

ISSN 2414-3146

Received 1 April 2016 Accepted 7 April 2016

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; 2,6-dihydroxyphenyl; tetradecyl ketone; isolation; *M. malabarica; Antileishmanial* activity; O—H···O hydrogen bonding.

Structural data: full structural data are available from iucrdata.iucr.org

# 1-(2,6-Dihydroxyphenyl)tetradecan-1-one: isolated from the fruit rinds of *Myristica malabarica*

A. K. Bauri,<sup>a</sup> Sabine Foro<sup>b</sup> and Nhu Quynh Nguyen Do<sup>c\*</sup>

<sup>a</sup>Bio-Organic Division, Bhabha Atomic Research Centre Trombay, Mumbai 400085, India, <sup>b</sup>FB Material-und Geowissenschaften, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, D64287 Darmstadt, Germany, and <sup>c</sup>Accident and Emergency Department, Franco Vietnamese Hospital, 7-Nguyen Luong Bang Street, HoChiMinh City, Vietnam. \*Correspondence e-mail: nguyendonhuquynh@yahoo.com

The title compound,  $C_{20}H_{32}O_3$ , was isolated from the Indian spice *M.* malabarica. It is built up by a C–C linkage between a 2,6-dihydroxyphenyl moiety and the terminal carbonyl C atom of tetradecanal, which has an extended chain conformation. There is an intramolecular O–H···O hydrogen bond enclosing an *S*(6) ring motif. In the crystal, molecules are linked by O–H···O hydrogen bonds, forming zigzag chains propagating along [001]. The chains pack in a herringbone arrangement up the *a* axis.



#### Structure description

The origin of the title compound is fruit rinds of *M. malabarica*, popularly known as *Ram patri* in the local dialect in Mumbai. It is used as an exotic spice in various Indian cuisines and as a phytomedicine for the treatment of various kinds of ailments (Forrest & Heacock, 1972). It has been isolated for the first time from the diethyl ether extract by column chromatography over silica gel with gradient solvent elution. It is soluble in various organic solvents such as diethyl ether, chloroform, methanol *etc.* and undergoes reactions with different kind of chemical reagents such as dilute aqueous sodium hydroxide, neutral ferric chloride solution to exhibit a pale yellow and greenish blue colour due to the formation of the respective sodium salt and ferric complex of the phenol (Dean, 1963). This chemical test indicates the presence of the 3-hydroxy ketone moiety in this molecule, which is also confirmed by UV absorption by performing a bathochromic shift at around 30 nm upon the addition of AlCl<sub>3</sub> as shift reagent under the condition of acidic pH. The *antileishmanial* activity of the title molecule has been evaluated against *Leishmania donovani* by using the MTS–PMS assay (Manna *et al.*, 2012).





Figure 1

An view of molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

The experimental result of the bioassay revealed that it possesses very good inhibitory activity against the protozoan parasite *Leishmania donovani* (Sen *et al.*, 2007).

The molecular structure of the title compound is illustrated in Fig. 1. It is composed of a 2,6-dihydroxybenzene group linked to the carbonyl C atom, C7, of tetradecanal. The latter has an extended chain conformation. There is an intramolecular  $O-H\cdots O_{carbonyl}$  hydrogen bond forming an *S*(6) loop.

In the crystal, molecules are linked by  $O-H\cdots O$  hydrogen bonds, forming zigzag chains propagating along the *c*-axis direction (Table 1 and Fig. 2). The chains pack in a herringbone arrangement up the *a* axis (Fig. 2). There are no other significant intermolecular interactions present in the crystal.

#### Synthesis and crystallization

The title molecule was isolated as a small trace quantity from a methanol extract of the fruit rind of *M. malabarica* by column chromatography over silica gel with gradient solvent elution by using a binary solvent mixture of methanol and chloroform. Suitable crystals for X-ray diffraction analysis were obtained by recrystallization (× 3) from hexane:ethyl acetate (4:1) at room temperature, by slow evaporation (m.p. 363 K). Spectroscopic analysis: <sup>1</sup>H NMR data (CDCl<sub>3</sub>, 200 MHz): 12.80 (*s*, chelated-OH), 7.07 (*dd*, 1H, *J* = 8.2 Hz, H-4'), 6.22 (*d*, 2H, *J* = 8.2 Hz, H-3' & H-5'), 2.99 (*dd*, 2H, *J* = 7.0 Hz, H-2), 1.67–1.40 (*m*, 4H, H-3 & H-13), 1.16 (*brs*, 18H, 9 × -CH<sub>2</sub>–), 0.78 (*t*, 3H, *J* = 6.0 Hz, -CH<sub>3</sub>). <sup>13</sup>C NMR data (50 MHz, CDCl<sub>3</sub>): 209.59 (C-1,



**Figure 2** A view of the molecular packing of the title compound.

| $D - H \cdot \cdot \cdot A$ | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdot \cdot \cdot A$ |
|-----------------------------|----------|-------------------------|--------------|-----------------------------|
| $O2-H2O\cdots O3$           | 0.84 (2) | 1.75 (3)                | 2.485 (4)    | 146 (4)                     |
| $O1-H1O\cdots O2^{i}$       | 0.84 (2) | 1.94 (2)                | 2.760 (3)    | 168 (4)                     |

Symmetry code: (i)  $x, -y + \frac{3}{2}, z + \frac{1}{2}$ .

Table 2 Experimental details

| Experimental details.                                                        |                                                                              |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Crystal data                                                                 |                                                                              |
| Chemical formula                                                             | $C_{20}H_{32}O_3$                                                            |
| M <sub>r</sub>                                                               | 320.46                                                                       |
| Crystal system, space group                                                  | Monoclinic, $P2_1/c$                                                         |
| Temperature (K)                                                              | 293                                                                          |
| a, b, c (Å)                                                                  | 4.2047 (6), 34.146 (4), 13.347 (3)                                           |
| $\beta$ (°)                                                                  | 97.67 (1)                                                                    |
| $V(Å^3)$                                                                     | 1899.1 (6)                                                                   |
| Ζ                                                                            | 4                                                                            |
| Radiation type                                                               | Μο Κα                                                                        |
| $\mu \ (\mathrm{mm}^{-1})$                                                   | 0.07                                                                         |
| Crystal size (mm)                                                            | $0.50 \times 0.12 \times 0.08$                                               |
| Data collection                                                              |                                                                              |
| Diffractometer                                                               | Oxford Diffraction Xcalibur,                                                 |
|                                                                              | Sapphire CCD                                                                 |
| Absorption correction                                                        | Multi-scan ( <i>CrysAlis RED</i> ; Oxford Diffraction, 2009)                 |
| $T_{\min}, T_{\max}$                                                         | 0.964, 0.994                                                                 |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections     | 6324, 3396, 2217                                                             |
| R <sub>int</sub>                                                             | 0.025                                                                        |
| $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$                         | 0.602                                                                        |
| Refinement                                                                   |                                                                              |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                          | 0.086, 0.160, 1.30                                                           |
| No. of reflections                                                           | 3396                                                                         |
| No. of parameters                                                            | 214                                                                          |
| No. of restraints                                                            | 2                                                                            |
| H-atom treatment                                                             | H atoms treated by a mixture of<br>independent and constrained<br>refinement |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ | 0.19, -0.16                                                                  |
|                                                                              |                                                                              |

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 and SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

>C==O), 163.40 (C-2' & C-6', Ar-C-OH), 143.90 (C-1', Ar-C-C), 111.35 (C-5', Ar-C-H), 108.31 (C-3', Ar-C-H), 45.70 (C-2,  $-CH_2-CO-$ ), 30.52 (C-3,  $-CH_2-CH_3$ ), 30.45 (C-5,  $-CH_2-CH_3$ ), 30.27 (9 × C-CH<sub>2</sub>-), 14.47 (-CH<sub>3</sub>), 17.09 (C-8,  $-CH_2-$ ). EIMS (70 ev) data: EIMS m/z (%) [ $M^+$ ] 320 (12), 320 (14), 278 (2), 256 (3), 202 (4), 189 (7), 176 (5), 165 (12), 151 (37), 137 (100; base peak), 123 (12), 109 (9), 96 (14), 83 (11), 69 (5).

#### Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

#### Acknowledgements

The authors thank Professor Dr Hartmut Fuess, FG Strukturforschung, FB Material-und Geowissenschaften, Technische Universität Darmstadt, for diffractometer time. References

- Dean, F. M. (1963). *Naturally Occurring Oxygen Ring Compounds*, pp. 288–89. London: Butterworth & Co Ltd.
- Forrest, J. E. & Heacock, R. A. (1972). Lloydia, 35, 440-449.
- Manna, A., Saha, P., Sarkar, A., Mukhopadhyay, D., Bauri, A. K., Kumar, D., Das, P., Chattopadhyay, S. & Chatterjee, M. (2012). *PLoS One*, 45, 518–526.

Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.

- Sen, R., Bauri, A. K., Chattopadhyay, S. & Chatterjee, M. (2007). *Phytother. Res.* **21**, 592–595.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

# full crystallographic data

# *IUCrData* (2016). **1**, x160577 [doi:10.1107/S2414314616005770]

# 1-(2,6-Dihydroxyphenyl)tetradecan-1-one: isolated from the fruit rinds of *Myristica malabarica*

# A. K. Bauri, Sabine Foro and Nhu Quynh Nguyen Do

1-(2,6-Dihydroxyphenyl)tetradecan-1-one

### Crystal data

C<sub>20</sub>H<sub>32</sub>O<sub>3</sub>  $M_r = 320.46$ Monoclinic,  $P2_1/c$ Hall symbol: -P 2ybc a = 4.2047 (6) Å b = 34.146 (4) Å c = 13.347 (3) Å  $\beta = 97.67$  (1)° V = 1899.1 (6) Å<sup>3</sup> Z = 4

## Data collection

Oxford Diffraction Xcalibur, Sapphire CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Rotation method data acquisition using  $\omega$  scans. Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2009)  $T_{\min} = 0.964, T_{\max} = 0.994$ 

## Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.086$  $wR(F^2) = 0.160$ S = 1.303396 reflections 214 parameters 2 restraints Primary atom site location: structure-invariant direct methods F(000) = 704  $D_x = 1.121 \text{ Mg m}^{-3}$ Melting point: 363 K Mo Ka radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1086 reflections  $\theta = 2.8-27.9^{\circ}$   $\mu = 0.07 \text{ mm}^{-1}$  T = 293 KNeedle, colourless  $0.50 \times 0.12 \times 0.08 \text{ mm}$ 

6324 measured reflections 3396 independent reflections 2217 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.025$  $\theta_{max} = 25.3^{\circ}, \theta_{min} = 2.8^{\circ}$  $h = -5 \rightarrow 2$  $k = -41 \rightarrow 33$  $l = -16 \rightarrow 14$ 

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0204P)^2 + 1.6101P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} < 0.001$  $\Delta\rho_{max} = 0.19$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.16$  e Å<sup>-3</sup>

### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2$ sigma( $F^2$ ) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

 $U_{\rm iso} * / U_{\rm eq}$ х v ZC1 0.0393 (8) -0.0113(8)0.72255 (9) 0.2460(2)C2 0.74981 (10) 0.0425(8)-0.0688(8)0.3212(2)C3 -0.2542(9)0.78269 (10) 0.2988(2)0.0532(9)H3 -0.29050.8000 0.3498 0.064\* 0.2000 (3) 0.0640 (11) C4 -0.3858(10)0.78977 (12) H4 -0.51210.8119 0.1847 0.077\* C5 -0.3317(9)0.1246 (3) 0.0597 (10) 0.76445 (11) H5 -0.42090.7695 0.0583 0.072\* C6 -0.1467(8)0.73162 (10) 0.1462(2)0.0464(9)C7 0.1710 (9) 0.68584(10)0.2653(2)0.0470 (9) C8 0.3023 (8) 0.67262 (9) 0.3702 (2) 0.0454(8)H8A 0.1333 0.6746 0.4128 0.054\* H8B 0.6904 0.3971 0.054\* 0.4726 C9 0.4330 (9) 0.63108 (9) 0.3769 (2) 0.0492 (9) 0.059\* H9A 0.2658 0.6130 0.3494 0.059\* H9B 0.6084 0.6289 0.3368 0.0498(9)C10 0.5516(8) 0.62006 (10) 0.4857 (2) 0.060\* H10A 0.7275 0.6373 0.5109 0.060\* H10B 0.3797 0.6246 0.5261 0.5009(2)0.0512 (9) C11 0.6644(9)0.57805 (10) H11A 0.8370 0.5734 0.4609 0.061\* 0.061\* H11B 0.4889 0.5606 0.4763 C12 0.7816 (9) 0.56813 (10) 0.6106(2) 0.0508 (9) H12A 0.9618 0.061\* 0.5850 0.6340 H12B 0.6114 0.5740 0.6507 0.061\* C13 0.8842(9)0.52598 (10) 0.6300(3)0.0534(9)0.7034 0.6082 0.064\* H13A 0.5090 H13B 1.0526 0.5198 0.5895 0.064\* C14 1.0047 (9) 0.51736(10) 0.7395(2)0.0515 (9) 0.7799 0.062\* H14A 0.8372 0.5241 H14B 0.5342 0.7607 0.062\* 1.1870 C15 1.1044(9)0.47527 (10) 0.7621(3)0.0540 (9) H15A 0.9208 0.4584 0.7431 0.065\* H15B 1.2684 0.4682 0.7207 0.065\* C16 1.2325 (9) 0.46803 (10) 0.8721 (3) 0.0532(9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| H16A | 1.4150      | 0.4851       | 0.8908       | 0.064*      |
|------|-------------|--------------|--------------|-------------|
| H16B | 1.0679      | 0.4752       | 0.9132       | 0.064*      |
| C17  | 1.3348 (9)  | 0.42633 (10) | 0.8971 (3)   | 0.0533 (9)  |
| H17A | 1.4977      | 0.4188       | 0.8557       | 0.064*      |
| H17B | 1.1519      | 0.4091       | 0.8801       | 0.064*      |
| C18  | 1.4666 (9)  | 0.42050 (10) | 1.0074 (3)   | 0.0525 (9)  |
| H18A | 1.6473      | 0.4380       | 1.0242       | 0.063*      |
| H18B | 1.3025      | 0.4280       | 1.0484       | 0.063*      |
| C19  | 1.5747 (10) | 0.37927 (10) | 1.0357 (3)   | 0.0635 (11) |
| H19A | 1.3939      | 0.3617       | 1.0200       | 0.076*      |
| H19B | 1.7379      | 0.3716       | 0.9946       | 0.076*      |
| C20  | 1.7081 (10) | 0.37452 (12) | 1.1458 (3)   | 0.0743 (12) |
| H20A | 1.5470      | 0.3816       | 1.1871       | 0.111*      |
| H20B | 1.8919      | 0.3912       | 1.1616       | 0.111*      |
| H20C | 1.7701      | 0.3477       | 1.1587       | 0.111*      |
| 01   | 0.0677 (7)  | 0.74329 (7)  | 0.41776 (17) | 0.0621 (7)  |
| H1O  | 0.008 (9)   | 0.7602 (9)   | 0.456 (2)    | 0.075*      |
| O2   | -0.0966 (7) | 0.70821 (7)  | 0.06808 (17) | 0.0638 (8)  |
| H2O  | 0.016 (8)   | 0.6889 (8)   | 0.088 (3)    | 0.077*      |
| O3   | 0.2155 (8)  | 0.66456 (7)  | 0.19388 (18) | 0.0763 (9)  |
|      |             |              |              |             |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$  | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-----------|-------------|-------------|--------------|--------------|--------------|
| C1  | 0.052 (2) | 0.0385 (18) | 0.0266 (16) | -0.0058 (15) | 0.0025 (14)  | 0.0033 (14)  |
| C2  | 0.053 (2) | 0.0442 (19) | 0.0296 (18) | -0.0059 (16) | 0.0030 (15)  | 0.0015 (15)  |
| C3  | 0.071 (3) | 0.051 (2)   | 0.038 (2)   | 0.0043 (19)  | 0.0059 (17)  | -0.0029 (17) |
| C4  | 0.077 (3) | 0.060(2)    | 0.053 (2)   | 0.019 (2)    | 0.003 (2)    | 0.008 (2)    |
| C5  | 0.074 (3) | 0.065 (3)   | 0.036 (2)   | 0.002 (2)    | -0.0069 (18) | 0.0120 (18)  |
| C6  | 0.064 (2) | 0.044 (2)   | 0.0304 (18) | -0.0107 (17) | 0.0021 (16)  | 0.0013 (15)  |
| C7  | 0.067 (2) | 0.044 (2)   | 0.0305 (18) | -0.0081 (17) | 0.0069 (16)  | 0.0006 (15)  |
| C8  | 0.055 (2) | 0.046 (2)   | 0.0340 (18) | -0.0023 (16) | 0.0012 (15)  | 0.0036 (15)  |
| C9  | 0.058 (2) | 0.044 (2)   | 0.044 (2)   | 0.0003 (17)  | 0.0033 (16)  | 0.0028 (16)  |
| C10 | 0.054 (2) | 0.049 (2)   | 0.045 (2)   | 0.0015 (17)  | 0.0014 (16)  | 0.0065 (17)  |
| C11 | 0.060 (2) | 0.048 (2)   | 0.045 (2)   | 0.0040 (17)  | 0.0024 (17)  | 0.0059 (16)  |
| C12 | 0.057 (2) | 0.049 (2)   | 0.046 (2)   | 0.0035 (17)  | 0.0056 (17)  | 0.0072 (17)  |
| C13 | 0.063 (2) | 0.046 (2)   | 0.050(2)    | 0.0060 (18)  | 0.0031 (17)  | 0.0081 (17)  |
| C14 | 0.058 (2) | 0.049 (2)   | 0.047 (2)   | 0.0050 (17)  | 0.0066 (17)  | 0.0089 (17)  |
| C15 | 0.063 (2) | 0.048 (2)   | 0.049 (2)   | 0.0026 (18)  | 0.0007 (18)  | 0.0065 (17)  |
| C16 | 0.060(2)  | 0.048 (2)   | 0.051 (2)   | 0.0050 (18)  | 0.0042 (18)  | 0.0065 (17)  |
| C17 | 0.062 (2) | 0.045 (2)   | 0.052 (2)   | 0.0017 (17)  | 0.0035 (18)  | 0.0066 (17)  |
| C18 | 0.058 (2) | 0.046 (2)   | 0.054 (2)   | 0.0039 (17)  | 0.0073 (18)  | 0.0075 (17)  |
| C19 | 0.077 (3) | 0.049 (2)   | 0.064 (3)   | 0.002 (2)    | 0.003 (2)    | 0.008 (2)    |
| C20 | 0.084 (3) | 0.068 (3)   | 0.068 (3)   | 0.008 (2)    | 0.000(2)     | 0.023 (2)    |
| O1  | 0.096 (2) | 0.0599 (17) | 0.0268 (13) | 0.0189 (15)  | -0.0037 (12) | -0.0071 (11) |
| O2  | 0.111 (2) | 0.0497 (16) | 0.0279 (13) | -0.0022 (15) | 0.0005 (13)  | -0.0004 (12) |
| O3  | 0.138 (3) | 0.0541 (16) | 0.0363 (15) | 0.0235 (16)  | 0.0090 (15)  | -0.0027 (13) |

Geometric parameters (Å, °)

| C1—C6    | 1.412 (4) | C12—H12B      | 0.9700     |
|----------|-----------|---------------|------------|
| C1—C2    | 1.413 (4) | C13—C14       | 1.510 (4)  |
| C1—C7    | 1.474 (4) | C13—H13A      | 0.9700     |
| C2—O1    | 1.357 (4) | C13—H13B      | 0.9700     |
| C2—C3    | 1.377 (5) | C14—C15       | 1.516 (4)  |
| C3—C4    | 1.381 (5) | C14—H14A      | 0.9700     |
| С3—Н3    | 0.9300    | C14—H14B      | 0.9700     |
| C4—C5    | 1.369 (5) | C15—C16       | 1.516 (4)  |
| C4—H4    | 0.9300    | C15—H15A      | 0.9700     |
| C5—C6    | 1.373 (5) | C15—H15B      | 0.9700     |
| С5—Н5    | 0.9300    | C16—C17       | 1.512 (4)  |
| C6—O2    | 1.352 (4) | C16—H16A      | 0.9700     |
| C7—O3    | 1.233 (4) | C16—H16B      | 0.9700     |
| C7—C8    | 1.503 (4) | C17—C18       | 1.515 (4)  |
| C8—C9    | 1.520 (4) | C17—H17A      | 0.9700     |
| C8—H8A   | 0.9700    | C17—H17B      | 0.9700     |
| C8—H8B   | 0.9700    | C18—C19       | 1.512 (4)  |
| C9—C10   | 1.519 (4) | C18—H18A      | 0.9700     |
| С9—Н9А   | 0.9700    | C18—H18B      | 0.9700     |
| С9—Н9В   | 0.9700    | C19—C20       | 1.510 (5)  |
| C10-C11  | 1.516 (4) | C19—H19A      | 0.9700     |
| C10—H10A | 0.9700    | C19—H19B      | 0.9700     |
| C10—H10B | 0.9700    | C20—H20A      | 0.9600     |
| C11—C12  | 1.519 (4) | C20—H20B      | 0.9600     |
| C11—H11A | 0.9700    | C20—H20C      | 0.9600     |
| C11—H11B | 0.9700    | O1—H1O        | 0.836 (18) |
| C12—C13  | 1.515 (4) | 02—H2O        | 0.835 (18) |
| C12—H12A | 0.9700    |               |            |
|          |           |               |            |
| C6—C1—C2 | 116.1 (3) | C14—C13—C12   | 113.7 (3)  |
| C6—C1—C7 | 119.1 (3) | C14—C13—H13A  | 108.8      |
| C2—C1—C7 | 124.8 (3) | C12—C13—H13A  | 108.8      |
| O1—C2—C3 | 119.7 (3) | C14—C13—H13B  | 108.8      |
| O1—C2—C1 | 118.4 (3) | C12—C13—H13B  | 108.8      |
| C3—C2—C1 | 121.9 (3) | H13A—C13—H13B | 107.7      |
| C2—C3—C4 | 119.6 (3) | C13—C14—C15   | 115.1 (3)  |
| С2—С3—Н3 | 120.2     | C13—C14—H14A  | 108.5      |
| С4—С3—Н3 | 120.2     | C15—C14—H14A  | 108.5      |
| C5—C4—C3 | 120.4 (4) | C13—C14—H14B  | 108.5      |
| C5—C4—H4 | 119.8     | C15—C14—H14B  | 108.5      |
| C3—C4—H4 | 119.8     | H14A—C14—H14B | 107.5      |
| C4—C5—C6 | 120.4 (3) | C16—C15—C14   | 113.6 (3)  |
| C4—C5—H5 | 119.8     | C16—C15—H15A  | 108.9      |
| С6—С5—Н5 | 119.8     | C14—C15—H15A  | 108.9      |
| O2—C6—C5 | 117.6 (3) | C16—C15—H15B  | 108.9      |
| O2—C6—C1 | 120.9 (3) | C14—C15—H15B  | 108.9      |
|          |           |               |            |

| C5—C6—C1      | 121.5 (3)  | H15A—C15—H15B   | 107.7      |
|---------------|------------|-----------------|------------|
| O3—C7—C1      | 119.7 (3)  | C17—C16—C15     | 114.9 (3)  |
| O3—C7—C8      | 117.9 (3)  | C17—C16—H16A    | 108.5      |
| C1—C7—C8      | 122.4 (3)  | C15—C16—H16A    | 108.5      |
| C7—C8—C9      | 114.9 (3)  | C17—C16—H16B    | 108.5      |
| С7—С8—Н8А     | 108.6      | C15—C16—H16B    | 108.5      |
| С9—С8—Н8А     | 108.6      | H16A—C16—H16B   | 107.5      |
| C7—C8—H8B     | 108.6      | C16—C17—C18     | 113.2 (3)  |
| C9—C8—H8B     | 108.6      | С16—С17—Н17А    | 108.9      |
| H8A—C8—H8B    | 107.5      | C18—C17—H17A    | 108.9      |
| С10—С9—С8     | 111.0 (3)  | С16—С17—Н17В    | 108.9      |
| С10—С9—Н9А    | 109.4      | C18—C17—H17B    | 108.9      |
| С8—С9—Н9А     | 109.4      | H17A—C17—H17B   | 107.7      |
| С10—С9—Н9В    | 109.4      | C19—C18—C17     | 115.1 (3)  |
| С8—С9—Н9В     | 109.4      | C19—C18—H18A    | 108.5      |
| H9A—C9—H9B    | 108.0      | C17—C18—H18A    | 108.5      |
| C11—C10—C9    | 114.8 (3)  | C19—C18—H18B    | 108.5      |
| C11—C10—H10A  | 108.6      | C17—C18—H18B    | 108.5      |
| C9—C10—H10A   | 108.6      | H18A—C18—H18B   | 107.5      |
| C11—C10—H10B  | 108.6      | C20—C19—C18     | 113.8 (3)  |
| C9—C10—H10B   | 108.6      | С20—С19—Н19А    | 108.8      |
| H10A—C10—H10B | 107.5      | С18—С19—Н19А    | 108.8      |
| C10-C11-C12   | 113.3 (3)  | С20—С19—Н19В    | 108.8      |
| C10-C11-H11A  | 108.9      | C18—C19—H19B    | 108.8      |
| C12—C11—H11A  | 108.9      | H19A—C19—H19B   | 107.7      |
| C10-C11-H11B  | 108.9      | C19—C20—H20A    | 109.5      |
| C12—C11—H11B  | 108.9      | C19—C20—H20B    | 109.5      |
| H11A—C11—H11B | 107.7      | H20A—C20—H20B   | 109.5      |
| C13—C12—C11   | 115.2 (3)  | C19—C20—H20C    | 109.5      |
| C13—C12—H12A  | 108.5      | H20A—C20—H20C   | 109.5      |
| C11—C12—H12A  | 108.5      | H20B—C20—H20C   | 109.5      |
| C13—C12—H12B  | 108.5      | C2              | 110 (3)    |
| C11—C12—H12B  | 108.5      | C6—O2—H2O       | 111 (3)    |
| H12A—C12—H12B | 107.5      |                 |            |
|               |            |                 |            |
| C6-C1-C2-O1   | -177.2 (3) | C6—C1—C7—C8     | -175.5 (3) |
| C7—C1—C2—O1   | 4.1 (5)    | C2-C1-C7-C8     | 3.2 (5)    |
| C6—C1—C2—C3   | 1.8 (5)    | O3—C7—C8—C9     | -8.9 (5)   |
| C7—C1—C2—C3   | -176.9 (3) | C1—C7—C8—C9     | 170.0 (3)  |
| O1—C2—C3—C4   | 178.3 (3)  | C7—C8—C9—C10    | -178.5 (3) |
| C1—C2—C3—C4   | -0.7 (5)   | C8-C9-C10-C11   | 175.8 (3)  |
| C2—C3—C4—C5   | -0.4 (6)   | C9-C10-C11-C12  | 179.9 (3)  |
| C3—C4—C5—C6   | 0.2 (6)    | C10-C11-C12-C13 | 177.6 (3)  |
| C4—C5—C6—O2   | -178.6 (4) | C11—C12—C13—C14 | 179.0 (3)  |
| C4—C5—C6—C1   | 1.0 (6)    | C12-C13-C14-C15 | 179.0 (3)  |
| C2-C1-C6-O2   | 177.7 (3)  | C13—C14—C15—C16 | 178.4 (3)  |
| C7—C1—C6—O2   | -3.6 (5)   | C14—C15—C16—C17 | -179.9 (3) |
| C2-C1-C6-C5   | -2.0 (5)   | C15—C16—C17—C18 | 179.0 (3)  |
|               |            |                 |            |

# data reports

| C7—C1—C6—C5 | 176.8 (3)  | C16—C17—C18—C19 | -179.5 (3) |
|-------------|------------|-----------------|------------|
| C6—C1—C7—O3 | 3.4 (5)    | C17—C18—C19—C20 | 179.4 (3)  |
| C2—C1—C7—O3 | -177.9 (3) |                 |            |

# Hydrogen-bond geometry (Å, °)

| D—H···A                  | D—H      | H···A    | D····A    | <i>D</i> —H··· <i>A</i> |
|--------------------------|----------|----------|-----------|-------------------------|
| 02—H2 <i>O</i> ···O3     | 0.84 (2) | 1.75 (3) | 2.485 (4) | 146 (4)                 |
| O1—H1O···O2 <sup>i</sup> | 0.84 (2) | 1.94 (2) | 2.760 (3) | 168 (4)                 |

Symmetry code: (i) x, -y+3/2, z+1/2.