ISSN 2414-3146

Received 9 April 2016 Accepted 18 April 2016

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; thienopyridines; 3aminothiophene; ethyl thieno[2,3-b]pyridine-5carboxylate; hydrogen bonding.

CCDC reference: 1474779

Structural data: full structural data are available from iucrdata.iucr.org

Ethyl 3-amino-4-(4-chlorophenyl)-2-[(4-methoxyphenyl)carbamoyl]-6-phenylthieno[2,3-b]pyridine-5-carboxylate

Etify A. Bakhite,^a Joel T. Mague,^b Shaaban K. Mohamed,^{c,d}* Mehmet Akkurt^e and Elham A. Al-Taifi^f

^aChemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt, ^bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, ^cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, ^dChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, ^eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and ^fChemistry Department, Faculty of Science, Sana'a University, Sana'a, Yemen. *Correspondence e-mail: s.mohamed@mmu.ac.uk

The conformation of the title molecule, $C_{30}H_{24}ClN_3O_4S$, is partially determined by an intramolecular N-H···O hydrogen bond, forming an S(6) loop, and an N-H··· π interaction involving the centroid of the 4-chlorophenyl ring. The thienopyridine bicyclic system is almost planar with an r.m.s. deviation of 0.019 Å. Its mean plane is inclined to the phenyl ring, the 4-chlorophenyl ring and the 4-methoxyphenyl ring by 36.19 (7), 81.67 (7) and 12.75 (7)°, respectively. In the crystal, molecules are linked by pairs of N-H···O hydrogen bonds, forming inversion dimers with an $R_2^2(20)$ ring motif. Within the dimers, which stack along the *b*-axis direction, there is a weak π - π interaction [centroid-tocentroid distance = 3.7936 (9) Å] involving inversion-related thiophene and pyridine rings.

Structure description

Many thieno[2,3-*b*]pyridines have been synthesized and investigated in relation with their biological and pharmacological importance (Bakhite, 2003; Litvinov *et al.*, 2005). Some of them have been proved to possess antiviral (Schnute *et al.*, 2007; Attaby *et al.*, 2007), antidiabetic (Bahekar *et al.*, 2007), antimicrobial (Abdel-Rahman *et al.*, 2003; Hussein *et al.*, 2000), antitumor (Hayakawa *et al.*, 2004), antiparasitic (Bernardino *et al.*, 2006) and neurotropic activities (Krauze *et al.*, 1999). We report herein on the synthesis and crystal structure of the new title thienopyridine derivative.

Figure 1

The molecular structure of the title compound, showing the atom labelling and 50% probability displacement ellipsoids. The N-H···O hydrogen bond and the N-H··· π interaction are shown as dashed lines (see Table 1).

The conformation of the title molecule (Fig. 1) is partially determined by the intramolecular N2–H2B···O3 hydrogen bond and the N2–H2A··· π interaction (H2A···Cg = 2.90 Å; N2–H2A···Cg = 152°, Cg is the centroid of the 4-chlorophenyl ring; see Table 1). The central thienopyridine bicyclic moiety (S1/N1/C1–C7) is planar to within 0.025 (1) Å, with an r.m.s. deviation of 0.019 Å. The phenyl ring (C8–C13) and the 4-chlorophenyl ring (C17–C22) are inclined to the aforementioned plane by 36.19 (6) and 81.67 (7)°, respectively.

In the crystal, molecules are associated through pairs of N3–H3···O1ⁱ hydrogen bonds (Table 1 and Fig. 2), generating inversion dimers with an $R_2^2(20)$ loop. Within the dimers, which stack along the *b*-axis direction, there is a weak parallel slipped π - π interaction involving inversion-related thiophene and pyridine rings $[Cg1\cdots Cg2^{ii} = 3.7936 (9) \text{ Å}$, interplanar distance = 3.5684 (6) Å, slippage 1.371 Å, Cg1 and Cg2 are the centroids of rings S1/C4–C7 and N1/C1–C5, respectively; symmetry code: (ii) -x + 1, -y + 1, -z + 1].

Figure 2

The crystal packing of the title compound projected onto (110), with the $N-H\cdots O$ hydrogen bonds shown as dashed lines (see Table 1).

Table 1Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C17-C22 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2B\cdots O3$ $N2-H2A\cdots Cg$	0.88 (2) 0.88 (2)	2.07 (2) 2.90	2.756 (2) 3.698	133.6 (19) 152
$N3-H3\cdotsO1^{i}$	0.88 (2)	2.15 (2)	2.912 (2)	145 (2)

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Synthesis and crystallization

The title compound was prepared by heating equimolar amounts of ethyl 1,2-dihydro-4-(4-chlorophenyl)-3-cyano-6-phenyl-2-thioxopyridine-5-carboxylate and chloro-*N*-(4-methoxy-phenyl)acetamide (5 mmol) in absolute ethanol (20 ml) containing sodium ethoxide (0.5 g) on a steam bath for 30 min. The product which separated on cooling was collected and recrystallized from ethanol solution (yield: 82%) giving pale-yellow needle-like crystals.

Spectroscopic and analytical data: IR: 3500, 3300 (NH₂), 3200 (NH), 1720 (C=O, ester), 1660 (C=O, amide) cm^{-1.} ¹H NMR (CDCl₃): δ 9.00 (*s*, 1H, NH), 7.0–7.8 (*m*, 13H, ArH), 5.7(*s*, 2H, NH₂), 3.9–4.2 (*q*, 2H, OCH₂), 3.8 (*s*, 3H, OCH₃), 1.0–1.2 (*t*, 3H, CH₃) p.p.m. Elemental analysis calculated for C₃₁H₂₅ClN₂O₄S (%): C, 66.84; H, 4.52; N, 5.03; S, 5.76. Found (%): C, 67.01; H, 4.44; N, 5.13; S, 5.49; m.p. 466–467 K.

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{30}H_{24}CIN_3O_4S$
Mr	558.03
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	150
a, b, c (Å)	8.8388 (3), 17.7686 (6), 16.9487 (6)
β (°)	94.159 (2)
$V(Å^3)$	2654.84 (16)
Ζ	4
Radiation type	Cu Ka
$\mu \ (\mathrm{mm}^{-1})$	2.36
Crystal size (mm)	$0.16 \times 0.07 \times 0.07$
Data collection	
Diffractometer	Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2016)
T_{\min}, T_{\max}	0.75, 0.85
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	20325, 5277, 4468
R _{int}	0.040
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.625
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.037, 0.094, 1.02
No. of reflections	5277
No. of parameters	367
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.30, -0.22

Computer programs: *APEX3* and *SAINT* (Bruker, 2016), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2014* (Sheldrick, 2015*b*), *DIAMOND* (Brandenburg & Putz, 2012) and *SHELXTL* (Sheldrick, 2008).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The support of NSF–MRI Grant No 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

- Abdel-Rahman, A. E., Bakhite, E. A. & Al-Taifi, E. A. (2003). *Pharmazie*, **58**, 372–377.
- Attaby, F. A., Elghandour, A. H. H., Ali, M. A. & Ibrahem, Y. M. (2007). *Phosphorus Sulfur Silicon*, **182**, 695–709.
- Bahekar, R. H., Jain, M. R., Jadav, P. A., Prajapati, V. M., Patel, D. N., Gupta, A. A., Sharma, A., Tom, R., Bandyopadhya, D., Modi, H. & Patel, P. R. (2007). *Bioorg. Med. Chem.* 15, 6782–6795.
- Bakhite, E. A. (2003). Phosphorus Sulfur Silicon, 178, 929-992.

- Bernardino, A. M. R, Pinheiro, L. C. da S., Rodrigues, C. R., Loureiro, N. I., Castro, H. C., Lanfredi-Rangel, A., Sabatini-Lopes, J., Borges, J. C., Carvalho, J. M., Romeiro, G. A., Ferreira, V. F., Frugulhetti, I. C. P. P. & Vannier-Santos, M. A. (2006). *Bioorg. Med. Chem.* 14, 5765–5770.
- Brandenburg, K. & Putz, H. (2012). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2016). *APEX3*, *SAINT* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hayakawa, I., Shioya, R., Agatsuma, T., Furukawa, H. & Sugano, Y. (2004). Bioorg. Med. Chem. Lett. 14, 3411–3414.
- Hussein, A. M., Abu-shanab, F. A. & Ishak, E. A. (2000). *Phosphorus Sulfur Silicon*, **159**, 55–68.
- Krauze, A., Gērmane, S., Eberlinš, O., Šturms, I., Klusā, V. & Duburs, G. (1999). Eur. J. Med. Chem. 34, 301–310.
- Litvinov, V. P., Dotsenko, V. V. & Krivokolysko, S. G. (2005). Russ. Chem. Bull. 54, 864–904.
- Schnute, M. E., Anderson, D. J., Brideau, R. J., Ciske, F. L., Collier, S. A., Cudahy, M. M., Eggen, M., ean, Genin, M. J., Hopkins, T. A., Judge, T. M., Kim, E. J., Knechtel, M. L., Nair, S. K., Nieman, J. A., Oien, N. L., Scott, A., Tanis, S. P., Vaillancourt, V. A., Wathen, M. W. & Wieber, J. L. (2007). Bioorg. Med. Chem. Lett. 17, 3349–3353.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2016). **1**, x160657 [doi:10.1107/S241431461600657X]

Ethyl 3-amino-4-(4-chlorophenyl)-2-[(4-methoxyphenyl)carbamoyl]-6-phenylthieno[2,3-*b*]pyridine-5-carboxylate

Etify A. Bakhite, Joel T. Mague, Shaaban K. Mohamed, Mehmet Akkurt and Elham A. Al-Taifi

Ethyl 3-amino-4-(4-chlorophenyl)-2-[(4-methoxyphenyl)carbamoyl]-6-phenylthieno[2,3-*b*]pyridine-5-carboxylate

Crystal data

 $C_{30}H_{24}CIN_{3}O_{4}S$ $M_{r} = 558.03$ Monoclinic, $P2_{1}/c$ a = 8.8388 (3) Å b = 17.7686 (6) Å c = 16.9487 (6) Å $\beta = 94.159 (2)^{\circ}$ $V = 2654.84 (16) Å^{3}$ Z = 4

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer
Radiation source: INCOATEC IμS micro–focus source
Mirror monochromator
Detector resolution: 10.4167 pixels mm⁻¹ ω scans
Absorption correction: multi-scan (*SADABS*; Bruker, 2016)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.094$ S = 1.025277 reflections 367 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 1160 $D_x = 1.396 \text{ Mg m}^{-3}$ Cu K\alpha radiation, \lambda = 1.54178 \u00e0 Cell parameters from 9974 reflections $\theta = 3.6-74.3^{\circ}$ $\mu = 2.36 \text{ mm}^{-1}$ T = 150 KNeedle, pale-yellow $0.16 \times 0.07 \times 0.07 \text{ mm}$

 $T_{\min} = 0.75, T_{\max} = 0.85$ 20325 measured reflections 5277 independent reflections 4468 reflections with $I > 2\sigma(I)$ $R_{int} = 0.040$ $\theta_{max} = 74.5^{\circ}, \theta_{min} = 3.6^{\circ}$ $h = -11 \rightarrow 10$ $k = -19 \rightarrow 22$ $l = -17 \rightarrow 20$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0439P)^2 + 1.0305P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.30 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.22 \text{ e } \text{Å}^{-3}$ Extinction correction: *SHELXL2014* (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.00154 (15)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of F² > 2sigma(F²) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C11	0.93057 (7)	0.55123 (3)	0.07821 (3)	0.05299 (16)
S1	0.61224 (5)	0.59156 (2)	0.59762 (2)	0.02643 (11)
01	0.74915 (13)	0.32446 (7)	0.34507 (7)	0.0320 (3)
O2	0.98542 (13)	0.37180 (7)	0.36461 (7)	0.0322 (3)
O3	0.64084 (15)	0.78617 (7)	0.48736 (7)	0.0366 (3)
O4	0.31751 (16)	1.03614 (7)	0.69484 (8)	0.0399 (3)
N1	0.70552 (15)	0.45194 (7)	0.56600 (7)	0.0254 (3)
N2	0.70828 (18)	0.66939 (9)	0.38878 (9)	0.0333 (3)
H2A	0.763 (2)	0.6506 (13)	0.3521 (13)	0.044 (6)*
H2B	0.704 (2)	0.7185 (14)	0.3956 (13)	0.048 (6)*
N3	0.50338 (17)	0.75521 (8)	0.59171 (8)	0.0295 (3)
H3	0.461 (3)	0.7179 (13)	0.6165 (13)	0.049 (6)*
C1	0.76387 (17)	0.40248 (9)	0.51642 (9)	0.0247 (3)
C2	0.79742 (17)	0.42332 (9)	0.43908 (9)	0.0245 (3)
C3	0.77840 (17)	0.49702 (9)	0.41263 (9)	0.0237 (3)
C4	0.72153 (17)	0.54956 (9)	0.46494 (9)	0.0237 (3)
C5	0.68559 (17)	0.52221 (9)	0.53961 (9)	0.0241 (3)
C6	0.63015 (18)	0.65820 (9)	0.52280 (9)	0.0268 (3)
C7	0.68925 (18)	0.62898 (9)	0.45635 (9)	0.0261 (3)
C8	0.79395 (19)	0.32535 (9)	0.54762 (9)	0.0269 (3)
C9	0.6953 (2)	0.29235 (10)	0.59818 (10)	0.0314 (4)
H9	0.6103	0.3196	0.6141	0.038*
C10	0.7224 (2)	0.21932 (10)	0.62509 (11)	0.0401 (4)
H10	0.6550	0.1966	0.6592	0.048*
C11	0.8467 (3)	0.17944 (10)	0.60255 (11)	0.0427 (5)
H11	0.8627	0.1291	0.6201	0.051*
C12	0.9478 (2)	0.21265 (11)	0.55452 (11)	0.0407 (4)
H12	1.0343	0.1856	0.5401	0.049*
C13	0.9221 (2)	0.28560 (10)	0.52754 (10)	0.0341 (4)
H13	0.9922	0.3087	0.4952	0.041*
C14	0.83919 (18)	0.36646 (9)	0.37896 (9)	0.0260 (3)
C15	1.0348 (2)	0.32705 (13)	0.29932 (12)	0.0469 (5)
H15A	1.1261	0.3504	0.2792	0.056*
H15B	0.9539	0.3268	0.2557	0.056*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C1(1 0705 (2)	0 24795 (15)	0 22271 (17)	0.0702 (9)
	1.0705 (3)	0.24785 (15)	0.323/1 (17)	0.0703 (8)
HI6A	1.1103	0.2206	0.2794	0.105*
H16B	0.9780	0.2231	0.3390	0.105*
H16C	1.1466	0.2479	0.3687	0.105*
C17	0.81286 (17)	0.51549 (9)	0.32963 (9)	0.0244 (3)
C18	0.70985 (19)	0.49708 (10)	0.26706 (10)	0.0313 (4)
H18	0.6144	0.4761	0.2773	0.038*
C19	0.7451 (2)	0.50915 (11)	0.18947 (10)	0.0363 (4)
H19	0.6740	0.4969	0.1467	0.044*
C20	0.8838 (2)	0.53903 (10)	0.17525 (10)	0.0320 (4)
C21	0.9873 (2)	0.55861 (11)	0.23643 (11)	0.0367 (4)
H21	1.0821	0.5801	0.2257	0.044*
C22	0.9521 (2)	0.54672 (10)	0.31378 (10)	0.0332 (4)
H22	1.0232	0.5599	0.3562	0.040*
C23	0.59152 (19)	0.73833 (9)	0.53178 (9)	0.0279 (3)
C24	0.45659 (18)	0.82863 (9)	0.61364 (10)	0.0277 (3)
C25	0.4291 (2)	0.88638 (10)	0.55940 (10)	0.0306 (4)
H25	0.4431	0.8781	0.5050	0.037*
C26	0.3810(2)	0.95634 (10)	0.58454 (10)	0.0319 (4)
H26	0.3626	0.9959	0.5473	0.038*
C27	0.35998 (19)	0.96856 (9)	0.66361 (10)	0.0295 (4)
C28	0.3847 (2)	0.91026 (10)	0.71805 (10)	0.0313 (4)
H28	0.3687	0.9182	0.7722	0.038*
C29	0.43253 (19)	0.84107 (9)	0.69294 (10)	0.0300 (4)
H29	0.4493	0.8014	0.7301	0.036*
C30	0.2967 (3)	1.09714 (12)	0.64081 (14)	0.0578 (7)
H30A	0.2724	1.1429	0.6697	0.087*
H30B	0.2133	1.0855	0.6014	0.087*
H30C	0.3901	1.1051	0.6141	0.087*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0659 (3)	0.0684 (4)	0.0269 (2)	-0.0027 (3)	0.0192 (2)	0.0049 (2)
S1	0.0347 (2)	0.0231 (2)	0.0222 (2)	0.00087 (15)	0.00689 (14)	0.00014 (14)
O1	0.0371 (6)	0.0291 (6)	0.0303 (6)	-0.0034 (5)	0.0048 (5)	-0.0045 (5)
O2	0.0303 (6)	0.0372 (7)	0.0298 (6)	0.0027 (5)	0.0067 (5)	-0.0067 (5)
03	0.0489 (7)	0.0249 (6)	0.0383 (7)	0.0011 (5)	0.0182 (6)	0.0045 (5)
O4	0.0604 (8)	0.0258 (6)	0.0358 (7)	0.0099 (6)	0.0179 (6)	0.0026 (5)
N1	0.0294 (7)	0.0247 (7)	0.0219 (6)	-0.0003 (5)	0.0013 (5)	0.0007 (5)
N2	0.0491 (9)	0.0246 (8)	0.0280 (8)	0.0039 (7)	0.0146 (6)	0.0050 (6)
N3	0.0384 (8)	0.0217 (7)	0.0295 (7)	-0.0007 (6)	0.0106 (6)	0.0003 (5)
C1	0.0266 (8)	0.0249 (8)	0.0222 (8)	-0.0003 (6)	-0.0001 (6)	-0.0003 (6)
C2	0.0262 (8)	0.0259 (8)	0.0216 (7)	0.0019 (6)	0.0021 (6)	-0.0014 (6)
C3	0.0244 (7)	0.0258 (8)	0.0210 (7)	-0.0004 (6)	0.0016 (5)	0.0006 (6)
C4	0.0256 (7)	0.0241 (8)	0.0216 (7)	-0.0005 (6)	0.0030 (6)	0.0019 (6)
C5	0.0267 (7)	0.0245 (8)	0.0213 (7)	-0.0008 (6)	0.0022 (6)	-0.0004 (6)
C6	0.0314 (8)	0.0241 (8)	0.0253 (8)	-0.0008 (6)	0.0049 (6)	0.0014 (6)

C7	0.0281 (8)	0.0251 (8)	0.0255 (8)	0.0003 (6)	0.0042 (6)	0.0021 (6)
C8	0.0349 (8)	0.0250 (8)	0.0201 (7)	0.0020 (7)	-0.0023 (6)	-0.0001 (6)
C9	0.0409 (9)	0.0287 (9)	0.0243 (8)	0.0003 (7)	0.0003 (7)	0.0008 (6)
C10	0.0564 (12)	0.0317 (9)	0.0316 (9)	-0.0057 (8)	-0.0012 (8)	0.0070 (7)
C11	0.0667 (13)	0.0251 (9)	0.0345 (10)	0.0073 (9)	-0.0074 (9)	0.0028 (7)
C12	0.0530 (12)	0.0352 (10)	0.0332 (9)	0.0158 (9)	-0.0020 (8)	-0.0001 (8)
C13	0.0409 (10)	0.0332 (9)	0.0280 (9)	0.0076 (8)	0.0012 (7)	0.0020 (7)
C14	0.0313 (8)	0.0246 (8)	0.0225 (8)	0.0021 (6)	0.0039 (6)	0.0021 (6)
C15	0.0409 (10)	0.0611 (13)	0.0406 (11)	0.0006 (9)	0.0151 (8)	-0.0203 (9)
C16	0.0657 (16)	0.0581 (15)	0.0864 (19)	0.0208 (12)	0.0002 (13)	-0.0338 (14)
C17	0.0282 (8)	0.0238 (7)	0.0218 (7)	0.0027 (6)	0.0055 (6)	0.0008 (6)
C18	0.0281 (8)	0.0390 (9)	0.0269 (8)	-0.0030 (7)	0.0037 (6)	0.0032 (7)
C19	0.0375 (9)	0.0473 (11)	0.0237 (8)	-0.0020 (8)	0.0003 (7)	0.0000 (7)
C20	0.0394 (9)	0.0329 (9)	0.0247 (8)	0.0037 (7)	0.0103 (7)	0.0026 (7)
C21	0.0309 (9)	0.0447 (11)	0.0356 (10)	-0.0041 (8)	0.0104 (7)	0.0037 (8)
C22	0.0306 (9)	0.0400 (10)	0.0291 (9)	-0.0052 (7)	0.0025 (7)	0.0016 (7)
C23	0.0334 (8)	0.0243 (8)	0.0263 (8)	-0.0008 (6)	0.0052 (6)	-0.0003 (6)
C24	0.0309 (8)	0.0224 (8)	0.0302 (8)	0.0001 (6)	0.0055 (6)	-0.0018 (6)
C25	0.0378 (9)	0.0305 (9)	0.0239 (8)	0.0037 (7)	0.0042 (6)	0.0005 (6)
C26	0.0380 (9)	0.0292 (9)	0.0289 (9)	0.0065 (7)	0.0048 (7)	0.0039 (7)
C27	0.0345 (9)	0.0239 (8)	0.0310 (9)	0.0033 (7)	0.0076 (7)	-0.0007 (6)
C28	0.0408 (9)	0.0293 (9)	0.0248 (8)	0.0013 (7)	0.0096 (7)	0.0005 (6)
C29	0.0390 (9)	0.0250 (8)	0.0267 (8)	0.0004 (7)	0.0069 (7)	0.0034 (6)
C30	0.0977 (19)	0.0300 (10)	0.0491 (13)	0.0253 (11)	0.0278 (12)	0.0084 (9)

Geometric parameters (Å, °)

Cl1—C20	1.7383 (17)	C11—H11	0.9500
S1—C5	1.7314 (16)	C12—C13	1.388 (2)
S1—C6	1.7504 (16)	C12—H12	0.9500
O1-C14	1.206 (2)	C13—H13	0.9500
O2—C14	1.336 (2)	C15—C16	1.494 (4)
O2—C15	1.455 (2)	C15—H15A	0.9900
O3—C23	1.236 (2)	C15—H15B	0.9900
O4—C27	1.375 (2)	C16—H16A	0.9800
O4—C30	1.422 (2)	C16—H16B	0.9800
N1C5	1.334 (2)	C16—H16C	0.9800
N1-C1	1.344 (2)	C17—C18	1.386 (2)
N2C7	1.372 (2)	C17—C22	1.394 (2)
N2—H2A	0.88 (2)	C18—C19	1.390 (2)
N2—H2B	0.88 (2)	C18—H18	0.9500
N3—C23	1.358 (2)	C19—C20	1.373 (3)
N3—C24	1.426 (2)	C19—H19	0.9500
N3—H3	0.88 (2)	C20—C21	1.377 (3)
C1—C2	1.414 (2)	C21—C22	1.386 (2)
C1—C8	1.486 (2)	C21—H21	0.9500
C2—C3	1.390 (2)	C22—H22	0.9500
C2—C14	1.500 (2)	C24—C25	1.387 (2)

C3—C4	1.405 (2)	C24—C29	1.394 (2)
C3—C17	1.497 (2)	C25—C26	1.391 (2)
C4—C5	1.413 (2)	C25—H25	0.9500
C4—C7	1.445 (2)	C26—C27	1.383 (2)
C6—C7	1.377 (2)	C26—H26	0.9500
$C6-C^{23}$	1.377(2) 1 475(2)	C_{27} C_{28}	1.394(2)
C_{0}	1.475(2) 1 395(2)	C_{28} C_{29}	1.377(2)
C_{0}^{8} C_{13}^{13}	1.393(2)	C_{28} H_{28}	0.0500
$C_0 = C_{10}$	1.398(2) 1.300(2)	C20 H20	0.9500
C9	1.390 (2)	C29—H29	0.9300
C9—H9	0.9500	C30—H30A	0.9800
	1.385 (3)	С30—Н30В	0.9800
C10—H10	0.9500	С30—Н30С	0.9800
C11—C12	1.384 (3)		
C5—S1—C6	90.74 (7)	O2—C15—H15B	109.2
C14—O2—C15	116.56 (13)	C16—C15—H15B	109.2
C27—O4—C30	116.34 (14)	H15A—C15—H15B	107.9
C5—N1—C1	116.72 (13)	C15—C16—H16A	109.5
C7— $N2$ — $H2A$	1199(15)	C15—C16—H16B	109.5
C7 - N2 - H2B	113.5 (15)	H_{16A} C_{16} H_{16B}	109.5
$H_2 \Delta N_2 H_2 B$	120(2)		109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	126(2) 12617(14)		109.5
$C_{23} = N_{3} = C_{24}$	120.17(14) 118.5(15)	$H_{16R} = C_{16} = H_{16C}$	109.5
C_{23} N_{3} N_{2} N_{2}	110.3(15)	$\begin{array}{cccc} \text{HI0B} & \text{CI0} & \text{HI0C} \\ \text{CI8} & \text{CI7} & \text{C22} \\ \end{array}$	109.3
C24—N3—H3	114.9 (15)	C18 - C17 - C22	119.13 (15)
NI-CI-C2	121.60 (14)	C18 - C17 - C3	120.01 (14)
NI-CI-C8	116.57 (14)	C22—C17—C3	120.73 (14)
C2—C1—C8	121.82 (14)	C17—C18—C19	120.50 (16)
C3—C2—C1	121.13 (14)	C17—C18—H18	119.7
C3—C2—C14	116.44 (14)	C19—C18—H18	119.7
C1—C2—C14	122.13 (14)	C20—C19—C18	119.34 (16)
C2—C3—C4	117.55 (14)	С20—С19—Н19	120.3
C2—C3—C17	118.78 (14)	С18—С19—Н19	120.3
C4—C3—C17	123.62 (14)	C19—C20—C21	121.23 (16)
C3—C4—C5	116.78 (14)	C19—C20—C11	119.40 (14)
C3—C4—C7	131.47 (14)	C21—C20—C11	119.36 (14)
C5—C4—C7	111.75 (14)	C20—C21—C22	119.42 (16)
N1-C5-C4	126.12 (14)	C20—C21—H21	120.3
N1-C5-S1	120.12(11) 121.45(12)	$C_{22} = C_{21} = H_{21}$	120.3
C4-C5-S1	112 43 (12)	$C_{21} = C_{22} = C_{17}$	120.36 (16)
$C7 - C6 - C^{23}$	112.13(12) 123.57(14)	$C_{21} = C_{22} = C_{17}$	110.8
C7 - C6 - S1	123.37(14) 112.20(12)	$C_{21} = C_{22} = H_{22}$	119.8
$C_{2}^{2} = C_{6}^{2} = S_{1}^{2}$	113.39(12) 123.00(12)	$C_{1} = C_{22} = M_{22}$	117.0 122.41(15)
$C_{23} = C_{0} = S_{1}$	123.00(12) 124.10(15)	03 - 023 - 03	123.41(13)
$\frac{1}{2} - \frac{1}{2} - \frac{1}$	124.19(13) 124.04(15)	$V_{2} = V_{2} = V_{0}$	120.43(13)
$\frac{1}{2} - \frac{1}{2} - \frac{1}$	124.04 (15)	$1N_{3} - U_{2} - U_{0}$	110.12 (14)
$C_0 = C_1 = C_1$	111./0(14)	$C_{23} - C_{24} - C_{29}$	119.35 (15)
C9—C8—C13	119.38 (15)	C25—C24—N3	122.96 (15)
C9—C8—C1	120.17 (15)	C29—C24—N3	117.64 (15)
C13—C8—C1	120.44 (15)	C24—C25—C26	120.06 (16)

C10—C9—C8	119.59 (17)	C24—C25—H25	120.0
С10—С9—Н9	120.2	C26—C25—H25	120.0
С8—С9—Н9	120.2	C27—C26—C25	120.17 (16)
C11—C10—C9	120.53 (18)	C27—C26—H26	119.9
C11—C10—H10	119.7	C25—C26—H26	119.9
C9—C10—H10	119.7	04-C27-C26	124.71 (15)
C_{12} C_{11} C_{10}	120.22 (17)	04-C27-C28	115.35 (15)
C12—C11—H11	119.9	$C_{26} - C_{27} - C_{28}$	119.93 (15)
C10-C11-H11	119.9	C29—C28—C27	119.72 (15)
$C_{11} - C_{12} - C_{13}$	119.68 (18)	C29—C28—H28	120.1
C11—C12—H12	120.2	C27—C28—H28	120.1
C13—C12—H12	120.2	C_{28} C_{29} C_{24}	120.74 (15)
C12 - C13 - C8	120.51 (18)	C28—C29—H29	119.6
C12—C13—H13	1197	C24—C29—H29	119.6
C8-C13-H13	119.7	O4-C30-H30A	109.5
01-C14-02	124 83 (15)	O4-C30-H30B	109.5
01 - C14 - C2	123.65 (15)	H30A-C30-H30B	109.5
$0^{2}-C^{14}-C^{2}$	11140(13)	$04-C_{30}-H_{30}C$	109.5
02 - C15 - C16	111.10 (13)	H_{30A} $-C_{30}$ H_{30C}	109.5
02 - C15 - H15A	109.2	H30B-C30-H30C	109.5
C16—C15—H15A	109.2		107.0
	10).2		
C5—N1—C1—C2	-2.2 (2)	C1—C8—C13—C12	-177.88 (16)
C5—N1—C1—C8	176.70 (14)	C15—O2—C14—O1	4.6 (2)
N1—C1—C2—C3	3.3 (2)	C15—O2—C14—C2	-171.53 (15)
C8—C1—C2—C3	-175.53 (14)	C3—C2—C14—O1	-99.45 (19)
N1-C1-C2-C14	-170.19 (14)	C1-C2-C14-O1	74.3 (2)
C8-C1-C2-C14	11.0 (2)	C3—C2—C14—O2	76.68 (17)
C1—C2—C3—C4	-1.4 (2)	C1—C2—C14—O2	-109.56 (17)
C14—C2—C3—C4	172.46 (14)	C14—O2—C15—C16	-83.3 (2)
C1—C2—C3—C17	-178.82 (14)	C2—C3—C17—C18	77.9 (2)
C14—C2—C3—C17	-5.0 (2)	C4—C3—C17—C18	-99.37 (19)
C2—C3—C4—C5	-1.3 (2)	C2—C3—C17—C22	-97.89 (19)
C17—C3—C4—C5	176.03 (14)	C4—C3—C17—C22	84.8 (2)
C2—C3—C4—C7	179.85 (16)	C22-C17-C18-C19	0.4 (3)
C17—C3—C4—C7	-2.8 (3)	C3—C17—C18—C19	-175.48 (16)
C1—N1—C5—C4	-0.7 (2)	C17—C18—C19—C20	0.5 (3)
C1—N1—C5—S1	-179.70 (11)	C18—C19—C20—C21	-1.3 (3)
C3—C4—C5—N1	2.5 (2)	C18—C19—C20—Cl1	177.86 (14)
C7—C4—C5—N1	-178.43 (15)	C19—C20—C21—C22	1.2 (3)
C3—C4—C5—S1	-178.46 (11)	Cl1—C20—C21—C22	-177.99 (15)
C7—C4—C5—S1	0.62 (17)	C20—C21—C22—C17	-0.2 (3)
C6—S1—C5—N1	178.69 (14)	C18—C17—C22—C21	-0.5 (3)
C6—S1—C5—C4	-0.41 (12)	C3—C17—C22—C21	175.32 (16)
C5—S1—C6—C7	0.08 (13)	C24—N3—C23—O3	-1.1 (3)
C5—S1—C6—C23	-177.49 (14)	C24—N3—C23—C6	177.44 (15)
C23—C6—C7—N2	-5.2 (3)	C7—C6—C23—O3	-16.0 (3)
S1—C6—C7—N2	177.27 (13)	S1—C6—C23—O3	161.36 (13)

$C^{23} - C^{6} - C^{7} - C^{4}$	177 81 (15)	C7—C6—C23—N3	165 42 (16)
S1 C6 C7 C4	0.25(18)	S1 C6 C23 N3	-173(2)
51-00-07-04	0.25 (18)		17.3(2)
C3-C4-C7-N2	1.3 (3)	C23—N3—C24—C25	32.6 (3)
C5—C4—C7—N2	-177.58 (15)	C23—N3—C24—C29	-149.90 (17)
C3—C4—C7—C6	178.34 (16)	C29—C24—C25—C26	1.3 (3)
C5—C4—C7—C6	-0.56 (19)	N3—C24—C25—C26	178.83 (16)
N1—C1—C8—C9	36.8 (2)	C24—C25—C26—C27	-0.2 (3)
C2—C1—C8—C9	-144.34 (16)	C30—O4—C27—C26	-1.0 (3)
N1-C1-C8-C13	-142.32 (16)	C30—O4—C27—C28	177.92 (19)
C2-C1-C8-C13	36.5 (2)	C25—C26—C27—O4	177.84 (17)
C13—C8—C9—C10	-2.7 (2)	C25—C26—C27—C28	-1.0 (3)
C1—C8—C9—C10	178.12 (15)	O4—C27—C28—C29	-177.85 (16)
C8—C9—C10—C11	0.5 (3)	C26—C27—C28—C29	1.1 (3)
C9—C10—C11—C12	1.7 (3)	C27—C28—C29—C24	0.0 (3)
C10-C11-C12-C13	-1.4 (3)	C25—C24—C29—C28	-1.2 (3)
C11—C12—C13—C8	-0.9 (3)	N3—C24—C29—C28	-178.88 (16)
C9—C8—C13—C12	3.0 (3)		

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C17–C22 ring.

D—H···A	D—H	H···A	D···A	D—H…A
N2—H2 <i>B</i> ···O3	0.88 (2)	2.07 (2)	2.756 (2)	133.6 (19)
N2—H2 <i>A</i> ··· <i>Cg</i>	0.88 (2)	2.90	3.698	152
N3—H3…O1 ⁱ	0.88 (2)	2.15 (2)	2.912 (2)	145 (2)

Symmetry code: (i) -x+1, -y+1, -z+1.