

ISSN 2414-3146

Received 2 April 2016 Accepted 15 April 2016

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; pyrrolidine; quinoline; acenaphthylene; hydrogen bonding.

CCDC reference: 1474273

Structural data: full structural data are available from iucrdata.iucr.org

15-(4-Chlorophenyl)-6b-hydroxy-17-methyl-6b,7,16,17-tetrahydro-7,14a-methanonaphtho-[1',8':1,2,3]pyrrolo[3',2':8,8a]azuleno[5,6-*b*]quinolin-14(15*H*)-one methanol hemisolvate

J. M. Joseph, Vijayan Viswanathan and Devadasan Velmurugan*

Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India. *Correspondence e-mail: shirai2011@gmail.com

In the title solvate, $C_{35}H_{25}ClN_2O_3 \cdot 0.5CH_3OH$, the conformation of the central 1methylpyrrolidine ring is best described as an envelope with the N atom as the flap. The cyclopentane ring adopts a twist conformation on the CH-CH₂ bond and the cyclohexane ring has an envelope conformation with the CH₂ atom as the flap. The pyrrolidine ring makes dihedral angles of 40.87 (12), 67.89 (11), 81.86 (9) and 70.86 (12)° with the mean planes of the cyclopentane, cyclohexane, acenaphthylene and chlorobenzene rings, respectively. The quinoline ring system is inclined to the naphthalene ring system by 54.14 (6)°. There is a short $O-H \cdots N$ contact in the molecule making an S(5) ring motif. In the crystal, there is a disordered and partially occupied ethan-1,2-diol solvent molecule present, located about an inversion centre, which links the title molecules *via* $O-H \cdots O$ and $C-H \cdots O$ hydrogen bonds, forming chains propagating along the *a*-axis direction.

Structure description

The pyrrolidine ring system is found in a vast variety of compounds displaying an impressive range of biological activities (Babu *et al.*, 2012). Optically active pyrrolidines have been used as intermediates, chiral ligands or auxiliaries in controlled asymmetric synthesis (Savithri *et al.*, 2014). Pyrrolidine compounds are reported to exhibit antimicrobial, antifungal (Govind *et al.*, 2003), anti-influenza virus A (Stylianakis *et al.*, 2003), anti-inflammatory and antitumor (Li & Xu, 2004) activities. They also inhibit retroviral reverse transcriptases [*i.e.*, human immunodeficiency virus type 1 (HIV-1)], cellular DNA polymerases, protein kinases (Bellina & Rossi, 2006). They also act as antidepressant

Table 1	
Hydrogen-bond geometry	(Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
O3−H3 <i>O</i> ···N1	0.82	2.28	2.984 (4)	145
$O2-H2O\cdots N2$	0.87 (3)	2.20 (3)	2.695 (2)	116 (2)
$O2-H2O\cdots O3^{i}$	0.87 (3)	2.26 (3)	3.021 (5)	146 (2)
C33−H33···O3 ⁱ	0.93	2.53	3.408 (6)	157

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

agents (Wróbel *et al.*, 2013), antibiotics (Nirmala *et al.*, 2009), anticonvulsant, sphingosine-1-phosphate (S1P) receptor agonists, malic enzyme inhibitors, ketoamide-based cathepsin K inhibitors and human melanocortin-4 receptor agonists (Babu *et al.*, 2012). Quinoline derivatives have been synthesized and explored for their analgesic activity, anti-allergetic properties and in treating Alzheimer's disease (AD). They are also reported for their anticancer, antitinephritic, antitumor, anti-inflammatory (Shivaraj *et al.*, 2013), antimalarial, antibacterial and antifungal activities (Marella *et al.*, 2013).

The molecular structure of the title compound is shown in Fig. 1. In the molecule there is a short intramolecular $O-H \cdots N$ contact forming an S(5) ring motif (Fig. 1 and Table 1). The conformation of the central 1-methyl pyrrolidine ring (C12/C14/N2/C26/C27) is best described as an envelope with atom N2 as the flap and displaced by 0.585 (2) Å from the plane through the other four atoms. The cyclopentane ring adopts a twist conformation on the C10-C11 bond and the cyclohexane ring has an envelope conformation with atom C11 as the flap and displaced by 0.854 (2) Å from the mean plane through the other five atoms. The quinoline ring system (C1-C9/N1) and the acenaphthylene ring system (C14-C25) adopt almost planar conformations, with the maximum

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

deviations being 0.069 (2) Å for atom C8 in the quinoline ring system and 0.128 (2) Å for atom C14 in the acenaphthylene ring system. Chlorine atom C11 is displaced from the benzene ring (C28–C33) to which it is attached by 0.0164 (8) Å. The mean plane of the pyrrolidine ring makes dihedral angles of 40.87 (12), 67.89 (11), 81.86 (9) and 70.86 (12)° with the mean

Figure 1

The molecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 30% probability level. The $O-H\cdots N$ contact is shown as a thin dashed line (see Table 1).

Figure 2

The crystal packing of the title compound viewed along the b axis. Hydrogen bonds are shown as dashed lines (see Table 1). For clarity, only one position of the disordered and partially occupied ethan-1,2-diol solvent molecule is shown.

planes of the cyclopentane, cyclohexane, acenaphthylene and chlorobenzene rings, respectively. The quinoline ring system is inclined to the naphthalene ring system by $54.14 (6)^{\circ}$.

In the crystal, there is a disordered and partially occupied ethan-1,2-diol solvent molecule present, located about an inversion centre, which links the title molecules $via O - H \cdots O$ and $C - H \cdots O$ hydrogen bonds, forming chains propagating along the *a*-axis direction. (Table 1 and Fig. 2).

Synthesis and crystallization

A mixture of (*E*)-2-(4-chlorobenzylidene)-3,4-dihydroacridin-1(2H)-one (1 mmol), acenaphthoquinone (1 mmol) and sarcosine (1.5 mmol) was heated to reflux in toluene (3 ml) for 10 h. After completion of the reaction as evident from TLC, the reaction mixture was extracted with ethyl acetate (2 × 20 ml), washed with water (2 × 10 ml), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. It was then subjected to column chromatography using petroleum ether– AcOEt (5:1 ν/ν) as eluent to obtain the title compound as a pure product. Colourless block-like crystals were prepared by slow evaporation of a solution of the title compound in ethanol at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The partially occupied methanol solvent molecule is disordered and located about an inversion centre (Fig. 1). The solvate molecule shows a high degree of disorder in such a way that the methyl carbon atom assumes four positions. Two are within the asymmetric unit, each with 0.25 occupancy, and the counterparts occupy symmetryrelated positions, each with 0.25 occupancy. Similarly, the hydroxyl group assumes two positions with 0.5 occupancy. The hydrogen atoms could not be fixed on the carbon atom with agreeable geometry.

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection.

References

- Babu, M. N., Sharma, L. & Madhavan, V. (2012). Int. J. ChemTech Res. 4, 903–909.
- Bellina, F. & Rossi, R. (2006). Tetrahedron, 62, 7213-7256.
- Bruker (2008). *APEX2*, *SAINT* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Govind, M. M., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Rathna Durga, R. & Raghunathan, R. (2003). Acta Cryst. E59, o1875–o1877.
- Li, Y. L. & Xu, W. F. (2004). Bioorg. Med. Chem. 12, 5171-5180.
- Marella, A., Tanwar, O. P., Saha, R., Ali, M. R., Srivastava, S., Akhter, M., Shaquiquzzaman, M. & Alam, M. M. (2013). Saudi Pharm. J. 21, 1–12.
- Nirmala, S., Karthikeyan, K., Kamala, E. T. S., Sudha, L. & Perumal, P. T. (2009). *Acta Cryst.* E**65**, o1655–o1656.
- Savithri, M. P., Suresh, M., Raghunathan, R., Vimala, G., Raja, R. & SubbiahPandi, A. (2014). Acta Cryst. E70, 94–97.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Shivaraj, Y., Naveen, M. H., Vijayakumar, G. R. & Kumar, D. B. A. (2013). *J. Korean Chem. Soc.* **57**, 241–245.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stylianakis, I., Kolocouris, A., Kolocouris, N., Fytas, G., Foscolos, G. B., Padalko, E., Neyts, J. & De Clercq, E. (2003). *Bioorg. Med. Chem. Lett.* 13, 1699–1703.
- Wróbel, M. Z., Chodkowski, A., Herold, F., Gomółka, A., Kleps, J., Mazurek, A. P., Pluciński, F., Mazurek, A., Nowak, G., Siwek, A., Stachowicz, K., Sławińska, A., Wolak, M., Szewczyk, B., Satała, G., Bojarski, A. J. & Turło, J. (2013). *Eur. J. Med. Chem.* 63, 484–500.

full crystallographic data

IUCrData (2016). **1**, x160637 [doi:10.1107/S2414314616006374]

15-(4-Chlorophenyl)-6b-hydroxy-17-methyl-6b,7,16,17-tetrahydro-7,14amethanonaphtho[1',8':1,2,3]pyrrolo[3',2':8,8a]azuleno[5,6-b]quinolin-14(15*H*)one methanol hemisolvate

J. M. Joseph, Vijayan Viswanathan and Devadasan Velmurugan

15-(4-Chlorophenyl)-6b-hydroxy-17-methyl-6b,7,16,17-tetrahydro-7,14amethanonaphtho[1',8':1,2,3]pyrrolo[3',2':8,8a]azuleno[5,6-b]quinolin-14(15*H*)-one methanol hemisolvate

Crystal data

C₃₄H₂₅ClN₂O₂·0.5CH₄O $M_r = 544.53$ Triclinic, $P\overline{1}$ a = 10.3848 (3) Å b = 10.4306 (3) Å c = 14.4513 (4) Å a = 69.394 (1)° $\beta = 72.388$ (1)° $\gamma = 70.871$ (1)° V = 1352.92 (7) Å³

Data collection

Bruker SMART APEXII area-detector diffractometer Radiation source: fine-focus sealed tube ω and φ scans Absorption correction: multi-scan (*SADABS*; Bruker, 2008) $T_{\min} = 0.966, T_{\max} = 0.978$ 20173 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.178$ S = 1.055563 reflections 386 parameters 3 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Z = 2 F(000) = 569 $D_x = 1.337 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5568 reflections $\theta = 1.5-26.5^{\circ}$ $\mu = 0.18 \text{ mm}^{-1}$ T = 293 K Block, colourless $0.22 \times 0.16 \times 0.12 \text{ mm}$

5563 independent reflections 4425 reflections with $I > 2\sigma(I)$ $R_{int} = 0.019$ $\theta_{max} = 26.5^{\circ}, \ \theta_{min} = 1.5^{\circ}$ $h = -13 \rightarrow 13$ $k = -13 \rightarrow 12$ $l = -18 \rightarrow 15$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.1116P)^2 + 0.2946P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.66 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.44 \text{ e } \text{Å}^{-3}$ Extinction correction: *SHELXL2014* (Sheldrick, 2015), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.019 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C11	0.72400 (8)	-0.21816 (7)	0.66553 (5)	0.0903 (3)	
01	0.58561 (15)	0.35178 (15)	0.13530 (11)	0.0563 (4)	
O2	0.67317 (16)	0.59399 (18)	0.39571 (11)	0.0570 (4)	
H2O	0.743 (3)	0.520 (3)	0.405 (2)	0.092 (10)*	
N1	0.27834 (16)	0.70993 (17)	0.28663 (12)	0.0470 (4)	
N2	0.84974 (15)	0.43617 (16)	0.27419 (13)	0.0472 (4)	
C1	0.19626 (18)	0.75391 (19)	0.21738 (14)	0.0463 (4)	
C2	0.0684 (2)	0.8558 (2)	0.23152 (19)	0.0626 (6)	
H2	0.0427	0.8932	0.2860	0.075*	
C3	-0.0175 (2)	0.8992 (3)	0.1653 (2)	0.0702 (6)	
H3	-0.1023	0.9648	0.1760	0.084*	
C4	0.0197 (2)	0.8469 (2)	0.08168 (19)	0.0634 (6)	
H4	-0.0402	0.8778	0.0374	0.076*	
C5	0.1428 (2)	0.7514 (2)	0.06473 (17)	0.0549 (5)	
Н5	0.1686	0.7199	0.0074	0.066*	
C6	0.23238 (19)	0.69925 (19)	0.13379 (14)	0.0447 (4)	
C7	0.35429 (19)	0.58980 (19)	0.12598 (14)	0.0440 (4)	
H7	0.3811	0.5501	0.0725	0.053*	
C8	0.43319 (17)	0.54205 (18)	0.19758 (13)	0.0391 (4)	
C9	0.39312 (17)	0.60925 (18)	0.27596 (13)	0.0401 (4)	
C10	0.48274 (18)	0.55891 (19)	0.35269 (13)	0.0423 (4)	
H10	0.4294	0.5842	0.4151	0.051*	
C11	0.54119 (19)	0.39953 (19)	0.37358 (13)	0.0448 (4)	
H11A	0.4683	0.3517	0.3885	0.054*	
H11B	0.5893	0.3612	0.4292	0.054*	
C12	0.64345 (17)	0.38709 (17)	0.27249 (13)	0.0393 (4)	
C13	0.55758 (18)	0.41925 (18)	0.19547 (13)	0.0402 (4)	
C14	0.71568 (17)	0.51111 (17)	0.24384 (13)	0.0388 (4)	
C15	0.61918 (18)	0.61159 (19)	0.31166 (13)	0.0414 (4)	
C16	0.60670 (18)	0.75928 (19)	0.24087 (14)	0.0434 (4)	
C17	0.5485 (2)	0.8893 (2)	0.25675 (18)	0.0569 (5)	
H17	0.5065	0.8983	0.3216	0.068*	
C18	0.5533 (3)	1.0098 (2)	0.1728 (2)	0.0694 (7)	
H18	0.5162	1.0987	0.1837	0.083*	
C19	0.6103 (2)	1.0011 (2)	0.0763 (2)	0.0663 (6)	
H19	0.6108	1.0833	0.0230	0.080*	
C20	0.66844 (19)	0.8680(2)	0.05661 (16)	0.0525 (5)	
C21	0.66716 (17)	0.74950 (18)	0.14204 (14)	0.0412 (4)	
C22	0.72521 (17)	0.60975 (18)	0.13645 (13)	0.0410 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C23	0.7808 (2)	0.5866 (2)	0.04288 (15)	0.0538 (5)	
H23	0.8193	0.4952	0.0367	0.065*	
C24	0.7782 (2)	0.7046 (3)	-0.04387 (16)	0.0638 (6)	
H24	0.8132	0.6890	-0.1074	0.077*	
C25	0.7264 (2)	0.8401 (3)	-0.03804(17)	0.0638 (6)	
H25	0.7294	0.9148	-0.0969	0.077*	
C26	0.8953 (2)	0.3053 (2)	0.24478 (17)	0.0559 (5)	
H26A	0.9666	0.2373	0.2800	0.067*	
H26B	0.9325	0.3234	0.1725	0.067*	
C27	0.76447 (19)	0.25010 (19)	0.27486 (15)	0.0463 (4)	
H27	0.7655	0.2117	0.2217	0.056*	
C28	0.75497 (19)	0.13475 (19)	0.37432 (15)	0.0458 (4)	
C29	0.7023 (2)	0.0238 (2)	0.38486 (16)	0.0543 (5)	
H29	0.6719	0.0224	0.3310	0.065*	
C30	0.6933 (2)	-0.0857 (2)	0.47347 (18)	0.0632 (6)	
H30	0.6583	-0.1601	0.4788	0.076*	
C31	0.7367 (2)	-0.0827 (2)	0.55281 (17)	0.0589 (5)	
C32	0.7896 (3)	0.0258 (3)	0.5450 (2)	0.0720 (7)	
H32	0.8186	0.0273	0.5994	0.086*	
C33	0.7997 (3)	0.1334 (2)	0.45517 (19)	0.0653 (6)	
H33	0.8373	0.2060	0.4495	0.078*	
C34	0.9561 (2)	0.5167 (2)	0.23428 (18)	0.0600 (5)	
H34A	0.9804	0.5378	0.1619	0.090*	
H34B	1.0375	0.4619	0.2615	0.090*	
H34C	0.9203	0.6033	0.2533	0.090*	
O3	0.1064 (5)	0.6190 (5)	0.4934 (3)	0.0885 (11)	0.5
H3O	0.1791	0.6313	0.4529	0.133*	0.5
C35A	0.0517 (15)	0.5293 (19)	0.4674 (10)	0.067 (3)	0.25
H35A	0.0192	0.5837	0.4053	0.080*	0.25
H35B	0.1295	0.4524	0.4515	0.080*	0.25
C35B	-0.0043 (14)	0.5733 (13)	0.4846 (11)	0.058 (3)	0.25
H35C	-0.0904	0.6180	0.5235	0.069*	0.25
H35D	-0.0121	0.6094	0.4143	0.069*	0.25

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Cl1	0.1073 (6)	0.0674 (4)	0.0697 (4)	-0.0169 (4)	-0.0261 (4)	0.0138 (3)
01	0.0633 (8)	0.0546 (8)	0.0575 (8)	-0.0072 (6)	-0.0138 (7)	-0.0295 (7)
O2	0.0588 (8)	0.0722 (10)	0.0482 (8)	-0.0098 (8)	-0.0204 (6)	-0.0250 (7)
N1	0.0430 (8)	0.0512 (9)	0.0457 (9)	-0.0099 (7)	-0.0042 (6)	-0.0181 (7)
N2	0.0390 (7)	0.0422 (8)	0.0555 (9)	-0.0108 (6)	-0.0091 (6)	-0.0082 (7)
C1	0.0415 (9)	0.0444 (10)	0.0504 (10)	-0.0140 (7)	-0.0059 (8)	-0.0103 (8)
C2	0.0523 (11)	0.0584 (13)	0.0701 (14)	-0.0041 (9)	-0.0108 (10)	-0.0203 (11)
C3	0.0510 (11)	0.0571 (13)	0.0899 (18)	-0.0011 (10)	-0.0205 (11)	-0.0124 (12)
C4	0.0590 (12)	0.0553 (12)	0.0738 (15)	-0.0175 (10)	-0.0283 (11)	-0.0005 (11)
C5	0.0596 (11)	0.0518 (11)	0.0570 (12)	-0.0212 (9)	-0.0208 (9)	-0.0056 (9)
C6	0.0456 (9)	0.0437 (9)	0.0459 (10)	-0.0189 (7)	-0.0098 (7)	-0.0066 (7)

C7	0.0478 (9)	0.0475 (10)	0.0411 (9)	-0.0172 (8)	-0.0078 (7)	-0.0142 (8)
C8	0.0394 (8)	0.0415 (9)	0.0371 (9)	-0.0151 (7)	-0.0025 (7)	-0.0119 (7)
C9	0.0389 (8)	0.0440 (9)	0.0370 (8)	-0.0149 (7)	-0.0007 (7)	-0.0129 (7)
C10	0.0433 (9)	0.0513 (10)	0.0318 (8)	-0.0129 (7)	-0.0017 (7)	-0.0152 (7)
C11	0.0482 (9)	0.0481 (10)	0.0351 (9)	-0.0165 (8)	-0.0033 (7)	-0.0084 (7)
C12	0.0410 (8)	0.0356 (8)	0.0389 (9)	-0.0117 (7)	-0.0038 (7)	-0.0098 (7)
C13	0.0445 (9)	0.0410 (9)	0.0362 (8)	-0.0172 (7)	-0.0010 (7)	-0.0124 (7)
C14	0.0397 (8)	0.0374 (9)	0.0382 (9)	-0.0111 (7)	-0.0056 (7)	-0.0103 (7)
C15	0.0450 (9)	0.0469 (10)	0.0377 (9)	-0.0126 (7)	-0.0100 (7)	-0.0161 (7)
C16	0.0414 (9)	0.0432 (9)	0.0534 (10)	-0.0119 (7)	-0.0157 (7)	-0.0166 (8)
C17	0.0564 (11)	0.0514 (11)	0.0766 (14)	-0.0086 (9)	-0.0226 (10)	-0.0311 (10)
C18	0.0670 (13)	0.0395 (11)	0.111 (2)	-0.0067 (9)	-0.0369 (14)	-0.0227 (12)
C19	0.0595 (12)	0.0427 (11)	0.0920 (18)	-0.0165 (9)	-0.0333 (12)	0.0046 (11)
C20	0.0419 (9)	0.0486 (10)	0.0616 (12)	-0.0155 (8)	-0.0189 (8)	0.0015 (9)
C21	0.0379 (8)	0.0404 (9)	0.0475 (10)	-0.0138 (7)	-0.0127 (7)	-0.0080 (7)
C22	0.0396 (8)	0.0430 (9)	0.0384 (9)	-0.0147 (7)	-0.0039 (7)	-0.0087 (7)
C23	0.0514 (10)	0.0591 (12)	0.0447 (10)	-0.0176 (9)	0.0028 (8)	-0.0147 (9)
C24	0.0538 (11)	0.0867 (17)	0.0384 (10)	-0.0223 (11)	0.0010 (8)	-0.0075 (10)
C25	0.0507 (11)	0.0717 (15)	0.0512 (12)	-0.0220 (10)	-0.0124 (9)	0.0112 (10)
C26	0.0446 (10)	0.0438 (10)	0.0668 (13)	-0.0077 (8)	-0.0038 (9)	-0.0108 (9)
C27	0.0471 (9)	0.0386 (9)	0.0506 (10)	-0.0090 (7)	-0.0086 (8)	-0.0123 (8)
C28	0.0450 (9)	0.0375 (9)	0.0540 (10)	-0.0081 (7)	-0.0149 (8)	-0.0102 (8)
C29	0.0618 (11)	0.0492 (11)	0.0576 (12)	-0.0204 (9)	-0.0198 (9)	-0.0096 (9)
C30	0.0726 (14)	0.0496 (11)	0.0693 (14)	-0.0265 (10)	-0.0207 (11)	-0.0036 (10)
C31	0.0583 (12)	0.0464 (11)	0.0597 (12)	-0.0074 (9)	-0.0179 (10)	-0.0012 (9)
C32	0.0918 (17)	0.0656 (14)	0.0678 (15)	-0.0188 (13)	-0.0444 (13)	-0.0069 (11)
C33	0.0827 (15)	0.0525 (12)	0.0742 (15)	-0.0258 (11)	-0.0381 (12)	-0.0072 (10)
C34	0.0461 (10)	0.0555 (12)	0.0762 (15)	-0.0183 (9)	-0.0143 (10)	-0.0096 (10)
O3	0.105 (3)	0.113 (3)	0.058 (2)	-0.045 (3)	-0.0189 (19)	-0.018 (2)
C35A	0.076 (8)	0.089 (11)	0.057 (6)	-0.049 (8)	0.009 (7)	-0.039 (7)
C35B	0.061 (7)	0.045 (7)	0.060 (8)	0.005 (5)	-0.026 (6)	-0.012 (5)

Geometric parameters (Å, °)

C11—C31	1.743 (2)	C18—C19	1.364 (4)
O1—C13	1.216 (2)	C18—H18	0.9300
O2—C15	1.418 (2)	C19—C20	1.413 (3)
O2—H2O	0.87 (3)	C19—H19	0.9300
N1—C9	1.315 (2)	C20—C21	1.407 (3)
N1—C1	1.369 (2)	C20—C25	1.409 (3)
N2-C26	1.460 (3)	C21—C22	1.404 (2)
N2-C34	1.463 (2)	C22—C23	1.373 (3)
N2-C14	1.469 (2)	C23—C24	1.414 (3)
C1—C6	1.413 (3)	C23—H23	0.9300
C1—C2	1.414 (3)	C24—C25	1.361 (4)
С2—С3	1.365 (3)	C24—H24	0.9300
С2—Н2	0.9300	C25—H25	0.9300
C3—C4	1.396 (4)	C26—C27	1.531 (3)

С3—Н3	0.9300	C26—H26A	0.9700
C4—C5	1.354 (3)	C26—H26B	0.9700
C4—H4	0.9300	C27—C28	1.516 (3)
C5—C6	1.416 (3)	С27—Н27	0.9800
С5—Н5	0.9300	C28—C33	1.376 (3)
C6—C7	1.406 (3)	C28—C29	1.379 (3)
C7—C8	1.369 (3)	C29—C30	1.386 (3)
C7—H7	0.9300	C29—H29	0.9300
C_{8}	1425(2)	C_{30} $-C_{31}$	1 366 (3)
$C_8 C_{13}$	1.423(2)	C_{30} H_{30}	0.0300
$C_0 = C_{10}$	1.495(2)	C31 C32	1.270(2)
$C_{2} = C_{10}$	1.505(2)	$C_{31} = C_{32}$	1.370(3)
	1.523 (3)	C32—C33	1.387 (3)
C10—C15	1.560 (2)	C32—H32	0.9300
C10—H10	0.9800	С33—Н33	0.9300
C11—C12	1.544 (2)	C34—H34A	0.9600
C11—H11A	0.9700	C34—H34B	0.9600
C11—H11B	0.9700	C34—H34C	0.9600
C12—C13	1.513 (2)	O3—C35B	1.434 (15)
C12—C27	1.561 (2)	O3—C35A	1.437 (13)
C12—C14	1.574 (2)	O3—H3O	0.8200
C14—C22	1.525 (2)	C35A—C35A ⁱ	1.35 (3)
C14—C15	1.582 (2)	C35A—H35A	0.9700
C15—C16	1.509 (2)	С35А—Н35В	0.9700
C16—C17	1 362 (3)	$C35B-C35B^{i}$	1 41 (3)
C16-C21	1401(3)	C35B—H35C	0.9700
C17 - C18	1.401(3)	C35B_H35D	0.9700
C17 H17	0.0300		0.9700
	0.7500		
С15—02—Н2О	112 (2)	C19_C18_H18	118.8
C_{0} N1 C1	112(2) 118 06 (15)	C_{17} C_{18} H_{18}	118.8
C_{26} N2 C_{24}	110.00(15) 112.47(16)	C_{18} C_{10} C_{20}	120.5(2)
$C_{20} = 112 = C_{34}$	112.47(10) 105.82(15)	$C_{18} = C_{19} = C_{20}$	120.3(2)
$C_{20} = N_2 = C_{14}$	105.65(15) 115.27(15)	C10 - C19 - H19	119.7
C34— $N2$ — $C14$	115.57 (15)	C20—C19—H19	119.7
NI-CI-C6	122.//(1/)	$C_{21} = C_{20} = C_{25}$	116.39 (19)
NI—CI—C2	118.60 (18)	C21—C20—C19	115.8 (2)
C6—C1—C2	118.62 (19)	C25—C20—C19	127.8 (2)
C3—C2—C1	120.1 (2)	C16—C21—C22	113.43 (16)
C3—C2—H2	120.0	C16—C21—C20	123.31 (17)
C1—C2—H2	120.0	C22—C21—C20	123.25 (18)
C2—C3—C4	121.2 (2)	C23—C22—C21	118.69 (17)
С2—С3—Н3	119.4	C23—C22—C14	132.84 (17)
С4—С3—Н3	119.4	C21—C22—C14	108.43 (15)
C5—C4—C3	120.3 (2)	C22—C23—C24	118.6 (2)
С5—С4—Н4	119.9	C22—C23—H23	120.7
C3—C4—H4	119.9	C24—C23—H23	120.7
C4—C5—C6	120.3 (2)	C25—C24—C23	122.5 (2)
C4—C5—H5	119.8	C25—C24—H24	118.7
С6—С5—Н5	119.8	C23—C24—H24	118.7

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	119.8 119.8 105.35 (15) 110.7 110.7 110.7 110.7 108.8 113.54 (16) 115.08 (15) 103.16 (14) 108.2 108.2 108.2 108.2 117.68 (18) 122.91 (17) 119.39 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	119.8 105.35 (15) 110.7 110.7 110.7 110.7 108.8 113.54 (16) 115.08 (15) 103.16 (14) 108.2 108.2 108.2 108.2 117.68 (18) 122.91 (17) 119.39 (17)
C8—C7—C6119.54 (17)N2—C26—C27C8—C7—H7120.2N2—C26—H26AC6—C7—H7120.2C27—C26—H26BC7—C8—C9119.00 (16)N2—C26—H26BC7—C8—C13120.79 (16)C27—C26—H26BC9—C8—C13120.20 (15)H26A—C26—H26BN1—C9—C8122.92 (16)C28—C27—C26N1—C9—C10118.33 (15)C28—C27—C12C8—C9—C10118.69 (15)C26—C27—C12C9—C10—C11108.97 (14)C28—C27—H27C9—C10—C15113.30 (14)C26—C27—H27C11—C10—C15101.39 (14)C12—C27—H27C9—C10—H10110.9C33—C28—C29C11—C10—H10110.9C33—C28—C27C15—C10—H10110.9C29—C28—C27C10—C11—H11A111.4C28—C29—H29C12—C11—H11A111.4C31—C30—C29C12—C11—H11B111.4C31—C30—H30H11A—C11—H11B109.3C29—C30—H30C13—C12—C11107.57 (14)C30—C31—C32	105.35 (15) 110.7 110.7 110.7 110.7 108.8 113.54 (16) 115.08 (15) 103.16 (14) 108.2 108.2 108.2 108.2 117.68 (18) 122.91 (17) 119.39 (17)
C8-C7-H7 120.2 $N2-C26-H26A$ $C6-C7-H7$ 120.2 $C27-C26-H26B$ $C7-C8-C9$ 119.00 (16) $N2-C26-H26B$ $C7-C8-C13$ 120.79 (16) $C27-C26-H26B$ $C9-C8-C13$ 120.20 (15) $H26A-C26-H26B$ $N1-C9-C8$ 122.92 (16) $C28-C27-C26$ $N1-C9-C10$ 118.33 (15) $C28-C27-C12$ $C8-C9-C10$ 118.69 (15) $C26-C27-C12$ $C9-C10-C11$ 108.97 (14) $C28-C27-H27$ $C9-C10-C15$ 113.30 (14) $C26-C27-H27$ $C9-C10-H10$ 110.9 $C33-C28-C29$ $C11-C10-H10$ 110.9 $C33-C28-C27$ $C15-C10-H10$ 110.9 $C29-C28-C27$ $C15-C10-H10$ 110.9 $C28-C29-C30$ $C10-C11-H11A$ 111.4 $C30-C29-H29$ $C12-C11-H11B$ 111.4 $C31-C30-H30$ $H11A-C11-H11B$ 109.3 $C29-C30-H30$ $C13-C12-C11$ 107.57 (14) $C30-C31-C32$	110.7 110.7 110.7 108.8 113.54 (16) 115.08 (15) 103.16 (14) 108.2 108.2 108.2 108.2 117.68 (18) 122.91 (17) 119.39 (17)
C6-C7-H7 120.2 $C27-C26-H26A$ $C7-C8-C9$ 119.00 (16) $N2-C26-H26B$ $C7-C8-C13$ 120.79 (16) $C27-C26-H26B$ $C9-C8-C13$ 120.20 (15) $H26A-C26-H26B$ $N1-C9-C8$ 122.92 (16) $C28-C27-C26$ $N1-C9-C10$ 118.33 (15) $C28-C27-C12$ $C8-C9-C10$ 118.69 (15) $C26-C27-H27$ $C9-C10-C11$ 108.97 (14) $C28-C27-H27$ $C9-C10-C15$ 113.30 (14) $C26-C27-H27$ $C9-C10-H10$ 110.9 $C33-C28-C29$ $C11-C10-H10$ 110.9 $C33-C28-C27$ $C15-C10-H10$ 110.9 $C29-C28-C27$ $C15-C10-H10$ 110.9 $C29-C28-C27$ $C10-C11-H11A$ 111.4 $C28-C29-H29$ $C12-C11-H11A$ 111.4 $C30-C29-H29$ $C12-C11-H11B$ 111.4 $C31-C30-H30$ $H11A-C11-H11B$ 109.3 $C29-C30-H30$ $C13-C12-C11$ 107.57 (14) $C30-C31-C32$	110.7 110.7 110.7 108.8 113.54 (16) 115.08 (15) 103.16 (14) 108.2 108.2 108.2 117.68 (18) 122.91 (17) 119.39 (17)
C7—C8—C9119.00 (16)N2—C26—H26BC7—C8—C13120.79 (16)C27—C26—H26BC9—C8—C13120.20 (15)H26A—C26—H26BN1—C9—C8122.92 (16)C28—C27—C26N1—C9—C10118.33 (15)C28—C27—C12C8—C9—C10118.69 (15)C26—C27—C12C9—C10—C11108.97 (14)C28—C27—H27C9—C10—C15113.30 (14)C26—C27—H27C9—C10—C15101.39 (14)C12—C27—H27C9—C10—H10110.9C33—C28—C29C11—C10—H10110.9C33—C28—C27C15—C10—H10110.9C28—C29—C30C10—C11—H11A111.4C28—C29—H29C12—C11—H11A111.4C31—C30—C29C12—C11—H11B111.4C31—C30—H30H11A—C11—H11B109.3C29—C30—H30C13—C12—C11107.57 (14)C30—C31—C32	110.7 110.7 108.8 113.54 (16) 115.08 (15) 103.16 (14) 108.2 108.2 108.2 117.68 (18) 122.91 (17) 119.39 (17)
C7—C8—C13120.79 (16)C27—C26—H26BC9—C8—C13120.20 (15)H26A—C26—H26BN1—C9—C8122.92 (16)C28—C27—C26N1—C9—C10118.33 (15)C28—C27—C12C8—C9—C10118.69 (15)C26—C27—C12C9—C10—C11108.97 (14)C28—C27—H27C9—C10—C15113.30 (14)C26—C27—H27C11—C10—C15101.39 (14)C12—C27—H27C9—C10—H10110.9C33—C28—C29C11—C10—H10110.9C33—C28—C27C15—C10—H10110.9C29—C28—C27C15—C10—H10110.90 (13)C28—C29—C30C10—C11—H11A111.4C28—C29—H29C12—C11—H11A111.4C31—C30—C29C12—C11—H11B111.4C31—C30—H30H11A—C11—H11B109.3C29—C30—H30C13—C12—C11107.57 (14)C30—C31—C32	110.7 108.8 113.54 (16) 115.08 (15) 103.16 (14) 108.2 108.2 108.2 108.2 117.68 (18) 122.91 (17) 119.39 (17)
C9—C8—C13120.20 (15)H26A—C26—H26BN1—C9—C8122.92 (16)C28—C27—C26N1—C9—C10118.33 (15)C28—C27—C12C8—C9—C10118.69 (15)C26—C27—C12C9—C10—C11108.97 (14)C28—C27—H27C9—C10—C15113.30 (14)C26—C27—H27C11—C10—C15101.39 (14)C12—C27—H27C9—C10—H10110.9C33—C28—C29C11—C10—H10110.9C33—C28—C27C15—C10—H10110.9C29—C28—C27C15—C10—H10110.90 (13)C28—C29—C30C10—C11—H11A111.4C30—C29—H29C12—C11—H11B111.4C31—C30—C29C12—C11—H11B111.4C31—C30—H30H11A—C11—H11B109.3C29—C30—H30C13—C12—C11107.57 (14)C30—C31—C32	108.8 113.54 (16) 115.08 (15) 103.16 (14) 108.2 108.2 108.2 117.68 (18) 122.91 (17) 119.39 (17)
N1—C9—C8122.92 (16)C28—C27—C26N1—C9—C10118.33 (15)C28—C27—C12C8—C9—C10118.69 (15)C26—C27—C12C9—C10—C11108.97 (14)C28—C27—H27C9—C10—C15113.30 (14)C26—C27—H27C11—C10—C15101.39 (14)C12—C27—H27C9—C10—H10110.9C33—C28—C29C11—C10—H10110.9C33—C28—C27C15—C10—H10110.9C29—C28—C27C10—C11—C12101.90 (13)C28—C29—C30C10—C11—H11A111.4C30—C29—H29C12—C11—H11B111.4C31—C30—C29C12—C11—H11B111.4C31—C30—H30H11A—C11—H11B109.3C29—C30—H30C13—C12—C11107.57 (14)C30—C31—C32	113.54 (16) 115.08 (15) 103.16 (14) 108.2 108.2 108.2 117.68 (18) 122.91 (17) 119.39 (17)
N1—C9—C10118.33 (15)C28—C27—C12C8—C9—C10118.69 (15)C26—C27—C12C9—C10—C11108.97 (14)C28—C27—H27C9—C10—C15113.30 (14)C26—C27—H27C11—C10—C15101.39 (14)C12—C27—H27C9—C10—H10110.9C33—C28—C29C11—C10—H10110.9C33—C28—C27C15—C10—H10110.9C29—C28—C27C10—C11—C12101.90 (13)C28—C29—C30C10—C11—H11A111.4C28—C29—H29C12—C11—H11B111.4C31—C30—C29C12—C11—H11B111.4C31—C30—H30H11A—C11—H11B109.3C29—C30—H30C13—C12—C11107.57 (14)C30—C31—C32	115.08 (15) 103.16 (14) 108.2 108.2 108.2 117.68 (18) 122.91 (17) 119.39 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	103.16 (14) 108.2 108.2 108.2 117.68 (18) 122.91 (17) 119.39 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	108.2 108.2 108.2 117.68 (18) 122.91 (17) 119.39 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	108.2 108.2 117.68 (18) 122.91 (17) 119.39 (17)
C11—C10—C15 101.39 (14) C12—C27—H27 C9—C10—H10 110.9 C33—C28—C29 C11—C10—H10 110.9 C33—C28—C27 C15—C10—H10 110.9 C29—C28—C27 C10—C11—C12 101.90 (13) C28—C29—C30 C10—C11—H11A 111.4 C28—C29—H29 C12—C11—H11B 111.4 C31—C30—C29 C12—C11—H11B 111.4 C31—C30—H30 H11A—C11—H11B 109.3 C29—C30—H30 C13—C12—C11 107.57 (14) C30—C31—C32	108.2 117.68 (18) 122.91 (17) 119.39 (17)
C9—C10—H10 110.9 C33—C28—C29 C11—C10—H10 110.9 C33—C28—C27 C15—C10—H10 110.9 C29—C28—C27 C10—C11—C12 101.90 (13) C28—C29—C30 C10—C11—H11A 111.4 C28—C29—H29 C12—C11—H11A 111.4 C31—C30—H29 C12—C11—H11B 111.4 C31—C30—H30 H11A—C11—H11B 109.3 C29—C30—H30 C13—C12—C11 107.57 (14) C30—C31—C32	117.68 (18) 122.91 (17) 119.39 (17)
C11—C10—H10 110.9 C33—C28—C27 C15—C10—H10 110.9 C29—C28—C27 C10—C11—C12 101.90 (13) C28—C29—C30 C10—C11—H11A 111.4 C28—C29—H29 C12—C11—H11A 111.4 C30—C29—H29 C10—C11—H11B 111.4 C31—C30—C29 C12—C11—H11B 111.4 C31—C30—H30 H11A—C11—H11B 109.3 C29—C30—H30 C13—C12—C11 107.57 (14) C30—C31—C32	122.91 (17) 119.39 (17)
C15—C10—H10 110.9 C29—C28—C27 C10—C11—C12 101.90 (13) C28—C29—C30 C10—C11—H11A 111.4 C28—C29—H29 C12—C11—H11A 111.4 C30—C29—H29 C10—C11—H11B 111.4 C31—C30—C29 C12—C11—H11B 111.4 C31—C30—H30 H11A—C11—H11B 109.3 C29—C30—H30 C13—C12—C11 107.57 (14) C30—C31—C32	119.39 (17)
C10—C11—C12 101.90 (13) C28—C29—C30 C10—C11—H11A 111.4 C28—C29—H29 C12—C11—H11A 111.4 C30—C29—H29 C10—C11—H11B 111.4 C31—C30—C29 C12—C11—H11B 111.4 C31—C30—H30 H11A—C11—H11B 109.3 C29—C30—H30 C13—C12—C11 107.57 (14) C30—C31—C32	
C10—C11—H11A 111.4 C28—C29—H29 C12—C11—H11A 111.4 C30—C29—H29 C10—C11—H11B 111.4 C31—C30—C29 C12—C11—H11B 111.4 C31—C30—H30 H11A—C11—H11B 109.3 C29—C30—H30 C13—C12—C11 107.57 (14) C30—C31—C32	121.9 (2)
C12—C11—H11A 111.4 C30—C29—H29 C10—C11—H11B 111.4 C31—C30—C29 C12—C11—H11B 111.4 C31—C30—H30 H11A—C11—H11B 109.3 C29—C30—H30 C13—C12—C11 107.57 (14) C30—C31—C32	119.1
C10—C11—H11B 111.4 C31—C30—C29 C12—C11—H11B 111.4 C31—C30—H30 H11A—C11—H11B 109.3 C29—C30—H30 C13—C12—C11 107.57 (14) C30—C31—C32	119.1
C12—C11—H11B111.4C31—C30—H30H11A—C11—H11B109.3C29—C30—H30C13—C12—C11107.57 (14)C30—C31—C32	118.96 (19)
H11A—C11—H11B109.3C29—C30—H30C13—C12—C11107.57 (14)C30—C31—C32	120.5
C13—C12—C11 107.57 (14) C30—C31—C32	120.5
	120.8 (2)
C13—C12—C27 113.75 (15) C30—C31—Cl1	119.69 (17)
C11—C12—C27 117.37 (15) C32—C31—Cl1	119.56 (18)
C13—C12—C14 108.77 (13) C31—C32—C33	119.4 (2)
C11—C12—C14 102.87 (13) C31—C32—H32	120.3
C27—C12—C14 105.68 (13) C33—C32—H32	120.3
O1—C13—C8 121.20 (16) C28—C33—C32	121.3 (2)
O1—C13—C12 123.65 (16) C28—C33—H33	119.4
C8—C13—C12 115.15 (14) C32—C33—H33	119.4
N2—C14—C22 115.32 (13) N2—C34—H34A	109.5
N2—C14—C12 102.19 (13) N2—C34—H34B	109.5
C22—C14—C12 117.84 (14) H34A—C34—H34B	109.5
N2-C14-C15 112.19 (14) N2-C34-H34C	109.5
C22—C14—C15 103.50 (13) H34A—C34—H34C	109.5
C12—C14—C15 105.66 (13) H34B—C34—H34C	109.5
O2—C15—C16 112.06 (14) C35A—O3—H3O	109.5
O2—C15—C10 107.96 (14) C35A ⁱ —C35A—O3	121.1 (13)
C16—C15—C10 115.87 (14) C35A ⁱ —C35A—H35A	107.1
	10/.1
U2C15C14 112.86 (14) U3C35AH35A	107.1
02015014 112.86 (14) 03035AH35A C16015014 104.98 (13) C35A ⁱ 035AH35B	107.1 107.1
02015014 112.86 (14) 03035AH35A C16015014 104.98 (13) C35A ⁱ 035AH35B C10015014 102.84 (13) 03035AH35B	107.1 107.1 107.1
02C15C14 112.86 (14) 03C35AH35A C16C15C14 104.98 (13) C35A ⁱ C35AH35B C10C15C14 102.84 (13) 03C35AH35B C17C16C21 119.23 (18) H35AC35AH35B	107.1 107.1 107.1 106.8
02C15C14 112.86 (14) 03C35AH35A C16C15C14 104.98 (13) C35A ⁱ C35AH35B C10C15C14 102.84 (13) 03C35AH35B C17C16C21 119.23 (18) H35AC35AH35B C17C16C15 132.34 (19) C35B ⁱ C35BO3	107.1 107.1 107.1 107.1 106.8 118.6 (12)

C16—C17—C18	118.6 (2)	O3—C35B—H35C	107.7
C16—C17—H17	120.7	C35B ⁱ —C35B—H35D	107.7
C18—C17—H17	120.7	O3—C35B—H35D	107.7
C19—C18—C17	122.5 (2)	H35C—C35B—H35D	107.1
C9—N1—C1—C6	-2.3 (3)	N2-C14-C15-C16	114.11 (14)
C9—N1—C1—C2	176.14 (17)	C22-C14-C15-C16	-10.84 (16)
N1—C1—C2—C3	-178.35 (19)	C12-C14-C15-C16	-135.32 (13)
C6—C1—C2—C3	0.1 (3)	N2-C14-C15-C10	-124.27 (14)
C1—C2—C3—C4	-1.4 (4)	C22-C14-C15-C10	110.77 (14)
C2—C3—C4—C5	0.0 (3)	C12-C14-C15-C10	-13.71 (17)
C3—C4—C5—C6	2.6 (3)	O2-C15-C16-C17	-50.2 (3)
N1—C1—C6—C7	3.5 (3)	C10-C15-C16-C17	74.3 (2)
C2-C1-C6-C7	-174.87 (17)	C14—C15—C16—C17	-173.05 (19)
N1-C1-C6-C5	-179.23 (16)	O2-C15-C16-C21	131.07 (15)
C2-C1-C6-C5	2.4 (3)	C10-C15-C16-C21	-104.43 (16)
C4—C5—C6—C7	173.33 (18)	C14—C15—C16—C21	8.23 (17)
C4—C5—C6—C1	-3.7 (3)	C21—C16—C17—C18	-1.0(3)
C1—C6—C7—C8	-0.8 (2)	C15—C16—C17—C18	-179.61 (18)
C5—C6—C7—C8	-177.90 (16)	C16—C17—C18—C19	2.0 (3)
C6—C7—C8—C9	-2.9 (2)	C17—C18—C19—C20	-0.3 (3)
C6—C7—C8—C13	175.65 (15)	C18—C19—C20—C21	-2.1 (3)
C1—N1—C9—C8	-1.7 (2)	C18—C19—C20—C25	177.5 (2)
C1—N1—C9—C10	-179.11 (15)	C17—C16—C21—C22	179.04 (16)
C7—C8—C9—N1	4.4 (2)	C15—C16—C21—C22	-2.0 (2)
C13—C8—C9—N1	-174.18 (15)	C17—C16—C21—C20	-1.5 (3)
C7—C8—C9—C10	-178.25 (15)	C15—C16—C21—C20	177.38 (15)
C13—C8—C9—C10	3.2 (2)	C25-C20-C21-C16	-176.57 (16)
N1-C9-C10-C11	142.05 (15)	C19—C20—C21—C16	3.0 (3)
C8—C9—C10—C11	-35.4 (2)	C25—C20—C21—C22	2.8 (3)
N1—C9—C10—C15	-105.91 (17)	C19—C20—C21—C22	-177.60 (17)
C8—C9—C10—C15	76.61 (19)	C16—C21—C22—C23	176.50 (16)
C9—C10—C11—C12	68.81 (16)	C20—C21—C22—C23	-2.9 (3)
C15—C10—C11—C12	-50.91 (16)	C16—C21—C22—C14	-5.43 (19)
C10-C11-C12-C13	-73.10 (16)	C20-C21-C22-C14	175.16 (15)
C10-C11-C12-C27	157.13 (15)	N2-C14-C22-C23	64.8 (3)
C10-C11-C12-C14	41.64 (17)	C12—C14—C22—C23	-56.1 (3)
C7—C8—C13—O1	-5.8 (2)	C15—C14—C22—C23	-172.29 (19)
C9—C8—C13—O1	172.71 (16)	N2-C14-C22-C21	-112.90 (16)
C7—C8—C13—C12	174.08 (14)	C12—C14—C22—C21	126.16 (15)
C9—C8—C13—C12	-7.4 (2)	C15—C14—C22—C21	10.01 (17)
C11—C12—C13—O1	-137.17 (17)	C21—C22—C23—C24	0.5 (3)
C27—C12—C13—O1	-5.4 (2)	C14—C22—C23—C24	-176.98 (18)
C14—C12—C13—O1	112.08 (18)	C22—C23—C24—C25	1.9 (3)
C11—C12—C13—C8	42.91 (18)	C23—C24—C25—C20	-2.0 (3)
C27—C12—C13—C8	174.68 (13)	C21—C20—C25—C24	-0.3 (3)
C14—C12—C13—C8	-67.84 (17)	C19—C20—C25—C24	-179.9 (2)
C26—N2—C14—C22	-89.00 (17)	C34—N2—C26—C27	-169.53 (17)

C34—N2—C14—C22	36.0 (2)	C14—N2—C26—C27	-42.71 (19)
C26—N2—C14—C12	40.12 (17)	N2-C26-C27-C28	-99.30 (18)
C34—N2—C14—C12	165.16 (16)	N2-C26-C27-C12	25.9 (2)
C26—N2—C14—C15	152.85 (15)	C13—C12—C27—C28	-118.14 (16)
C34—N2—C14—C15	-82.11 (19)	C11—C12—C27—C28	8.7 (2)
C13—C12—C14—N2	-145.22 (14)	C14—C12—C27—C28	122.61 (16)
C11—C12—C14—N2	100.90 (15)	C13—C12—C27—C26	117.64 (17)
C27—C12—C14—N2	-22.73 (17)	C11—C12—C27—C26	-115.54 (18)
C13—C12—C14—C22	-17.71 (19)	C14—C12—C27—C26	-1.61 (19)
C11—C12—C14—C22	-131.58 (15)	C26—C27—C28—C33	36.1 (3)
C27—C12—C14—C22	104.78 (17)	C12—C27—C28—C33	-82.5 (2)
C13—C12—C14—C15	97.27 (15)	C26—C27—C28—C29	-142.47 (19)
C11—C12—C14—C15	-16.61 (17)	C12—C27—C28—C29	99.0 (2)
C27—C12—C14—C15	-140.24 (14)	C33—C28—C29—C30	0.3 (3)
C9—C10—C15—O2	163.29 (14)	C27—C28—C29—C30	178.93 (19)
C11—C10—C15—O2	-80.11 (16)	C28—C29—C30—C31	0.6 (3)
C9—C10—C15—C16	36.7 (2)	C29—C30—C31—C32	-0.7 (4)
C11—C10—C15—C16	153.30 (15)	C29—C30—C31—Cl1	179.10 (17)
C9—C10—C15—C14	-77.19 (17)	C30—C31—C32—C33	-0.3 (4)
C11—C10—C15—C14	39.40 (16)	Cl1—C31—C32—C33	179.97 (19)
N2-C14-C15-O2	-8.21 (19)	C29—C28—C33—C32	-1.3 (3)
C22—C14—C15—O2	-133.17 (15)	C27—C28—C33—C32	-179.8 (2)
C12—C14—C15—O2	102.35 (16)	C31—C32—C33—C28	1.3 (4)

Symmetry code: (i) -x, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
0.87 (3)	2.20 (3)	2.695 (2)	116 (2)
0.82	2.28	2.984 (4)	145
0.87 (3)	2.26 (3)	3.021 (5)	146 (2)
0.93	2.53	3.408 (6)	157
	<i>D</i> —H 0.87 (3) 0.82 0.87 (3) 0.93	D—H H···A 0.87 (3) 2.20 (3) 0.82 2.28 0.87 (3) 2.26 (3) 0.93 2.53	DHH···AD···A0.87 (3)2.20 (3)2.695 (2)0.822.282.984 (4)0.87 (3)2.26 (3)3.021 (5)0.932.533.408 (6)

Symmetry code: (ii) -x+1, -y+1, -z+1.