

Abdellah N'Ait Ousidi,^a My Youssef Ait Itto,^a Aziz Auhmani,^a Abdelkhalek Riahi,^a Sylviane Chevreux^b and Moha Berraho^c*

^aLaboratoire de Synthèse Organique et Physico-Chimie Moléculaire, Département de Chimie, Faculté, des Sciences, Semlalia BP 2390, Marrakech 40001, Morocco, ^bInstitut de Chimie Moléculaire de Reims, CNRS UMR 7312 Bât. Europol'Agro, Moulin de la Housse UFR Sciences, BP 1039–51687 Reims Cédex 2, France, and ^cLaboratoire de Chimie des Substances Naturelles, "Unité Associé au CNRST (URAC16)", Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco. *Correspondence e-mail: berraho@uca.ac.ma

The title compound, $C_{11}H_{19}N_3S$, was prepared by the reaction of (*R*)-pulegone with thiosemicarbazide in acidic medium, using ethanol as solvent. The molecule is built up from fused six and five-membered rings. The six-membered ring adopts a chair conformation, while the five-membered ring displays an envelope conformation with the dimethyl-substituted C atom as the flap. The dihedral angle between the mean planes of the two rings is 20.35 (6)°. In the crystal, molecules are linked by N-H···N and N-H···S hydrogen bonds into chains running parallel to [100].

Structure description

In recent years, the synthesis of heterocyclic systems containing nitrogen has attracted great interest because of their broad spectrum of pharmacological activities. In particular, indazole is a crucial heterocyclic skeleton present in a wide variety of drugs, many natural products and biologically active compounds (Gautam *et al.*, 2015). Compounds containing the indazole skeleton are known to display a broad spectrum of potent pharmacological activities including anti-inflammatory (Rosati *et al.*, 2007), anti-depressant (Bailey *et al.*, 1985), anticancer (De Lena *et al.*, 2001), antituberculosis (Guo *et al.*, 2010) and antimicrobial activities (Ali *et al.*, 2012). The therapeutic usefulness of these heterocyclic systems prompted us to prepare a new substituted 2*H*-indazole from a naturally occurring monoterpene. The title compound (3aR,6R)-3,3,6-trimethyl-3,3a,4,5,6,7-hexahydro-2H-indazole-2-carbothioamide was prepared by the reaction of (*R*)-pulegone with thiosemicarbazide in acidic medium, using ethanol as solvent. The

Received 16 March 2016 Accepted 6 April 2016

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

IUCrData

Keywords: crystal structure; indazole; carbothioamide; thiosemicarbazide; N—H···Nhydrogen bonds; N—H···S hydrogen bonds.

CCDC reference: 1472696

Structural data: full structural data are available from iucrdata.iucr.org

Figure 1

Molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. Labels very small

resulting product obtained as diastereomeric mixture, was then crystallized from ethanol to give the new compound as white monocrystals.

The title molecule, Fig. 1, contains a fused ring system and a carbothioamide group as a substituent to the pyrazolidine ring. The six-membered ring (C1/C7/C8/C19-C12) has a chair conformation as indicated by puckering parameters $Q_{\rm T} = 0.5218$ (16) Å, $\theta = 16.11$ (18) and $\varphi 2 = 199.40$ (16)°. The pyrazolidine ring (N1/N2/C1/C7/C14) adopts an envelope conformation with atom C14 as the flap; deviating by 0.341 (1) Å from the mean plane through the other four atoms in the ring.

Figure 2

Partial crystal packing view along the *c* axis of the title compound. The $N-H\cdots N$ and $N-H\cdots S$ hydrogen bonds (dashed lines; Table 1) indicate the formation of a chain parallel to the *a* axis. H atoms not involved in hydrogen bonding have been omitted for clarity.

Table	1			
Hydro	gen-bond ge	eometry ((Å, °)	

		11 11	$D \cdots A$	$D - \Pi \cdots A$
$-H3B \cdots N1^{i}$ $-H3A \cdots S1^{ii}$	0.86 0.86	2.37 2.70	3.230 (3) 3.442 (3)	176 146
$-\mathrm{H3}A\cdots\mathrm{S1}^{\mathrm{ii}}$	0.86	2.70	3.442 (3)	

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$.

In the crystal, molecules are linked by $N-H \cdots N$ and $N-H \cdots S$ hydrogen bonds into chains running parallel to [100] (Table 1 and Fig. 2).

Owing to the presence of the S atom, the absolute configuration could be fully confirmed, by refining the Flack parameter (Parsons *et al.*, 2013), as C3a(R) and C6(R).

Synthesis and crystallization

A hot ethanolic solution containing equimolar quantities of thiosemicarbazide and (R)-pulegone with a few drops of concentrated HCl was heated under reflux. The progress of the reaction was monitored by TLC. After the completion of the reaction, the solvent was evaporated under reduced pressure and the crude product was purified by chromatography on silica gel (230–400 mesh) using hexane/ethyl acetate (95:5) as eluent. The pure indazolic product was obtained in 64% yield as a diastereomeric mixture. Slow evaporation from

 Table 2

 Experimental details.

$C_{11}H_{19}N_3S$
225.35
Orthorhombic, $P2_12_12_1$
100
7.957 (5), 10.796 (5), 13.673 (5)
1174.6 (10)
4
Cu Ka
2.21
$0.24 \times 0.2 \times 0.15$
Bruker APEXII CCD
Multi-scan (<i>SADABS</i> ; Bruker, 2009)
0.618, 0.718
17550, 2315, 2270
0.027
0.618
0.021 0.054 1.06
2315
140
H-atom parameters constrained
0.22, -0.17
Parsons et al. (2013), 972 Friedel
pairs
0.028 (12)

Computer programs: *APEX2* and *SAINT* (Bruker, 2009), *SHELXS97* and *SHELXL97* (Sheldrick, 2008), *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

an ethanolic solution of the title compound gave crystals of the title compound, suitable for X-ray crystallographic analysis.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors thank Pr. Auhmani Abdelouhed as laboratory manager.

References

Ali, N., ali, S., Zakir, S., Patel, M. & Farooqui, M. (2012). Eur. J. Med. Chem. 50, 39–43.

- Bailey, D. M., Hansen, P. E., Hlavac, A. G., Baizman, E. R., Pearl, J., DeFelice, A. F. & Feigenson, M. E. (1985). J. Med. Chem. 28, 256– 260.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- De Lena, M., Lorusso, V., Latorre, A., Fanizza, G., Gargano, G., Caporusso, L., Guida, M., Catino, A., Crucitta, E., Sambiasi, D. & Mazzei, A. (2001). *Eur. J. Cancer*, **37**, 364–368.
- Gautam, D. & Chaudhary, R. P. (2015). Spectrochim. Acta Part A, 135, 219–226.
- Guo, S., Song, Y., Huang, Q., Yuan, H., Wan, B., Wang, Y., He, R., Beconi, M. G., Franzblau, S. G. & Kozikowski, A. P. (2010). J. Med. Chem. 53, 649–659.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Rosati, O., Curini, M., Marcotullio, M. C., Macchiarulo, A., Perfumi, M., Mattioli, L., Rismondo, F. & Cravotto, G. (2007). *Bioorg. Med. Chem.* 15, 3463–3473.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2016). 1, x160573 [doi:10.1107/S2414314616005733]

(3a*R*,6*R*)-3,3,6-Trimethyl-3,3a,4,5,6,7-hexahydro-2*H*-indazole-2-carbothioamide

Abdellah N'Ait Ousidi, My Youssef Ait Itto, Aziz Auhmani, Abdelkhalek Riahi, Sylviane Chevreux and Moha Berraho

(3aR,6R)-3,3,6-Trimethyl-3,3a,4,5,6,7-hexahydro-2H-indazole-2-carbothioamide

Crystal data

C₁₁H₁₉N₃S $M_r = 225.35$ Orthorhombic, $P2_12_12_1$ a = 7.957 (5) Å b = 10.796 (5) Å c = 13.673 (5) Å V = 1174.6 (10) Å³ Z = 4F(000) = 488

Data collection

Bruker APEXII CCD diffractometer Radiation source: microsource Multi-layer mirror monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\min} = 0.618, T_{\max} = 0.718$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.021$ $wR(F^2) = 0.054$ S = 1.062315 reflections 140 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map $D_x = 1.274 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.5418 \text{ Å}$ Cell parameters from 17550 reflections $\theta = 5.2-72.9^{\circ}$ $\mu = 2.21 \text{ mm}^{-1}$ T = 100 KPrismatic, colourless $0.24 \times 0.2 \times 0.15 \text{ mm}$

17550 measured reflections 2315 independent reflections 2270 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 72.2^\circ, \ \theta_{min} = 5.2^\circ$ $h = -9 \rightarrow 9$ $k = -12 \rightarrow 13$ $l = -16 \rightarrow 16$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0309P)^2 + 0.2126P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.22$ e Å⁻³ $\Delta\rho_{min} = -0.17$ e Å⁻³ Absolute structure: Parsons *et al.* (2013), 972 Friedel pairs Absolute structure parameter: 0.028 (12)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.15695 (3)	0.04077 (2)	0.529496 (19)	0.01460 (8)
C1	0.68856 (13)	0.02162 (11)	0.35481 (8)	0.0111 (2)
N2	0.45543 (12)	0.03660 (9)	0.43699 (7)	0.01126 (18)
N1	0.59405 (12)	0.10135 (9)	0.39659 (7)	0.01179 (19)
C4	0.33782 (15)	0.10291 (10)	0.48530 (7)	0.0117 (2)
N3	0.37036 (13)	0.22324 (9)	0.49959 (7)	0.0167 (2)
H3A	0.4626	0.2548	0.4784	0.020*
H3B	0.2990	0.2690	0.5300	0.020*
C6	0.31991 (15)	-0.10083 (12)	0.31667 (9)	0.0171 (2)
H6A	0.2100	-0.0815	0.3413	0.026*
H6B	0.3194	-0.1827	0.2893	0.026*
H6C	0.3503	-0.0421	0.2670	0.026*
C7	0.63141 (14)	-0.10999 (10)	0.36496 (8)	0.0117 (2)
H7	0.6947	-0.1462	0.4194	0.014*
C8	0.66596 (16)	-0.19039 (10)	0.27468 (9)	0.0168 (2)
H8A	0.5851	-0.1713	0.2238	0.020*
H8B	0.6542	-0.2772	0.2916	0.020*
C9	0.40770 (15)	-0.18861 (10)	0.48000 (9)	0.0167 (2)
H9A	0.4661	-0.1662	0.5388	0.025*
H9B	0.4432	-0.2695	0.4593	0.025*
H9C	0.2889	-0.1894	0.4922	0.025*
C10	0.87482 (14)	-0.02785 (11)	0.21395 (8)	0.0148 (2)
H10	0.9909	-0.0184	0.1912	0.018*
C11	0.85262 (14)	0.05119 (10)	0.30711 (8)	0.0137 (2)
H11A	0.9439	0.0344	0.3523	0.016*
H11B	0.8561	0.1384	0.2902	0.016*
C12	0.84475 (17)	-0.16553 (11)	0.23718 (9)	0.0176 (2)
H12A	0.8640	-0.2141	0.1786	0.021*
H12B	0.9250	-0.1922	0.2862	0.021*
C13	0.75792 (16)	0.01904 (12)	0.13366 (9)	0.0191 (3)
H13A	0.7674	-0.0336	0.0773	0.029*
H13B	0.7887	0.1021	0.1162	0.029*
H13C	0.6441	0.0181	0.1569	0.029*
C14	0.44718 (14)	-0.09470 (10)	0.40007 (8)	0.0116 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.01105 (13)	0.01600 (13)	0.01675 (13)	-0.00067 (11)	0.00364 (10)	-0.00051 (11)
C1	0.0114 (5)	0.0133 (5)	0.0086 (5)	0.0002 (4)	-0.0023 (4)	0.0002 (4)
N2	0.0104 (4)	0.0093 (4)	0.0141 (4)	-0.0019 (4)	0.0017 (3)	0.0004 (4)
N1	0.0098 (4)	0.0138 (4)	0.0118 (4)	-0.0025 (4)	0.0008 (3)	0.0007 (4)
C4	0.0118 (5)	0.0136 (5)	0.0098 (5)	0.0015 (4)	-0.0011 (4)	0.0013 (4)
N3	0.0140 (5)	0.0134 (5)	0.0228 (5)	0.0001 (4)	0.0053 (4)	-0.0047 (4)
C6	0.0134 (6)	0.0202 (6)	0.0178 (5)	0.0002 (5)	-0.0018 (5)	-0.0035 (5)
C7	0.0105 (5)	0.0121 (5)	0.0125 (5)	0.0008 (4)	0.0001 (4)	0.0012 (4)
C8	0.0183 (6)	0.0123 (5)	0.0197 (5)	0.0000 (5)	0.0035 (5)	-0.0034 (4)
C9	0.0172 (5)	0.0128 (5)	0.0200 (6)	-0.0022 (4)	0.0020 (5)	0.0034 (5)
C10	0.0108 (5)	0.0195 (6)	0.0141 (5)	0.0014 (5)	0.0029 (4)	-0.0009(5)
C11	0.0100 (5)	0.0164 (5)	0.0148 (5)	-0.0015 (5)	0.0007 (4)	-0.0004 (4)
C12	0.0163 (6)	0.0175 (5)	0.0189 (5)	0.0045 (5)	0.0032 (5)	-0.0029 (4)
C13	0.0182 (6)	0.0260 (7)	0.0131 (5)	0.0003 (5)	0.0011 (4)	0.0014 (5)
C14	0.0120 (5)	0.0093 (5)	0.0134 (5)	0.0002 (4)	0.0002 (4)	-0.0010 (4)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

S1—C4	1.6990 (14)	C8—H8A	0.9700	
C1—N1	1.2778 (16)	C8—H8B	0.9700	
C1-C11	1.4938 (16)	C9—C14	1.5235 (16)	
C1—C7	1.4983 (16)	С9—Н9А	0.9600	
N2-C4	1.3507 (15)	С9—Н9В	0.9600	
N2—N1	1.4180 (14)	С9—Н9С	0.9600	
N2-C14	1.5062 (15)	C10—C13	1.5254 (16)	
C4—N3	1.3390 (15)	C10—C12	1.5387 (18)	
N3—H3A	0.8600	C10—C11	1.5433 (15)	
N3—H3B	0.8600	C10—H10	0.9800	
C6—C14	1.5265 (17)	C11—H11A	0.9700	
С6—Н6А	0.9600	C11—H11B	0.9700	
C6—H6B	0.9600	C12—H12A	0.9700	
С6—Н6С	0.9600	C12—H12B	0.9700	
С7—С8	1.5339 (15)	C13—H13A	0.9600	
C7—C14	1.5513 (17)	C13—H13B	0.9600	
С7—Н7	0.9800	C13—H13C	0.9600	
C8—C12	1.5358 (19)			
N1-C1-C11	124.44 (11)	С14—С9—Н9С	109.5	
N1-C1-C7	114.76 (10)	Н9А—С9—Н9С	109.5	
C11—C1—C7	120.55 (10)	H9B—C9—H9C	109.5	
C4—N2—N1	117.92 (10)	C13-C10-C12	111.98 (10)	
C4—N2—C14	129.24 (9)	C13—C10—C11	109.92 (10)	
N1-N2-C14	111.55 (8)	C12-C10-C11	110.24 (9)	
C1—N1—N2	107.45 (10)	C13—C10—H10	108.2	
N3—C4—N2	116.85 (10)	C12-C10-H10	108.2	

N3—C4—S1	119.67 (9)	C11—C10—H10	108.2
N2—C4—S1	123.47 (9)	C1—C11—C10	110.02 (9)
C4—N3—H3A	120.0	C1—C11—H11A	109.7
C4—N3—H3B	120.0	C10-C11-H11A	109.7
H3A—N3—H3B	120.0	C1-C11-H11B	109.7
С14—С6—Н6А	109.5	C10-C11-H11B	109.7
С14—С6—Н6В	109.5	H11A—C11—H11B	108.2
H6A—C6—H6B	109.5	C8—C12—C10	112.45 (10)
С14—С6—Н6С	109.5	C8—C12—H12A	109.1
H6A—C6—H6C	109.5	C10-C12-H12A	109.1
H6B—C6—H6C	109.5	C8—C12—H12B	109.1
C1—C7—C8	114.07 (9)	C10-C12-H12B	109.1
C1—C7—C14	102.39 (9)	H12A—C12—H12B	107.8
C8—C7—C14	118.59 (10)	С10—С13—Н13А	109.5
С1—С7—Н7	107.0	C10-C13-H13B	109.5
С8—С7—Н7	107.0	H13A—C13—H13B	109.5
С14—С7—Н7	107.0	C10—C13—H13C	109.5
C7—C8—C12	109.62 (10)	H13A—C13—H13C	109.5
С7—С8—Н8А	109.7	H13B—C13—H13C	109.5
С12—С8—Н8А	109.7	N2-C14-C9	113.26 (9)
С7—С8—Н8В	109.7	N2—C14—C6	108.67 (9)
C12—C8—H8B	109.7	C9—C14—C6	111.73 (10)
H8A—C8—H8B	108.2	N2-C14-C7	99.36 (8)
С14—С9—Н9А	109.5	C9—C14—C7	110.25 (9)
С14—С9—Н9В	109.5	C6—C14—C7	113.02 (10)
H9A—C9—H9B	109.5		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N3—H3 <i>B</i> …N1 ⁱ	0.86	2.37	3.230 (3)	176
N3—H3A····S1 ⁱⁱ	0.86	2.70	3.442 (3)	146

Symmetry codes: (i) x-1/2, -y+1/2, -z+1; (ii) x+1/2, -y+1/2, -z+1.