 (8)  | 0.0291 (8)  | 0.0078 (6)    | 0.0082 (6)   | -0.0041 (6)   |
| N15 | 0.0320 (8)  | 0.0230 (7)  | 0.0227 (7)  | 0.0080 (6)    | 0.0065 (6)   | -0.0003 (6)   |
| C49 | 0.0265 (9)  | 0.0249 (8)  | 0.0259 (8)  | 0.0049 (6)    | 0.0062 (7)   | 0.0042 (7)    |
| C50 | 0.0310 (10) | 0.0260 (9)  | 0.0484 (11) | 0.0108 (7)    | 0.0087 (9)   | 0.0017 (8)    |
| C51 | 0.0373 (11) | 0.0218 (9)  | 0.0500 (12) | 0.0090 (7)    | 0.0097 (9)   | -0.0009 (8)   |
| C52 | 0.0310 (9)  | 0.0250 (9)  | 0.0299 (9)  | 0.0026 (7)    | 0.0040 (7)   | 0.0007 (7)    |
| C53 | 0.0267 (9)  | 0.0295 (9)  | 0.0255 (8)  | 0.0084 (7)    | 0.0049 (7)   | 0.0017 (7)    |
| C54 | 0.0300 (9)  | 0.0212 (8)  | 0.0266 (8)  | 0.0072 (7)    | 0.0072 (7)   | 0.0014 (7)    |
| C55 | 0.0284 (9)  | 0.0213 (8)  | 0.0398 (10) | 0.0080 (7)    | 0.0122 (8)   | 0.0040 (7)    |
| C56 | 0.0292 (9)  | 0.0207 (8)  | 0.0312 (9)  | 0.0078 (6)    | 0.0134 (7)   | 0.0048 (7)    |
| C57 | 0.0257 (8)  | 0.0214 (8)  | 0.0263 (8)  | 0.0025 (6)    | 0.0109 (7)   | -0.0012 (7)   |
| C58 | 0.0383 (10) | 0.0254 (9)  | 0.0336 (10) | 0.0093 (7)    | 0.0084 (8)   | 0.0023 (8)    |
| C59 | 0.0447 (11) | 0.0339 (10) | 0.0299 (10) | 0.0080 (8)    | 0.0057 (8)   | -0.0001 (8)   |
| C60 | 0.0391 (11) | 0.0311 (10) | 0.0353 (10) | 0.0039 (8)    | 0.0113 (8)   | -0.0083 (8)   |
| C61 | 0.0390 (11) | 0.0255 (9)  | 0.0429 (11) | 0.0132 (8)    | 0.0106 (9)   | -0.0037 (8)   |
| C62 | 0.0348 (10) | 0.0246 (9)  | 0.0334 (10) | 0.0083 (7)    | 0.0099 (8)   | 0.0006 (8)    |
| C63 | 0.0300 (9)  | 0.0186 (8)  | 0.0262 (8)  | 0.0013 (6)    | 0.0122 (7)   | 0.0029 (7)    |
| C64 | 0.0312 (10) | 0.0288 (9)  | 0.0335 (9)  | 0.0071 (7)    | 0.0104 (8)   | -0.0048 (8)   |
| C65 | 0.0303 (9)  | 0.0246 (8)  | 0.0227 (8)  | 0.0098 (7)    | 0.0056 (7)   | 0.0007 (7)    |
| C66 | 0.0288 (9)  | 0.0289 (9)  | 0.0254 (8)  | 0.0042 (7)    | 0.0058 (7)   | 0.0006 (7)    |
| C67 | 0.0316 (9)  | 0.0251 (8)  | 0.0224 (8)  | 0.0044 (7)    | 0.0047 (7)   | 0.0019 (7)    |
| C68 | 0.0329 (10) | 0.0307 (9)  | 0.0312 (9)  | 0.0005 (7)    | 0.0066 (8)   | -0.0003 (8)   |
| C69 | 0.0447 (12) | 0.0266 (9)  | 0.0364 (10) | -0.0004 (8)   | 0.0052 (9)   | -0.0034 (8)   |
| C70 | 0.0493 (12) | 0.0281 (10) | 0.0429 (11) | 0.0122 (8)    | 0.0055 (10)  | -0.0058 (9)   |
| C71 | 0.0333 (10) | 0.0390 (11) | 0.0483 (12) | 0.0117 (8)    | 0.0056 (9)   | -0.0048 (9)   |
| C72 | 0.0310 (10) | 0.0297 (9)  | 0.0341 (10) | 0.0030 (7)    | 0.0030 (8)   | -0.0043 (8)   |
| O7  | 0.0289 (7)  | 0.0912 (12) | 0.0338 (7)  | 0.0257 (7)    | 0.0036 (6)   | -0.0114 (8)   |
| 08  | 0.0342 (15) | 0.0482 (17) | 0.0395 (15) | 0.0091 (12)   | 0.0171 (12)  | -0.0027 (13)  |
|     |             |             |             |               |              |               |

Geometric parameters (Å, °)

| Cl1—C4   | 1.7436 (17) | C35—C36  | 1.393 (2)   |
|----------|-------------|----------|-------------|
| S1—C9    | 1.7394 (16) | С35—Н35  | 0.9500      |
| S1—C16   | 1.8020 (17) | C36—C37  | 1.382 (3)   |
| 01—C1    | 1.3808 (19) | С36—Н36  | 0.9500      |
| O1—C7    | 1.4309 (19) | C37—C38  | 1.380 (3)   |
| O2—C17   | 1.2315 (19) | С37—Н37  | 0.9500      |
| N1—C8    | 1.307 (2)   | C38—C39  | 1.389 (2)   |
| N1—N2    | 1.3931 (18) | C38—H38  | 0.9500      |
| N2—C9    | 1.313 (2)   | С39—Н39  | 0.9500      |
| N3—C9    | 1.3716 (19) | C40—C41  | 1.492 (2)   |
| N3—C8    | 1.373 (2)   | C40—H40A | 0.9900      |
| N3—C10   | 1.4394 (19) | C40—H40B | 0.9900      |
| N4—C17   | 1.345 (2)   | C42—C43  | 1.462 (2)   |
| N4—N5    | 1.3735 (18) | C42—H42  | 0.9500      |
| N4—H4N   | 0.9100      | C43—C44  | 1.395 (2)   |
| N5—C18   | 1.284 (2)   | C43—C48  | 1.396 (3)   |
| C1—C2    | 1.380 (2)   | C44—C45  | 1.388 (3)   |
| C1—C6    | 1.386 (2)   | C44—H44  | 0.9500      |
| C2—C3    | 1.391 (2)   | C45—C46  | 1.377 (3)   |
| С2—Н2    | 0.9500      | C45—H45  | 0.9500      |
| C3—C4    | 1.379 (3)   | C46—C47  | 1.393 (3)   |
| С3—Н3    | 0.9500      | C46—H46  | 0.9500      |
| C4—C5    | 1.377 (2)   | C47—C48  | 1.383 (3)   |
| C5—C6    | 1.394 (2)   | C47—H47  | 0.9500      |
| С5—Н5    | 0.9500      | C48—H48  | 0.9500      |
| С6—Н6    | 0.9500      | Cl3—C52  | 1.7391 (18) |
| С7—С8    | 1.484 (2)   | S3—C63   | 1.7412 (17) |
| C7—H7A   | 0.9900      | S3—C64   | 1.7986 (18) |
| С7—Н7В   | 0.9900      | O5—C49   | 1.377 (2)   |
| C10—C11  | 1.379 (2)   | O5—C55   | 1.426 (2)   |
| C10—C15  | 1.380 (2)   | O6—C65   | 1.230 (2)   |
| C11—C12  | 1.391 (2)   | N11—C56  | 1.306 (2)   |
| C11—H11  | 0.9500      | N11—N12  | 1.395 (2)   |
| C12—C13  | 1.379 (3)   | N12—C63  | 1.312 (2)   |
| C12—H12  | 0.9500      | N13—C63  | 1.368 (2)   |
| C13—C14  | 1.383 (3)   | N13—C56  | 1.373 (2)   |
| C13—H13  | 0.9500      | N13—C57  | 1.441 (2)   |
| C14—C15  | 1.391 (2)   | N14—C65  | 1.346 (2)   |
| C14—H14  | 0.9500      | N14—N15  | 1.3731 (19) |
| C15—H15  | 0.9500      | N14—H14N | 0.9100      |
| C16—C17  | 1.496 (2)   | N15—C66  | 1.283 (2)   |
| C16—H16A | 0.9900      | C49—C50  | 1.381 (2)   |
| C16—H16B | 0.9900      | C49—C54  | 1.388 (2)   |
| C18—C19  | 1.460 (2)   | C50—C51  | 1.388 (3)   |
| C18—H18  | 0.9500      | С50—Н50  | 0.9500      |
| C19—C20  | 1.395 (2)   | C51—C52  | 1.386 (3)   |

| C19—C24       | 1.399 (2)   | С51—Н51            | 0.9500      |
|---------------|-------------|--------------------|-------------|
| C20—C21       | 1.382 (3)   | C52—C53            | 1.376 (2)   |
| С20—Н20       | 0.9500      | C53—C54            | 1.391 (2)   |
| C21—C22       | 1.391 (3)   | С53—Н53            | 0.9500      |
| C21—H21       | 0.9500      | С54—Н54            | 0.9500      |
| C22—C23       | 1.381 (3)   | C55—C56            | 1.484 (2)   |
| С22—Н22       | 0.9500      | С55—Н55А           | 0.9900      |
| C23—C24       | 1.387 (2)   | С55—Н55В           | 0.9900      |
| С23—Н23       | 0.9500      | C57—C62            | 1.384 (2)   |
| C24—H24       | 0.9500      | C57—C58            | 1.385 (2)   |
| C12—C28       | 1.7428 (18) | C58—C59            | 1.390 (2)   |
| <u>82—C33</u> | 1.7431 (17) | C58—H58            | 0.9500      |
| S2—C40        | 1.8024 (17) | C59—C60            | 1.384 (3)   |
| 03-C25        | 1.378 (2)   | C59—H59            | 0.9500      |
| 03-031        | 1.4279 (19) | C60—C61            | 1.384 (3)   |
| 04—C41        | 1.231 (2)   | C60—H60            | 0.9500      |
| N6—C32        | 1.306 (2)   | C61—C62            | 1.391 (2)   |
| N6—N7         | 1.3958 (19) | C61 - H61          | 0.9500      |
| N7—C33        | 1.312 (2)   | C62—H62            | 0.9500      |
| N8-C33        | 1.371 (2)   | C64—C65            | 1.495 (2)   |
| N8—C32        | 1.374 (2)   | C64—H64A           | 0.9900      |
| N8—C34        | 1.4404 (19) | C64—H64B           | 0.9900      |
| N9—C41        | 1.348 (2)   | C66—C67            | 1.459 (2)   |
| N9—N10        | 1.3734 (19) | С66—Н66            | 0.9500      |
| N9—H9N        | 0.9099      | С67—С72            | 1.395 (3)   |
| N10—C42       | 1.274 (2)   | С67—С68            | 1.400 (2)   |
| C25—C26       | 1.382 (2)   | C68—C69            | 1.387 (3)   |
| C25—C30       | 1.384 (2)   | С68—Н68            | 0.9500      |
| C26—C27       | 1.391 (3)   | C69—C70            | 1.380 (3)   |
| С26—Н26       | 0.9500      | С69—Н69            | 0.9500      |
| C27—C28       | 1.374 (3)   | C70—C71            | 1.391 (3)   |
| С27—Н27       | 0.9500      | С70—Н70            | 0.9500      |
| C28—C29       | 1.378 (2)   | C71—C72            | 1.381 (3)   |
| C29—C30       | 1.392 (2)   | С71—Н71            | 0.9500      |
| С29—Н29       | 0.9500      | С72—Н72            | 0.9500      |
| С30—Н30       | 0.9500      | O7—H7D             | 0.8699      |
| C31—C32       | 1.485 (2)   | O7—H7C             | 0.8699      |
| C31—H31A      | 0.9900      | O8—O8 <sup>i</sup> | 1.663 (6)   |
| C31—H31B      | 0.9900      | O8—H8A             | 0.8700      |
| C34—C35       | 1.378 (2)   | O8—H8B             | 0.8700      |
| C34—C39       | 1.379 (2)   |                    |             |
|               |             |                    |             |
| C9—S1—C16     | 96.16 (8)   | С36—С35—Н35        | 120.8       |
| C1—O1—C7      | 116.49 (12) | C37—C36—C35        | 120.68 (17) |
| C8—N1—N2      | 108.17 (13) | С37—С36—Н36        | 119.7       |
| C9—N2—N1      | 106.36 (12) | С35—С36—Н36        | 119.7       |
| C9—N3—C8      | 104.54 (13) | C38—C37—C36        | 119.94 (16) |
| C9—N3—C10     | 127.84 (13) | С38—С37—Н37        | 120.0       |

| C8—N3—C10                  | 126.61 (13)              | С36—С37—Н37                                          | 120.0                    |
|----------------------------|--------------------------|------------------------------------------------------|--------------------------|
| C17—N4—N5                  | 120.22 (13)              | C37—C38—C39                                          | 120.11 (18)              |
| C17—N4—H4N                 | 118.6                    | C37—C38—H38                                          | 119.9                    |
| N5—N4—H4N                  | 120.9                    | C39—C38—H38                                          | 119.9                    |
| C18 - N5 - N4              | 115 60 (14)              | $C_{34}$ $C_{39}$ $C_{38}$                           | 119.09(17)               |
| $C_{2}$ $C_{1}$ $C_{1}$    | 115.00 (11)              | $C_{34}$ $C_{39}$ $H_{39}$                           | 120.5                    |
| $C_2 - C_1 - C_6$          | 120.75 (15)              | $C_{38}$ $C_{39}$ $H_{39}$                           | 120.5                    |
| $C_2 C_1 C_0$              | 120.75(15)<br>123.30(15) | $C_{41}$ $C_{40}$ $S_2$                              | 120.3<br>100.83 (11)     |
| $C_1 = C_2 = C_3$          | 120.00(17)               | $C_{41} = C_{40} = S_2$                              | 109.85 (11)              |
| $C_1 = C_2 = C_3$          | 120.09 (17)              | C+1 - C+0 - H+0A<br>S2 C40 H40A                      | 109.7                    |
| $C_1 = C_2 = H_2$          | 120.0                    | $S_2 = C_4 0 = 1140 \text{A}$                        | 109.7                    |
| $C_3 = C_2 = C_2$          | 120.0                    | C41 - C40 - H40B                                     | 109.7                    |
| C4 - C3 - C2               | 119.08 (17)              | $S_2 - C_4 0 - H_4 0 B$                              | 109.7                    |
| C4 - C3 - H3               | 120.5                    | H40A - C40 - H40B                                    | 108.2                    |
| C2—C3—H3                   | 120.5                    | 04—C41—N9                                            | 121.41 (16)              |
| $C_{5}$ $C_{4}$ $C_{3}$    | 121.18 (16)              | 04-C41-C40                                           | 123.20 (15)              |
| C5—C4—C11                  | 119.16 (14)              | N9—C41—C40                                           | 115.37 (14)              |
| C3—C4—C11                  | 119.65 (14)              | N10—C42—C43                                          | 120.19 (16)              |
| C4—C5—C6                   | 119.85 (16)              | N10—C42—H42                                          | 119.9                    |
| C4—C5—H5                   | 120.1                    | C43—C42—H42                                          | 119.9                    |
| С6—С5—Н5                   | 120.1                    | C44—C43—C48                                          | 119.28 (17)              |
| C1—C6—C5                   | 119.04 (15)              | C44—C43—C42                                          | 119.05 (17)              |
| С1—С6—Н6                   | 120.5                    | C48—C43—C42                                          | 121.66 (15)              |
| С5—С6—Н6                   | 120.5                    | C45—C44—C43                                          | 120.23 (18)              |
| O1—C7—C8                   | 106.34 (13)              | C45—C44—H44                                          | 119.9                    |
| O1—C7—H7A                  | 110.5                    | C43—C44—H44                                          | 119.9                    |
| С8—С7—Н7А                  | 110.5                    | C46—C45—C44                                          | 120.10 (18)              |
| O1—C7—H7B                  | 110.5                    | C46—C45—H45                                          | 120.0                    |
| С8—С7—Н7В                  | 110.5                    | C44—C45—H45                                          | 120.0                    |
| H7A—C7—H7B                 | 108.7                    | C45—C46—C47                                          | 120.19 (19)              |
| N1—C8—N3                   | 110.01 (14)              | C45—C46—H46                                          | 119.9                    |
| N1—C8—C7                   | 125.92 (15)              | C47—C46—H46                                          | 119.9                    |
| N3—C8—C7                   | 124.01 (14)              | C48—C47—C46                                          | 120.0 (2)                |
| N2-C9-N3                   | 110.92 (14)              | С48—С47—Н47                                          | 120.0                    |
| N2-C9-S1                   | 127.74(12)               | C46—C47—H47                                          | 120.0                    |
| N3-C9-S1                   | 121.30(12)               | C47 - C48 - C43                                      | 120.0<br>120.18(17)      |
| $C_{11} - C_{10} - C_{15}$ | 121.80(12)<br>121.80(15) | C47 - C48 - H48                                      | 119.9                    |
| $C_{11}$ $C_{10}$ $N_3$    | 121.00(15)<br>118.07(15) | C43 - C48 - H48                                      | 119.9                    |
| $C_{15}$ $C_{10}$ $N_{3}$  | 120.13 (15)              | $C_{63}$ $S_{3}$ $C_{64}$                            | 96 30 (8)                |
| C10  C11  C12              | 120.13(13)<br>110.01(17) | $C_{00} = 55 = C_{01}$                               | 116 14 (13)              |
| $C_{10} = C_{11} = C_{12}$ | 120.5                    | C56 N11 N12                                          | 107.08(13)               |
| $C_{10} = C_{11} = H_{11}$ | 120.5                    | $C_{50} = N_{11} = N_{12}$                           | 107.98(13)<br>106.20(14) |
| $C_{12} = C_{11} = I_{11}$ | 120.3<br>120.10(18)      | C63 = N12 = N11                                      | 100.20(14)<br>104.21(14) |
| $C_{13} = C_{12} = C_{11}$ | 120.10 (16)              | C62 N12 C57                                          | 104.31(14)               |
| С13—С12—Н12                | 119.9                    | $C_{03} = N_{13} = C_{37}$                           | 127.08(14)               |
| $C_{11} = C_{12} = C_{14}$ | 117.7                    | $C_{50} = N_{15} = C_{57}$                           | 12/.21(14)               |
| $C_{12} = C_{13} = C_{14}$ | 120.12 (17)              | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 121.32 (13)              |
| $C_{12} = C_{13} = H_{13}$ | 119.9                    | U03 - IN 14 - II 14 N                                | 118.3                    |
| C14—C13—H13                | 119.9                    | N15—N14—H14N                                         | 119.9                    |
| C13—C14—C15                | 120.43 (17)              | C66-N15-N14                                          | 115.49 (15)              |

| C13—C14—H14                | 119.8                    | O5—C49—C50                      | 115.39 (15)              |
|----------------------------|--------------------------|---------------------------------|--------------------------|
| C15—C14—H14                | 119.8                    | O5—C49—C54                      | 123.84 (15)              |
| C10—C15—C14                | 118.53 (17)              | C50—C49—C54                     | 120.74 (16)              |
| C10—C15—H15                | 120.7                    | C49—C50—C51                     | 120.17 (17)              |
| C14—C15—H15                | 120.7                    | С49—С50—Н50                     | 119.9                    |
| C17 - C16 - S1             | 109.05 (11)              | C51—C50—H50                     | 119.9                    |
| C17—C16—H16A               | 109.9                    | $C_{52} - C_{51} - C_{50}$      | 119.02(17)               |
| S1                         | 109.9                    | $C_{52} = C_{51} = H_{51}$      | 120.5                    |
| C17 - C16 - H16B           | 109.9                    | $C_{50}$ $C_{51}$ $H_{51}$      | 120.5                    |
| S1H16B                     | 109.9                    | $C_{53}$ $C_{52}$ $C_{51}$      | 120.91 (17)              |
|                            | 109.9                    | $C_{53} = C_{52} = C_{51}^{13}$ | 120.91(17)<br>110.54(14) |
| $\Omega_2  C_{17}  N_4$    | 100.5                    | $C_{55} - C_{52} - C_{13}$      | 119.34(14)               |
| 02 - 017 - 016             | 121.30(13)<br>122.22(14) | $C_{51} = C_{52} = C_{54}$      | 119.34(14)               |
| 02-017-010                 | 122.23(14)               | $C_{52} = C_{53} = C_{54}$      | 120.19 (10)              |
| N4-C1/-C10                 | 110.19 (14)              | С52—С53—Н53                     | 119.9                    |
| N5-C18-C19                 | 120.97 (15)              | С54—С53—Н53                     | 119.9                    |
| N5—C18—H18                 | 119.5                    | C49—C54—C53                     | 118.97 (16)              |
| C19—C18—H18                | 119.5                    | С49—С54—Н54                     | 120.5                    |
| C20—C19—C24                | 118.65 (15)              | С53—С54—Н54                     | 120.5                    |
| C20—C19—C18                | 122.22 (15)              | O5—C55—C56                      | 107.07 (14)              |
| C24—C19—C18                | 119.12 (15)              | O5—C55—H55A                     | 110.3                    |
| C21—C20—C19                | 120.39 (16)              | С56—С55—Н55А                    | 110.3                    |
| С21—С20—Н20                | 119.8                    | O5—C55—H55B                     | 110.3                    |
| С19—С20—Н20                | 119.8                    | С56—С55—Н55В                    | 110.3                    |
| C20—C21—C22                | 120.49 (19)              | H55A—C55—H55B                   | 108.6                    |
| C20—C21—H21                | 119.8                    | N11-C56-N13                     | 110.27 (15)              |
| C22—C21—H21                | 119.8                    | N11—C56—C55                     | 125.53 (15)              |
| C23—C22—C21                | 119.67 (18)              | N13—C56—C55                     | 124.16 (15)              |
| C23—C22—H22                | 120.2                    | C62—C57—C58                     | 121.49 (16)              |
| C21—C22—H22                | 120.2                    | C62—C57—N13                     | 120.12 (16)              |
| C22—C23—C24                | 120.08 (16)              | C58—C57—N13                     | 118.38 (15)              |
| C22—C23—H23                | 120.0                    | C57—C58—C59                     | 119.32 (17)              |
| C24—C23—H23                | 120.0                    | С57—С58—Н58                     | 120.3                    |
| $C_{23}$ $C_{24}$ $C_{19}$ | 120.72(17)               | С59—С58—Н58                     | 120.3                    |
| $C_{23}$ $C_{24}$ $H_{24}$ | 1196                     | C60 - C59 - C58                 | 119.82 (18)              |
| C19 - C24 - H24            | 119.6                    | C60-C59-H59                     | 120.1                    |
| $C_{33}$ $S_{2}$ $C_{40}$  | 95 76 (8)                | $C_{58}$ $C_{59}$ $H_{59}$      | 120.1                    |
| $C_{25} = 0_{22} = 0_{40}$ | 117 59 (13)              | $C_{50} = C_{50} = C_{50}$      | 120.1<br>120.24(17)      |
| $C_{23} = 0.5 = 0.51$      | 117.39(13)<br>107.30(13) | $C_{01} = C_{00} = C_{00}$      | 120.24 (17)              |
| $C_{32}$ N7 N6             | 107.39(13)<br>106.74(13) | $C_{01} = C_{00} = H_{00}$      | 119.9                    |
| $C_{33}$ NP $C_{32}$       | 100.74(13)<br>104.07(12) | $C_{3} = C_{00} = H_{00}$       | 119.9                    |
| $C_{33} = N_8 = C_{34}$    | 104.07 (13)              | C60 - C61 - C62                 | 120.61 (17)              |
| $C_{33} = N_8 = C_{34}$    | 127.89 (14)              | C60—C61—H61                     | 119.7                    |
| C32—N8—C34                 | 126.48 (14)              | С62—С61—Н61                     | 119.7                    |
| C41—N9—N10                 | 119.91 (14)              | C57—C62—C61                     | 118.52 (18)              |
| C41—N9—H9N                 | 118.8                    | C57—C62—H62                     | 120.7                    |
| N10—N9—H9N                 | 121.3                    | С61—С62—Н62                     | 120.7                    |
| C42—N10—N9                 | 116.59 (15)              | N12—C63—N13                     | 111.24 (15)              |
| O3—C25—C26                 | 115.48 (15)              | N12—C63—S3                      | 127.30 (13)              |
| O3—C25—C30                 | 123.87 (15)              | N13—C63—S3                      | 121.45 (12)              |

| C26—C25—C30   | 120.58 (16)  | C65—C64—S3              | 109.11 (12)  |
|---------------|--------------|-------------------------|--------------|
| C25—C26—C27   | 119.87 (18)  | С65—С64—Н64А            | 109.9        |
| C25—C26—H26   | 120.1        | S3—C64—H64A             | 109.9        |
| С27—С26—Н26   | 120.1        | C65—C64—H64B            | 109.9        |
| C28—C27—C26   | 119.45 (18)  | S3—C64—H64B             | 109.9        |
| С28—С27—Н27   | 120.3        | H64A—C64—H64B           | 108.3        |
| С26—С27—Н27   | 120.3        | O6—C65—N14              | 121.07 (16)  |
| C27—C28—C29   | 120.95 (17)  | O6—C65—C64              | 121.71 (16)  |
| C27—C28—Cl2   | 119.41 (14)  | N14—C65—C64             | 117.20 (15)  |
| C29—C28—Cl2   | 119.63 (14)  | N15—C66—C67             | 121.05 (16)  |
| C28—C29—C30   | 119.91 (17)  | N15—C66—H66             | 119.5        |
| С28—С29—Н29   | 120.0        | С67—С66—Н66             | 119.5        |
| С30—С29—Н29   | 120.0        | C72—C67—C68             | 118.78 (17)  |
| C25—C30—C29   | 119.25 (16)  | C72—C67—C66             | 122.41 (16)  |
| С25—С30—Н30   | 120.4        | C68—C67—C66             | 118.80 (17)  |
| С29—С30—Н30   | 120.4        | C69—C68—C67             | 120.40 (18)  |
| 03-C31-C32    | 106.23 (13)  | С69—С68—Н68             | 119.8        |
| 03-C31-H31A   | 110.5        | C67—C68—H68             | 119.8        |
| C32—C31—H31A  | 110.5        | C70-C69-C68             | 120.16(17)   |
| 03-C31-H31B   | 110.5        | C70—C69—H69             | 119.9        |
| C32—C31—H31B  | 110.5        | C68—C69—H69             | 119.9        |
| H31A-C31-H31B | 108 7        | C69 - C70 - C71         | 119.94 (18)  |
| N6-C32-N8     | 110.78 (14)  | С69—С70—Н70             | 120.0        |
| N6-C32-C31    | 125.66 (15)  | С71—С70—Н70             | 120.0        |
| N8-C32-C31    | 123.47 (14)  | C72-C71-C70             | 120.17(19)   |
| N7—C33—N8     | 111.01 (14)  | C72—C71—H71             | 119.9        |
| N7—C33—S2     | 127.73 (12)  | С70—С71—Н71             | 119.9        |
| N8—C33—S2     | 121.22 (12)  | C71—C72—C67             | 120.54 (17)  |
| C35—C34—C39   | 121.82 (15)  | С71—С72—Н72             | 119.7        |
| C35—C34—N8    | 120.27 (15)  | С67—С72—Н72             | 119.7        |
| C39—C34—N8    | 117.91 (14)  | H7D—O7—H7C              | 104.1        |
| C34—C35—C36   | 118.33 (17)  | O8 <sup>i</sup> —O8—H8A | 60.2         |
| С34—С35—Н35   | 120.8        | H8A—O8—H8B              | 104.0        |
|               |              |                         |              |
| C8—N1—N2—C9   | -0.56 (18)   | C40—S2—C33—N8           | -170.39 (14) |
| C17—N4—N5—C18 | 176.79 (15)  | C33—N8—C34—C35          | -87.0 (2)    |
| C7—O1—C1—C2   | 149.15 (16)  | C32—N8—C34—C35          | 109.6 (2)    |
| C7—O1—C1—C6   | -33.2 (2)    | C33—N8—C34—C39          | 93.7 (2)     |
| O1—C1—C2—C3   | 177.38 (18)  | C32—N8—C34—C39          | -69.7 (2)    |
| C6—C1—C2—C3   | -0.4 (3)     | C39—C34—C35—C36         | 1.3 (3)      |
| C1—C2—C3—C4   | -0.1 (3)     | N8—C34—C35—C36          | -178.00 (16) |
| C2—C3—C4—C5   | 0.2 (3)      | C34—C35—C36—C37         | 0.4 (3)      |
| C2—C3—C4—Cl1  | 179.51 (16)  | C35—C36—C37—C38         | -1.5 (3)     |
| C3—C4—C5—C6   | 0.3 (3)      | C36—C37—C38—C39         | 0.9 (3)      |
| Cl1—C4—C5—C6  | -179.07 (13) | C35—C34—C39—C38         | -1.8 (3)     |
| C2—C1—C6—C5   | 0.8 (3)      | N8—C34—C39—C38          | 177.46 (17)  |
| O1—C1—C6—C5   | -176.77 (15) | C37—C38—C39—C34         | 0.7 (3)      |
| C4—C5—C6—C1   | -0.8 (3)     | C33—S2—C40—C41          | 176.14 (13)  |
|               | × /          |                         | × /          |

| C1C7C8          | -171.47 (13) | N10—N9—C41—O4   | 179.24 (15)  |
|-----------------|--------------|-----------------|--------------|
| N2—N1—C8—N3     | 0.18 (18)    | N10-N9-C41-C40  | 0.9 (2)      |
| N2—N1—C8—C7     | 177.31 (15)  | S2-C40-C41-O4   | 9.7 (2)      |
| C9—N3—C8—N1     | 0.24 (18)    | S2-C40-C41-N9   | -172.01 (13) |
| C10—N3—C8—N1    | -168.91 (15) | N9—N10—C42—C43  | -179.38 (15) |
| C9—N3—C8—C7     | -176.95 (15) | N10-C42-C43-C44 | 173.62 (17)  |
| C10—N3—C8—C7    | 13.9 (3)     | N10-C42-C43-C48 | -5.2 (3)     |
| O1—C7—C8—N1     | -120.09 (17) | C48—C43—C44—C45 | 0.7 (3)      |
| O1—C7—C8—N3     | 56.6 (2)     | C42—C43—C44—C45 | -178.18 (17) |
| N1—N2—C9—N3     | 0.73 (18)    | C43—C44—C45—C46 | -1.2 (3)     |
| N1—N2—C9—S1     | -177.01 (12) | C44—C45—C46—C47 | 0.8 (3)      |
| C8—N3—C9—N2     | -0.61 (18)   | C45—C46—C47—C48 | 0.2 (4)      |
| C10—N3—C9—N2    | 168.36 (15)  | C46—C47—C48—C43 | -0.7(3)      |
| C8—N3—C9—S1     | 177.29 (12)  | C44—C43—C48—C47 | 0.3 (3)      |
| C10—N3—C9—S1    | -13.7 (2)    | C42—C43—C48—C47 | 179.09 (18)  |
| C16—S1—C9—N2    | -7.22 (17)   | C56—N11—N12—C63 | 0.71 (19)    |
| C16—S1—C9—N3    | 175.25 (14)  | C65—N14—N15—C66 | -176.10 (16) |
| C9—N3—C10—C11   | -101.6(2)    | C55-05-C49-C50  | -158.03(16)  |
| C8—N3—C10—C11   | 65.1 (2)     | C55-05-C49-C54  | 23.8 (2)     |
| C9—N3—C10—C15   | 77.8 (2)     | O5-C49-C50-C51  | -178.40(18)  |
| C8—N3—C10—C15   | -115.58(19)  | C54—C49—C50—C51 | -0.2 (3)     |
| C15—C10—C11—C12 | 0.7 (3)      | C49—C50—C51—C52 | 0.5 (3)      |
| N3—C10—C11—C12  | -179.99 (17) | C50—C51—C52—C53 | -0.1 (3)     |
| C10—C11—C12—C13 | -0.6(3)      | C50—C51—C52—Cl3 | -179.50 (16) |
| C11—C12—C13—C14 | 0.0 (3)      | C51—C52—C53—C54 | -0.5 (3)     |
| C12—C13—C14—C15 | 0.4 (3)      | Cl3—C52—C53—C54 | 178.92 (13)  |
| C11—C10—C15—C14 | -0.3 (3)     | O5—C49—C54—C53  | 177.66 (16)  |
| N3—C10—C15—C14  | -179.58 (16) | C50—C49—C54—C53 | -0.4 (3)     |
| C13—C14—C15—C10 | -0.3 (3)     | C52—C53—C54—C49 | 0.7 (3)      |
| C9—S1—C16—C17   | 177.06 (13)  | C49—O5—C55—C56  | 171.56 (14)  |
| N5—N4—C17—O2    | 177.84 (14)  | N12—N11—C56—N13 | -0.38 (19)   |
| N5—N4—C17—C16   | -4.0 (2)     | N12—N11—C56—C55 | -177.96 (16) |
| S1—C16—C17—O2   | -11.9 (2)    | C63—N13—C56—N11 | -0.09 (19)   |
| S1—C16—C17—N4   | 169.94 (12)  | C57—N13—C56—N11 | 170.26 (15)  |
| N4—N5—C18—C19   | 179.70 (14)  | C63—N13—C56—C55 | 177.53 (16)  |
| N5-C18-C19-C20  | 5.5 (3)      | C57—N13—C56—C55 | -12.1 (3)    |
| N5-C18-C19-C24  | -173.33 (16) | O5-C55-C56-N11  | 122.18 (18)  |
| C24—C19—C20—C21 | 0.4 (3)      | O5-C55-C56-N13  | -55.1 (2)    |
| C18—C19—C20—C21 | -178.38 (18) | C63—N13—C57—C62 | -71.9 (2)    |
| C19—C20—C21—C22 | 0.0 (3)      | C56—N13—C57—C62 | 119.97 (19)  |
| C20—C21—C22—C23 | -0.3 (3)     | C63—N13—C57—C58 | 107.1 (2)    |
| C21—C22—C23—C24 | 0.3 (3)      | C56—N13—C57—C58 | -61.1(2)     |
| C22—C23—C24—C19 | 0.1 (3)      | C62—C57—C58—C59 | 0.5 (3)      |
| C20—C19—C24—C23 | -0.5 (3)     | N13—C57—C58—C59 | -178.39 (16) |
| C18—C19—C24—C23 | 178.37 (16)  | C57—C58—C59—C60 | 0.2 (3)      |
| C32—N6—N7—C33   | 0.63 (17)    | C58—C59—C60—C61 | -0.8 (3)     |
| C41—N9—N10—C42  | -176.21 (16) | C59—C60—C61—C62 | 0.6 (3)      |
| C31—O3—C25—C26  | -149.29 (17) | C58—C57—C62—C61 | -0.7 (3)     |
|                 | . ,          |                 |              |

| C31—O3—C25—C30  | 33.8 (2)     | N13-C57-C62-C61 | 178.18 (16)  |
|-----------------|--------------|-----------------|--------------|
| O3—C25—C26—C27  | -176.77 (19) | C60—C61—C62—C57 | 0.2 (3)      |
| C30—C25—C26—C27 | 0.2 (3)      | N11—N12—C63—N13 | -0.79 (19)   |
| C25—C26—C27—C28 | -0.1 (3)     | N11—N12—C63—S3  | 178.29 (13)  |
| C26—C27—C28—C29 | 0.2 (3)      | C56—N13—C63—N12 | 0.56 (19)    |
| C26—C27—C28—Cl2 | -178.96 (17) | C57—N13—C63—N12 | -169.72 (16) |
| C27—C28—C29—C30 | -0.4 (3)     | C56—N13—C63—S3  | -178.58 (12) |
| Cl2—C28—C29—C30 | 178.75 (14)  | C57—N13—C63—S3  | 11.1 (2)     |
| O3—C25—C30—C29  | 176.29 (16)  | C64—S3—C63—N12  | -3.31 (18)   |
| C26—C25—C30—C29 | -0.4 (3)     | C64—S3—C63—N13  | 175.68 (15)  |
| C28—C29—C30—C25 | 0.5 (3)      | C63—S3—C64—C65  | 176.38 (13)  |
| C25—O3—C31—C32  | 176.58 (14)  | N15—N14—C65—O6  | -177.96 (16) |
| N7—N6—C32—N8    | -0.41 (18)   | N15—N14—C65—C64 | 3.5 (2)      |
| N7—N6—C32—C31   | -177.17 (15) | S3—C64—C65—O6   | 23.7 (2)     |
| C33—N8—C32—N6   | 0.04 (18)    | S3—C64—C65—N14  | -157.77 (13) |
| C34—N8—C32—N6   | 166.64 (15)  | N14—N15—C66—C67 | -179.26 (15) |
| C33—N8—C32—C31  | 176.89 (15)  | N15-C66-C67-C72 | -2.7 (3)     |
| C34—N8—C32—C31  | -16.5 (3)    | N15-C66-C67-C68 | 176.14 (17)  |
| O3—C31—C32—N6   | 119.30 (17)  | C72—C67—C68—C69 | 0.6 (3)      |
| O3—C31—C32—N8   | -57.1 (2)    | C66—C67—C68—C69 | -178.20 (17) |
| N6—N7—C33—N8    | -0.62 (18)   | C67—C68—C69—C70 | -0.5 (3)     |
| N6—N7—C33—S2    | 177.23 (12)  | C68—C69—C70—C71 | -0.1 (3)     |
| C32—N8—C33—N7   | 0.38 (18)    | C69—C70—C71—C72 | 0.5 (3)      |
| C34—N8—C33—N7   | -165.96 (15) | C70—C71—C72—C67 | -0.3 (3)     |
| C32—N8—C33—S2   | -177.63 (12) | C68—C67—C72—C71 | -0.2 (3)     |
| C34—N8—C33—S2   | 16.0 (2)     | C66—C67—C72—C71 | 178.56 (18)  |
| C40—S2—C33—N7   | 11.95 (17)   |                 |              |

Symmetry code: (i) -x, -y+1, -z.

# Hydrogen-bond geometry (Å, °)

Cg1 and Cg9 are the centroids of the 1,2,4-triazole rings N1–N3/C8/C9 and N11–N13/C56/C63, Cg2 and Cg10 are the centroids of the chlorophenyl rings C1–C6 and C49–C54, and Cg4 and Cg12 are the centroids of the phenyl rings C19–C24 and C67–C72.

| D—H···A                               | <i>D</i> —Н | H···A | D··· $A$    | D—H···A |
|---------------------------------------|-------------|-------|-------------|---------|
| N4—H4N····O7 <sup>ii</sup>            | 0.91        | 1.86  | 2.7527 (19) | 166     |
| C6—H6····O2 <sup>iii</sup>            | 0.95        | 2.36  | 3.2815 (19) | 163     |
| C7—H7A····O2 <sup>iii</sup>           | 0.99        | 2.35  | 3.304 (2)   | 162     |
| C30—H30…O4 <sup>ii</sup>              | 0.95        | 2.48  | 3.395 (2)   | 161     |
| C31—H31 <i>B</i> ····O4 <sup>ii</sup> | 0.99        | 2.44  | 3.419 (2)   | 170     |
| C39—H39…N6 <sup>iv</sup>              | 0.95        | 2.51  | 3.386 (2)   | 154     |
| N14—H14 <i>N</i> ···O8                | 0.91        | 1.98  | 2.802 (3)   | 149     |
| C54—H54…O6 <sup>ii</sup>              | 0.95        | 2.41  | 3.329 (2)   | 163     |
| C55—H55 <i>B</i> ···O6 <sup>ii</sup>  | 0.99        | 2.35  | 3.254 (2)   | 151     |
| O7—H7 <i>D</i> ···O4 <sup>ii</sup>    | 0.87        | 2.14  | 2.9668 (19) | 160     |
| O7—H7 <i>C</i> ⋯N1                    | 0.87        | 1.96  | 2.8239 (19) | 176     |
| O8—H8A····N11 <sup>iii</sup>          | 0.87        | 2.05  | 2.897 (3)   | 164     |
| O8—H8 <i>B</i> …N11 <sup>v</sup>      | 0.87        | 2.16  | 2.853 (3)   | 136     |
|                                       |             |       |             |         |

#### data reports С15—Н15…Сд8іі 0.95 2.74 3.670 (2) 168 C35—H35…Cg4<sup>iii</sup> 0.95 2.77 3.709 (2) 169 C62—H62…Cg12<sup>v</sup> 3.714 (2) 0.95 159 2.81

Symmetry codes: (ii) *x*+1, *y*, *z*; (iii) *x*-1, *y*, *z*; (iv) -*x*+1, -*y*+1, -*z*+1; (v) -*x*+1, -*y*+1, -*z*.