

ISSN 2414-3146

Received 23 March 2016 Accepted 18 April 2016

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China

**Keywords:** crystal structure;  $\beta$ -naphthol; hydrogen bonding;  $\pi - \pi$  stacking.

CCDC reference: 1474796

Structural data: full structural data are available from iucrdata.iucr.org

# (4-Aminosulfonylphenyl)[(2-oxidonaphthalen-1-yl)imino]azanium

A. Benosmane,\* D. A. Rouag, A. Mili, H. Merazig and M. A. Benaouida

Unité de Recherche de Chimie de l'Environnement, et Moléculaire Structurale, Faculté du sciences exactes, Université des Fréres Mentouri 1, 25000 Constantine, Algeria. \*Correspondence e-mail: king.ali@hotmail.fr

The crystal structure of the title compound,  $C_{16}H_{13}N_3O_3S$ , shows that the two independent zwitterions in the asymmetric unit are approximately planar. Intramolecular N-H···O hydrogen bonds occur and the aromatic rings have a *trans* configuration with respect to the azo double bond. In the crystal, the molecules are linked *via* N-H···O hydrogen bonds and  $\pi-\pi$  stacking, forming a three-dimensional supramolecular network, the  $\pi-\pi$  stacking interactions between adjacent benzene and naphthalene rings having centroid-to-centroid distances of 3.764 (3) and 3.775 (3) Å.



#### **Structure description**

Dyes are natural or synthetic coloured chemical compounds. Usually organic in nature, they have the ability to permanently stain the material to which they are applied. Azo pigments are widely used for the colouration of coatings, plastics and printing inks, with an annual sales volume of more than one billion Euros (Biswas & Umapathy, 2000). In the literature, most azo pigments are drawn with an N=N double bond (Olivieri *et al.*, 1989). However, all commercial pigments based on  $\beta$ -naphthol adopt the hydrazone tautomeric form in the solid state, as proven by many X-ray structure determinations of  $\beta$ -naphthol pigments.

There are two independent molecules (A and B) in the asymmetric unit of the title compound (Fig. 1), each consisting of a benzene ring linked to the first nitrogen atom of the N=N chromophore and two aromatic rings of the core  $\beta$ -naphthol. The aromatic rings are in a *trans* configuration with respect to the azo double bond. The N1-C1 (molecule A) and N4-C17 (molecule B) bond lengths of 1.398 (3) and 1.393 (3) Å, respectively, indicate single-bond character. The N2-C7 (molecule A) and N5-C23 (molecule B) bond lengths of 1.332 (3) and 1.331 (3) Å, and the N=N bond lengths of





Figure 1

The asymmetric unit of the two independent molecules with 50% probability displacement ellipsoids and H atoms are drawn as small spheres of arbitrary radii.

1.313 (3) and 1.315 (3) Å in molecules A and B, respectively, are indicative of significant double-bond character.

In the crystal, the *A* and *B* molecules are linked *via* N— H···O hydrogen bonds, forming zigzag -A-B-A-B- chains propagating along the *b* axis (see Table 1 and Fig. 2). The chains are reinforced by  $\pi-\pi$  interactions, forming a threedimensional network; see Fig. 3 [ $Cg1\cdots Cg6^{i} = 3.775$  (3) Å, where Cg1 and Cg6 are the centroids of rings C1–C6 and C23– C28, respectively; symmetry code: (i)  $x, \frac{1}{2} - y, -\frac{1}{2} + z$ ].

#### Synthesis and crystallization

For synthesis details, see: Jin *et al.* (2008); Lee *et al.* (2004). A mixture of 4-aminobenzenesulonamide (0.02 mol), water (40 ml) and concentrated hydrochloric acid (0.06 mol) was stirred. This solution was cooled to 273–278 K and a solution of sodium nitrite (0.02 mol) in water (10 ml) was added



Figure 2

A view along the b axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines and C-bound H atoms not involved in hydrogen bonding have been omitted for clarity.

| Table 1                        |  |
|--------------------------------|--|
| Hydrogen-bond geometry (Å, °). |  |

| $D-\mathrm{H}$ | $H \cdot \cdot \cdot A$                                     | $D \cdots A$                                                                                                                                            | $D - H \cdots A$                                                                                                                     |
|----------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 0.88           | 1.75                                                        | 2.520 (3)                                                                                                                                               | 145                                                                                                                                  |
| 0.89           | 2.19                                                        | 3.073 (4)                                                                                                                                               | 172                                                                                                                                  |
| 0.89           | 2.23                                                        | 3.023 (3)                                                                                                                                               | 147                                                                                                                                  |
| 0.92           | 1.73                                                        | 2.525 (3)                                                                                                                                               | 142                                                                                                                                  |
| 0.93           | 2.09                                                        | 2.993 (4)                                                                                                                                               | 162                                                                                                                                  |
| 0.90           | 2.11                                                        | 3.009 (4)                                                                                                                                               | 179                                                                                                                                  |
|                | <i>D</i> -H<br>0.88<br>0.89<br>0.89<br>0.92<br>0.93<br>0.90 | $\begin{array}{c cccc} D-H & H\cdots A \\ \hline 0.88 & 1.75 \\ 0.89 & 2.19 \\ 0.89 & 2.23 \\ 0.92 & 1.73 \\ 0.93 & 2.09 \\ 0.90 & 2.11 \\ \end{array}$ | $D-H$ $H\cdots A$ $D\cdots A$ 0.881.752.520 (3)0.892.193.073 (4)0.892.233.023 (3)0.921.732.525 (3)0.932.092.993 (4)0.902.113.009 (4) |

Symmetry codes: (i)  $x, -y + \frac{1}{2}, z + \frac{1}{2}$ ; (ii) -x + 1, -y, -z + 1; (iii) -x + 2, -y, -z + 1; (iv)  $x, -y + \frac{1}{2}, z - \frac{1}{2}$ .

Table 2Experimental details.

| Crystal data                                                                 |                                   |
|------------------------------------------------------------------------------|-----------------------------------|
| Chemical formula                                                             | $C_{16}H_{13}N_3O_3S$             |
| M <sub>r</sub>                                                               | 327.35                            |
| Crystal system, space group                                                  | Monoclinic, $P2_1/c$              |
| Temperature (K)                                                              | 293                               |
| a, b, c (Å)                                                                  | 26.289 (5), 15.132 (5), 7.403 (5) |
| β (°)                                                                        | 95.179 (5)                        |
| $V(Å^3)$                                                                     | 2933 (2)                          |
| Z                                                                            | 8                                 |
| Radiation type                                                               | Μο Κα                             |
| $\mu \text{ (mm}^{-1})$                                                      | 0.24                              |
| Crystal size (mm)                                                            | $0.09 \times 0.04 \times 0.02$    |
| Data collection                                                              |                                   |
| Diffractometer                                                               | Enraf-Nonius FR590 CCD            |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections     | 8680, 5356, 3577                  |
| R <sub>int</sub>                                                             | 0.031                             |
| $(\sin \theta / \lambda)_{\max} ( \text{\AA}^{-1} )$                         | 0.603                             |
| Refinement                                                                   |                                   |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                          | 0.049, 0.124, 1.06                |
| No. of reflections                                                           | 5356                              |
| No. of parameters                                                            | 415                               |
| H-atom treatment                                                             | H-atom parameters constrained     |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ | 0.23, -0.34                       |

Computer programs: *APEX2* and *SAINT* (Bruker, 2006), *SHELXS97* (Sheldrick, 2008), *SHELXL2015* (Sheldrick, 2015), *ORTEP-3* for Windows (Farrugia, 2012) and *PLATON* (Spek, 2009).





The packing of viewed along [010].  $\pi$ - $\pi$  interactions are shown as dashed lines, and C-bound H atoms not involved in hydrogen bonding have been omitted for clarity.

dropwise, while maintaining the temperature below 278 K. The resulting mixture was stirred for an additional 30 min in an ice bath and then buffered with solid sodium acetate.  $\beta$ -Naphthol (0.02 mol), dissolved with sodium hydroxide (0.02 mol) in water (10 ml), was cooled to 273–278 K in an ice bath and then gradually added to the above solution of 4-sulfamoylbenzenediazonium. The resulting mixture was stirred for 60 min. The crude precipitate was filtered off, washed several times with water and recrystallized from methanol. The compound was recrystallized from methanol to produce crystals of suitable quality for X-ray diffraction analysis.

IR spectroscopic data ( $\nu$ , cm<sup>-1</sup>): 3433.1 (O–H), 1616 (C=O), 3745 (O-H) and 1496 (Ar). UV–Vis measurements [ $\lambda$  (nm), log  $\varepsilon$  (l/mol cm), CH<sub>2</sub>Cl<sub>2</sub>]: 308.8 (0.093), 477.86 (0.203). <sup>1</sup>H NMR [500 MHz, DMSO-10 (1D 1H),  $\sigma$ ]: 16 (*s*, 1H, NH), 740–7.85 (*m*, 10H, Ar), 2.29 (*s*, 3H, CH 3). <sup>13</sup>C NMR [500 MHz, DMSO-11(1D 13 C),  $\sigma$ ]: 177(C=O), 115(C=N), 144(C–N), 125(C aromatic).

#### Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

#### Acknowledgements

We gratefully acknowledge all researchers of the CHEMS Research Unit of the University Freres Mentouri of Constantine 1, Algeria, for the valuable assistance they have provided us throughout the realisation of this work.

#### References

- Biswas, N. & Umapathy, S. (2000). J. Phys. Chem. A, 104, 2734–2745.
- Bruker. (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Jin, C.-M., Li, H., Zhong, Z.-X. & Wu, L.-Y. (2008). Acta Cryst. E64, 0218.
- Lee, S. H., Kim, J. Y., Ko, J., Lee, J. Y. & Kim, J. S. (2004). J. Org. Chem. 69, 2902–2905.
- Olivieri, A. C., Wilson, R. B., Paul, I. C. & Curtin, D. Y. (1989). J. Am. Chem. Soc. 111, 5525–5532.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

# full crystallographic data

## *IUCrData* (2016). **1**, x160658 [doi:10.1107/S2414314616006581]

## (4-Aminosulfonylphenyl)[(2-oxidonaphthalen-1-yl)imino]azanium

A. Benosmane, D. A. Rouag, A. Mili, H. Merazig and M. A. Benaouida

(|)

## Crystal data

C16H13N3O3S  $M_r = 327.35$ Monoclinic,  $P2_1/c$ Hall symbol: -P 2ybc a = 26.289 (5) Åb = 15.132 (5) Åc = 7.403 (5) Å $\beta = 95.179 (5)^{\circ}$ V = 2933 (2) Å<sup>3</sup> Z = 8

#### Data collection

Enraf-Nonius FR590 CCD diffractometer Radiation source: fine-focus sealed tube Horizonally mounted graphite crystal monochromator Detector resolution: 9 pixels mm<sup>-1</sup> CCD rotation images, thick slices scans 8680 measured reflections

## Refinement

Refinement on  $F^2$ Secondary atom site location: difference Fourier Least-squares matrix: full map  $R[F^2 > 2\sigma(F^2)] = 0.049$ Hydrogen site location: inferred from  $wR(F^2) = 0.124$ neighbouring sites S = 1.06H-atom parameters constrained 5356 reflections  $w = 1/[\sigma^2(F_0^2) + (0.0514P)^2 + 0.988P]$ where  $P = (F_0^2 + 2F_c^2)/3$ 415 parameters 0 restraints  $(\Delta/\sigma)_{\rm max} = 0.001$ Primary atom site location: structure-invariant  $\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$ direct methods  $\Delta \rho_{\rm min} = -0.34 \ {\rm e} \ {\rm \AA}^{-3}$ 

## Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

F(000) = 1360 $D_{\rm x} = 1.483 {\rm Mg m^{-3}}$ Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å Cell parameters from 5463 reflections  $\theta = 2.9 - 25.4^{\circ}$  $\mu = 0.24 \text{ mm}^{-1}$ T = 293 KNeedle, colourless  $0.09 \times 0.04 \times 0.02 \text{ mm}$ 

5356 independent reflections 3577 reflections with  $I > 2\sigma(I)$  $R_{\rm int} = 0.031$  $\theta_{\rm max} = 25.4^\circ, \ \theta_{\rm min} = 3.1^\circ$  $h = -31 \rightarrow 31$  $k = -18 \rightarrow 15$  $l = -8 \rightarrow 8$ 

**Refinement**. Refinement on  $F^2$  for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The observed criterion of  $F^2 > 2$ sigma( $F^2$ ) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

|            | x            | У             | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |
|------------|--------------|---------------|-------------|-----------------------------|
| <b>S</b> 1 | 0.52672 (2)  | 0.13841 (4)   | 0.47978 (9) | 0.0426 (2)                  |
| O1         | 0.81398 (8)  | 0.14154 (13)  | 0.9633 (3)  | 0.0613 (8)                  |
| O2         | 0.52403 (7)  | 0.22982 (12)  | 0.4290 (3)  | 0.0576 (7)                  |
| O3         | 0.50989 (7)  | 0.07261 (12)  | 0.3487 (2)  | 0.0521 (7)                  |
| N1         | 0.73795 (8)  | 0.06996 (14)  | 0.7901 (3)  | 0.0455 (8)                  |
| N2         | 0.76294 (8)  | -0.00485 (14) | 0.7818 (3)  | 0.0409 (7)                  |
| N3         | 0.49191 (8)  | 0.12714 (14)  | 0.6468 (3)  | 0.0459 (8)                  |
| C1         | 0.68829 (10) | 0.08099 (17)  | 0.7085 (3)  | 0.0411 (9)                  |
| C2         | 0.65908 (9)  | 0.01275 (17)  | 0.6299 (3)  | 0.0416 (9)                  |
| C3         | 0.60995 (10) | 0.03003 (17)  | 0.5570 (3)  | 0.0421 (9)                  |
| C4         | 0.59032 (9)  | 0.11517 (16)  | 0.5609 (3)  | 0.0393 (8)                  |
| C5         | 0.61962 (11) | 0.18314 (18)  | 0.6383 (4)  | 0.0539 (10)                 |
| C6         | 0.66842 (11) | 0.16604 (18)  | 0.7132 (4)  | 0.0550 (10)                 |
| C7         | 0.81068 (10) | -0.00709 (17) | 0.8590 (3)  | 0.0401 (9)                  |
| C8         | 0.83656 (10) | 0.06915 (19)  | 0.9463 (4)  | 0.0467 (10)                 |
| C9         | 0.88915 (11) | 0.0587 (2)    | 1.0144 (4)  | 0.0538 (11)                 |
| C10        | 0.91382 (11) | -0.0178 (2)   | 0.9982 (4)  | 0.0540 (10)                 |
| C11        | 0.89000 (10) | -0.0945 (2)   | 0.9151 (3)  | 0.0464 (9)                  |
| C12        | 0.83819 (10) | -0.09042 (18) | 0.8461 (3)  | 0.0430 (9)                  |
| C13        | 0.81554 (11) | -0.16598 (19) | 0.7642 (4)  | 0.0504 (10)                 |
| C14        | 0.84370 (12) | -0.2420 (2)   | 0.7496 (4)  | 0.0591 (11)                 |
| C15        | 0.89420 (13) | -0.2463 (2)   | 0.8171 (4)  | 0.0640 (11)                 |
| C16        | 0.91724 (11) | -0.1738 (2)   | 0.8993 (4)  | 0.0573 (10)                 |
| S2         | 0.96326 (3)  | 0.11985 (4)   | 0.61220 (9) | 0.0431 (2)                  |
| O4         | 0.66722 (8)  | 0.12662 (13)  | 0.2014 (3)  | 0.0610 (8)                  |
| O5         | 0.98563 (7)  | 0.04127 (12)  | 0.6943 (2)  | 0.0502 (7)                  |
| O6         | 0.96294 (8)  | 0.19919 (13)  | 0.7176 (3)  | 0.0618 (8)                  |
| N4         | 0.75208 (8)  | 0.05467 (15)  | 0.2964 (3)  | 0.0473 (8)                  |
| N5         | 0.73576 (8)  | -0.02057 (14) | 0.2236 (3)  | 0.0428 (8)                  |
| N6         | 0.99497 (8)  | 0.14091 (15)  | 0.4412 (3)  | 0.0488 (8)                  |
| C17        | 0.80156 (9)  | 0.06436 (17)  | 0.3787 (3)  | 0.0406 (9)                  |
| C18        | 0.83630 (10) | -0.00473 (17) | 0.4023 (3)  | 0.0430 (9)                  |
| C19        | 0.88533 (10) | 0.01125 (17)  | 0.4784 (3)  | 0.0417 (9)                  |
| C20        | 0.89966 (9)  | 0.09626 (17)  | 0.5320 (3)  | 0.0394 (8)                  |
| C21        | 0.86483 (11) | 0.16454 (18)  | 0.5132 (4)  | 0.0546 (10)                 |
| C22        | 0.81611 (11) | 0.14848 (18)  | 0.4370 (4)  | 0.0557 (10)                 |
| C23        | 0.68820 (10) | -0.02283 (17) | 0.1450 (3)  | 0.0392 (8)                  |
| C24        | 0.65301 (10) | 0.05225 (19)  | 0.1399 (4)  | 0.0462 (10)                 |
| C25        | 0.60133 (10) | 0.0383 (2)    | 0.0648 (4)  | 0.0523 (10)                 |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

| C26 | 0.58605 (11) | -0.0409(2)    | -0.0009 (4) | 0.0523 (10) |
|-----|--------------|---------------|-------------|-------------|
| C27 | 0.61932 (10) | -0.11560 (19) | -0.0043 (3) | 0.0449 (9)  |
| C28 | 0.67105 (10) | -0.10720 (18) | 0.0631 (3)  | 0.0415 (9)  |
| C29 | 0.70359 (11) | -0.17918 (19) | 0.0507 (4)  | 0.0499 (10) |
| C30 | 0.68508 (12) | -0.2588 (2)   | -0.0189 (4) | 0.0579 (11) |
| C31 | 0.63398 (13) | -0.2678 (2)   | -0.0781 (4) | 0.0630(11)  |
| C32 | 0.60165 (12) | -0.1976 (2)   | -0.0732 (4) | 0.0567 (11) |
| H1  | 0.75520      | 0.11260       | 0.84890     | 0.0550*     |
| H2  | 0.67240      | -0.04410      | 0.62630     | 0.0500*     |
| Н3  | 0.58990      | -0.01550      | 0.50510     | 0.0500*     |
| Н5  | 0.60650      | 0.24020       | 0.63980     | 0.0650*     |
| H6  | 0.68820      | 0.21150       | 0.76720     | 0.0660*     |
| H9  | 0.90640      | 0.10620       | 1.07100     | 0.0640*     |
| H10 | 0.94800      | -0.02130      | 1.04290     | 0.0650*     |
| H13 | 0.78130      | -0.16480      | 0.71940     | 0.0600*     |
| H14 | 0.82830      | -0.29140      | 0.69310     | 0.0710*     |
| H15 | 0.91260      | -0.29830      | 0.80680     | 0.0770*     |
| H16 | 0.95130      | -0.17690      | 0.94520     | 0.0690*     |
| H33 | 0.49940      | 0.16570       | 0.73690     | 0.0550*     |
| H34 | 0.48950      | 0.07340       | 0.69490     | 0.0550*     |
| H4  | 0.72860      | 0.09980       | 0.29010     | 0.0570*     |
| H18 | 0.82650      | -0.06170      | 0.36690     | 0.0520*     |
| H19 | 0.90870      | -0.03490      | 0.49380     | 0.0500*     |
| H21 | 0.87430      | 0.22120       | 0.55190     | 0.0660*     |
| H22 | 0.79260      | 0.19450       | 0.42430     | 0.0670*     |
| H25 | 0.57810      | 0.08480       | 0.06170     | 0.0630*     |
| H26 | 0.55210      | -0.04770      | -0.04650    | 0.0630*     |
| H29 | 0.73810      | -0.17360      | 0.08950     | 0.0600*     |
| H30 | 0.70710      | -0.30650      | -0.02590    | 0.0690*     |
| H31 | 0.62160      | -0.32210      | -0.12160    | 0.0760*     |
| H32 | 0.56750      | -0.20410      | -0.11590    | 0.0680*     |
| H35 | 1.00100      | 0.09020       | 0.37420     | 0.0590*     |
| H36 | 0.98490      | 0.18830       | 0.37420     | 0.0590*     |
|     |              |               |             |             |

## Atomic displacement parameters $(Å^2)$

|    | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|----|-------------|-------------|-------------|--------------|--------------|--------------|
| S1 | 0.0367 (4)  | 0.0394 (4)  | 0.0501 (4)  | 0.0035 (3)   | -0.0045 (3)  | 0.0035 (3)   |
| 01 | 0.0557 (13) | 0.0468 (12) | 0.0784 (15) | -0.0017 (10) | -0.0108 (11) | -0.0044 (10) |
| 02 | 0.0520 (12) | 0.0417 (11) | 0.0769 (14) | 0.0070 (9)   | -0.0055 (10) | 0.0181 (10)  |
| 03 | 0.0499 (12) | 0.0551 (12) | 0.0490 (11) | 0.0023 (9)   | -0.0086 (9)  | -0.0075 (9)  |
| N1 | 0.0361 (13) | 0.0427 (13) | 0.0561 (14) | 0.0028 (10)  | -0.0040 (10) | -0.0006 (11) |
| N2 | 0.0352 (13) | 0.0427 (13) | 0.0448 (12) | 0.0041 (10)  | 0.0032 (9)   | 0.0063 (10)  |
| N3 | 0.0413 (13) | 0.0438 (13) | 0.0524 (14) | 0.0010 (10)  | 0.0031 (10)  | -0.0055 (11) |
| C1 | 0.0334 (15) | 0.0434 (16) | 0.0458 (15) | 0.0005 (12)  | -0.0002 (11) | 0.0017 (12)  |
| C2 | 0.0369 (15) | 0.0359 (14) | 0.0515 (16) | 0.0069 (12)  | 0.0014 (12)  | -0.0011 (12) |
| C3 | 0.0383 (16) | 0.0369 (15) | 0.0502 (16) | -0.0013 (12) | -0.0003 (12) | -0.0023 (12) |
| C4 | 0.0344 (14) | 0.0372 (15) | 0.0456 (15) | 0.0009 (12)  | -0.0008 (11) | 0.0017 (12)  |
|    |             |             |             |              |              |              |

| C5  | 0.0443 (17) | 0.0354 (15) | 0.080 (2)   | 0.0062 (13)  | -0.0057 (15) | -0.0015 (14) |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C6  | 0.0429 (17) | 0.0374 (16) | 0.082 (2)   | -0.0003 (13) | -0.0086 (15) | -0.0065 (15) |
| C7  | 0.0341 (15) | 0.0482 (16) | 0.0376 (14) | 0.0003 (12)  | 0.0007 (11)  | 0.0055 (12)  |
| C8  | 0.0443 (17) | 0.0497 (18) | 0.0454 (16) | -0.0022 (14) | -0.0002 (12) | 0.0077 (13)  |
| C9  | 0.0454 (18) | 0.061 (2)   | 0.0531 (17) | -0.0085 (15) | -0.0057 (13) | 0.0048 (15)  |
| C10 | 0.0346 (16) | 0.080 (2)   | 0.0454 (16) | -0.0032 (16) | -0.0069 (12) | 0.0128 (16)  |
| C11 | 0.0357 (15) | 0.0646 (19) | 0.0390 (15) | 0.0061 (14)  | 0.0032 (11)  | 0.0128 (14)  |
| C12 | 0.0384 (15) | 0.0528 (17) | 0.0379 (14) | 0.0066 (13)  | 0.0047 (11)  | 0.0086 (13)  |
| C13 | 0.0420 (17) | 0.0536 (18) | 0.0543 (17) | 0.0081 (14)  | -0.0028 (13) | 0.0010 (14)  |
| C14 | 0.063 (2)   | 0.0536 (19) | 0.0597 (19) | 0.0130 (16)  | 0.0002 (15)  | -0.0014 (15) |
| C15 | 0.066 (2)   | 0.069 (2)   | 0.0569 (19) | 0.0298 (18)  | 0.0046 (16)  | 0.0023 (17)  |
| C16 | 0.0418 (17) | 0.082 (2)   | 0.0480 (17) | 0.0185 (17)  | 0.0034 (13)  | 0.0111 (17)  |
| S2  | 0.0389 (4)  | 0.0396 (4)  | 0.0488 (4)  | -0.0031 (3)  | -0.0072 (3)  | -0.0020 (3)  |
| O4  | 0.0544 (13) | 0.0439 (12) | 0.0825 (15) | 0.0029 (10)  | -0.0064 (11) | -0.0047 (11) |
| 05  | 0.0459 (11) | 0.0499 (12) | 0.0525 (11) | 0.0026 (9)   | -0.0089 (9)  | 0.0091 (9)   |
| 06  | 0.0572 (13) | 0.0518 (12) | 0.0737 (14) | -0.0058 (10) | -0.0087 (10) | -0.0245 (11) |
| N4  | 0.0364 (13) | 0.0413 (13) | 0.0623 (15) | -0.0011 (10) | -0.0054 (10) | -0.0037 (11) |
| N5  | 0.0391 (13) | 0.0434 (13) | 0.0450 (13) | -0.0053 (10) | -0.0004 (10) | 0.0010 (10)  |
| N6  | 0.0440 (14) | 0.0416 (13) | 0.0604 (15) | -0.0025 (10) | 0.0028 (11)  | 0.0127 (11)  |
| C17 | 0.0339 (15) | 0.0414 (16) | 0.0456 (15) | -0.0019 (12) | -0.0016 (11) | 0.0015 (12)  |
| C18 | 0.0440 (16) | 0.0358 (15) | 0.0483 (15) | -0.0073 (13) | -0.0015 (12) | -0.0035 (12) |
| C19 | 0.0405 (16) | 0.0357 (14) | 0.0479 (15) | 0.0036 (12)  | -0.0007 (12) | 0.0001 (12)  |
| C20 | 0.0389 (15) | 0.0352 (14) | 0.0427 (15) | -0.0004 (12) | -0.0044 (11) | -0.0019 (12) |
| C21 | 0.0476 (18) | 0.0339 (15) | 0.079 (2)   | 0.0006 (13)  | -0.0131 (15) | -0.0085 (14) |
| C22 | 0.0426 (18) | 0.0374 (16) | 0.084 (2)   | 0.0048 (13)  | -0.0113 (15) | -0.0054 (15) |
| C23 | 0.0330 (15) | 0.0441 (15) | 0.0400 (14) | -0.0062 (12) | 0.0001 (11)  | 0.0021 (12)  |
| C24 | 0.0422 (17) | 0.0487 (17) | 0.0471 (16) | 0.0011 (13)  | 0.0012 (12)  | 0.0039 (14)  |
| C25 | 0.0389 (17) | 0.062 (2)   | 0.0550 (17) | 0.0062 (14)  | -0.0017 (13) | 0.0024 (15)  |
| C26 | 0.0350 (16) | 0.072 (2)   | 0.0484 (17) | -0.0020 (15) | -0.0041 (12) | 0.0029 (15)  |
| C27 | 0.0399 (16) | 0.0564 (17) | 0.0376 (15) | -0.0071 (14) | -0.0008 (11) | 0.0018 (13)  |
| C28 | 0.0391 (15) | 0.0493 (16) | 0.0362 (14) | -0.0052 (13) | 0.0045 (11)  | 0.0017 (12)  |
| C29 | 0.0446 (17) | 0.0550 (18) | 0.0496 (17) | -0.0027 (14) | 0.0009 (13)  | -0.0024 (14) |
| C30 | 0.063 (2)   | 0.0517 (18) | 0.0585 (19) | -0.0013 (16) | 0.0029 (15)  | -0.0093 (15) |
| C31 | 0.072 (2)   | 0.060 (2)   | 0.0562 (19) | -0.0182 (18) | 0.0014 (16)  | -0.0147 (16) |
| C32 | 0.0490 (18) | 0.069 (2)   | 0.0502 (17) | -0.0163 (16) | -0.0067 (14) | -0.0080 (15) |
|     |             |             |             |              |              |              |

Geometric parameters (Å, °)

| S1—O2  | 1.434 (2) | C15—C16 | 1.369 (4) |  |
|--------|-----------|---------|-----------|--|
| S1—O3  | 1.432 (2) | C2—H2   | 0.9300    |  |
| S1—N3  | 1.612 (3) | С3—Н3   | 0.9300    |  |
| S1—C4  | 1.760 (3) | C5—H5   | 0.9300    |  |
| S2—O5  | 1.437 (2) | С6—Н6   | 0.9300    |  |
| S2—O6  | 1.432 (2) | С9—Н9   | 0.9300    |  |
| S2—N6  | 1.609 (3) | C10—H10 | 0.9300    |  |
| S2—C20 | 1.760 (3) | C13—H13 | 0.9300    |  |
| O1—C8  | 1.258 (4) | C14—H14 | 0.9300    |  |
| O4—C24 | 1.258 (4) | C15—H15 | 0.9300    |  |
|        |           |         |           |  |

| N1—C1                  | 1.398 (3)            | С16—Н16                             | 0.9300                |
|------------------------|----------------------|-------------------------------------|-----------------------|
| N1—N2                  | 1.313 (3)            | C17—C18                             | 1.389 (4)             |
| N2—C7                  | 1 332 (3)            | C17—C22                             | 1 387 (4)             |
| N1—H1                  | 0.8800               | C18 - C19                           | 1 381 (4)             |
| N3—H34                 | 0.8900               | C19-C20                             | 1.381(1)<br>1 388(4)  |
| N3_H33                 | 0.8900               | $C_{20}$ $C_{21}$                   | 1 379 (4)             |
| N4—N5                  | 1 315 (3)            | $C_{21}$ $C_{21}$ $C_{22}$          | 1.375 (1)             |
| N4—C17                 | 1 393 (3)            | $C_{23}$ $C_{24}$                   | 1.371(1)<br>1 464 (4) |
| N5-C23                 | 1.331(3)             | $C_{23}$ $C_{23}$ $C_{23}$          | 1.467(4)              |
| N4H4                   | 0.9200               | $C_{23}^{24}$ $C_{25}^{25}$         | 1.436(4)              |
| N6 H35                 | 0.9200               | C25 C26                             | 1.430(4)<br>1.341(4)  |
| N6—H36                 | 0.9500               | $C_{25} = C_{20}$                   | 1.3+1(+)<br>1.431(4)  |
| $C_1$ $C_2$            | 1.383(A)             | $C_{20} = C_{27} = C_{27}$          | 1.431(4)<br>1.405(4)  |
| $C_1 - C_2$            | 1.383(4)<br>1.301(4) | $C_{27} = C_{32}$                   | 1.403(4)              |
| $C_1 = C_0$            | 1.371(4)             | $C_{2}^{2}$ $C_{2}^{2}$ $C_{2}^{2}$ | 1.411(4)<br>1.202(4)  |
| $C_2 = C_3$            | 1.379 (4)            | $C_{20} = C_{20}$                   | 1.393(4)<br>1.393(4)  |
| $C_{3}$                | 1.369(4)             | $C_{29} = C_{30}$                   | 1.302(4)<br>1.292(5)  |
| C4 - C3                | 1.378(4)             | $C_{30}$                            | 1.362(3)<br>1.2(2(5)) |
| C3-C0                  | 1.375 (4)            | $C_{19}$ $U_{19}$                   | 1.303 (3)             |
| C/-C8                  | 1.400 (4)            | C10_H18                             | 0.9300                |
| C/-C12                 | 1.461 (4)            | C19—H19                             | 0.9300                |
|                        | 1.437 (4)            | C21—H21                             | 0.9300                |
| C9—C10                 | 1.338 (4)            | C22—H22                             | 0.9300                |
|                        | 1.431 (4)            | C25—H25                             | 0.9300                |
|                        | 1.412 (4)            | C26—H26                             | 0.9300                |
|                        | 1.408 (4)            | C29—H29                             | 0.9300                |
|                        | 1.402 (4)            | C30—H30                             | 0.9300                |
| C13—C14                | 1.378 (4)            | C31—H31                             | 0.9300                |
| C14—C15                | 1.377 (5)            | С32—Н32                             | 0.9300                |
| 01…N1                  | 2.520 (3)            | C17…N2                              | 3.403 (4)             |
| O1…N2                  | 2.861 (4)            | C18…C12                             | 3.528 (4)             |
| O1…C17 <sup>i</sup>    | 3.333 (4)            | C18…C8 <sup>x</sup>                 | 3.557 (4)             |
| O1…C21 <sup>ii</sup>   | 3.232 (4)            | C18…C9 <sup>x</sup>                 | 3.438 (4)             |
| O1…C22 <sup>ii</sup>   | 3.184 (4)            | C18…C7                              | 3.507 (4)             |
| O2…N3 <sup>iii</sup>   | 3.073 (4)            | C19…C7                              | 3.587 (4)             |
| O3····O3 <sup>iv</sup> | 3.214 (3)            | C19…C9 <sup>x</sup>                 | 3.520 (4)             |
| O3…N3 <sup>iv</sup>    | 3.023 (3)            | C19…C12                             | 3.453 (4)             |
| O3…C25                 | 3.373 (4)            | C19…C11                             | 3.599 (4)             |
| O4…C5 <sup>iii</sup>   | 3.157 (4)            | C21···O1 <sup>iii</sup>             | 3.232 (4)             |
| O4…N4                  | 2.525 (3)            | C22…O1 <sup>iii</sup>               | 3.184 (4)             |
| O4…C6 <sup>iii</sup>   | 3.139 (4)            | C23…C1 <sup>x</sup>                 | 3.593 (4)             |
| O4…N5                  | 2.860 (4)            | C23…N1 <sup>x</sup>                 | 3.347 (4)             |
| O5…C10                 | 3.192 (4)            | C24…C3                              | 3.400 (4)             |
| O5…N6 <sup>v</sup>     | 2.993 (4)            | C24…C1 <sup>x</sup>                 | 3.433 (4)             |
| O5…C10 <sup>vi</sup>   | 3.348 (4)            | C25…O3                              | 3.373 (4)             |
| O6…N6 <sup>ii</sup>    | 3.009 (4)            | C26…C3 <sup>x</sup>                 | 3.554 (4)             |
| O1…H1                  | 1.7500               | C26…C2 <sup>x</sup>                 | 3.573 (4)             |
| O1…H21 <sup>ii</sup>   | 2.6600               | C27…C2 <sup>x</sup>                 | 3.565 (4)             |

| O1…H22 <sup>ii</sup>     | 2.5500    | C28C31 <sup>ix</sup>        | 3.471 (5) |
|--------------------------|-----------|-----------------------------|-----------|
| O2…H33 <sup>iii</sup>    | 2.1900    | C29C31 <sup>ix</sup>        | 3.529 (5) |
| O2…H5                    | 2.5600    | C29C30 <sup>ix</sup>        | 3.399 (5) |
| O3…H3                    | 2.6700    | C30····C29 <sup>viii</sup>  | 3.399 (5) |
| O3····H26 <sup>vii</sup> | 2.6700    | C31····C28 <sup>viiii</sup> | 3.471 (5) |
| O3…H34 <sup>iv</sup>     | 2.2300    | C31····C29 <sup>viii</sup>  | 3.529 (5) |
| O3…H25                   | 2.9100    | C8…H1                       | 2.2900    |
| O4…H4                    | 1.7300    | C16…H15 <sup>ix</sup>       | 3.0600    |
| O4····H6 <sup>iii</sup>  | 2.5500    | C24…H4                      | 2.3000    |
| O4…H5 <sup>iii</sup>     | 2.5900    | C27…H31 <sup>ix</sup>       | 2.9800    |
| O5…H19                   | 2.6600    | C28…H31 <sup>ix</sup>       | 2.9700    |
| O5…H35 <sup>v</sup>      | 2.0900    | H1…O1                       | 1.7500    |
| O5…H10 <sup>vi</sup>     | 2.5100    | H1…H6                       | 2.3500    |
| O6…H21                   | 2.5600    | H1…C8                       | 2.2900    |
| O6…H36 <sup>ii</sup>     | 2.1100    | H2…N2                       | 2.6200    |
| N1…O1                    | 2.520 (3) | Н3…О3                       | 2.6700    |
| N1…C23 <sup>i</sup>      | 3.347 (4) | H3…N3 <sup>iv</sup>         | 2.8800    |
| N2…O1                    | 2.861 (4) | H3···H34 <sup>iv</sup>      | 2.6000    |
| N2…C17                   | 3.403 (4) | H4····O4                    | 1.7300    |
| N3…O2 <sup>ii</sup>      | 3.073 (4) | H4…C24                      | 2.3000    |
| N3…O3 <sup>iv</sup>      | 3.023 (3) | H4…H22                      | 2.3600    |
| N4…O4                    | 2.525 (3) | H5…O2                       | 2.5600    |
| N5…O4                    | 2.860 (4) | H5…O4 <sup>ii</sup>         | 2.5900    |
| N6…O5 <sup>v</sup>       | 2.993 (4) | H6…O4 <sup>ii</sup>         | 2.5500    |
| N6…O6 <sup>iii</sup>     | 3.009 (4) | H6…H1                       | 2.3500    |
| N2…H2                    | 2.6200    | $H10\cdots O5^{vi}$         | 2.5100    |
| N2…H13                   | 2.5200    | H10…H16                     | 2.4700    |
| N3…H3 <sup>iv</sup>      | 2.8800    | H13…N2                      | 2.5200    |
| N5…H29                   | 2.5200    | H13H30 <sup>ix</sup>        | 2.5800    |
| N5…H18                   | 2.6000    | H14…H18 <sup>ix</sup>       | 2.5700    |
| C1…C23 <sup>i</sup>      | 3.593 (4) | H14…H29 <sup>ix</sup>       | 2.4800    |
| C1···C24 <sup>i</sup>    | 3.433 (4) | H15…C16 <sup>viii</sup>     | 3.0600    |
| C2…C27 <sup>i</sup>      | 3.565 (4) | H16…H10                     | 2.4700    |
| C2…C26 <sup>i</sup>      | 3.573 (4) | H18…N5                      | 2.6000    |
| C3…C24                   | 3.400 (4) | H18…H14 <sup>viii</sup>     | 2.5700    |
| C3…C26 <sup>i</sup>      | 3.554 (4) | H19…O5                      | 2.6600    |
| C5…O4 <sup>ii</sup>      | 3.157 (4) | H21…O6                      | 2.5600    |
| C6…O4 <sup>ii</sup>      | 3.139 (4) | H21…O1 <sup>iii</sup>       | 2.6600    |
| C7…C18                   | 3.507 (4) | H22…H4                      | 2.3600    |
| C7…C19                   | 3.587 (4) | H22…O1 <sup>iii</sup>       | 2.5500    |
| C8…C17 <sup>i</sup>      | 3.410 (4) | H25…O3                      | 2.9100    |
| C8…C18 <sup>i</sup>      | 3.557 (4) | H26…H32                     | 2.4600    |
| C9…C18 <sup>i</sup>      | 3.438 (4) | H26····O3 <sup>vii</sup>    | 2.6700    |
| C9…C19 <sup>i</sup>      | 3.520 (4) | H29N5                       | 2.5200    |
| C10…O5                   | 3.192 (4) | H29····H14 <sup>viii</sup>  | 2.4800    |
| C10···O5 <sup>vi</sup>   | 3.348 (4) | H30····H13 <sup>viii</sup>  | 2.5800    |
| C11C19                   | 3,599 (4) | H31····C27 <sup>viii</sup>  | 2.9800    |
| C12···C18                | 3 528 (4) | H31····C28 <sup>viii</sup>  | 2.9000    |
| 012 010                  | 5.520 (7) | 1151 020                    | 2.7700    |

| C12…C19                    | 3.453 (4)                | H32…H26                             | 2.4600                 |
|----------------------------|--------------------------|-------------------------------------|------------------------|
| C14····C15 <sup>viii</sup> | 3.580 (5)                | H33…O2 <sup>ii</sup>                | 2.1900                 |
| C15…C16 <sup>viii</sup>    | 3.425 (5)                | H34…O3 <sup>iv</sup>                | 2.2300                 |
| C15····C14 <sup>ix</sup>   | 3.580 (5)                | H34····H3 <sup>iv</sup>             | 2.6000                 |
| C16C15 <sup>ix</sup>       | 3.425 (5)                | H35…O5 <sup>v</sup>                 | 2.0900                 |
| C17…C8 <sup>x</sup>        | 3.410 (4)                | H36…O6 <sup>iii</sup>               | 2.1100                 |
| C17…O1 <sup>x</sup>        | 3.333 (4)                |                                     |                        |
|                            |                          |                                     |                        |
| 02—S1—O3                   | 119.23 (12)              | С5—С6—Н6                            | 120.00                 |
| 02—S1—N3                   | 106.57 (12)              | С10—С9—Н9                           | 119.00                 |
| 02 - S1 - C4               | 107.76 (11)              | C8—C9—H9                            | 119.00                 |
| 03 - S1 - N3               | 106.50 (11)              | C9-C10-H10                          | 119.00                 |
| 03 - S1 - C4               | 108.55 (11)              | C11—C10—H10                         | 119.00                 |
| N3 - S1 - C4               | 107 74 (11)              | C12—C13—H13                         | 120.00                 |
| $N_{6} = S_{2} = C_{20}$   | 108 58 (11)              | C14—C13—H13                         | 120.00                 |
| 05-S2-C20                  | 108.36(12)               | C15-C14-H14                         | 119.00                 |
| 05 - 52 - 020              | 119.05(12)               | C13-C14-H14                         | 119.00                 |
| 05—S2—N6                   | 105.98 (11)              | C14 - C15 - H15                     | 120.00                 |
| 05 52 No                   | 106.95 (12)              | C16-C15-H15                         | 120.00                 |
| 06 - 52 - C20              | 100.95(12)<br>107.56(13) | C11-C16-H16                         | 120.00                 |
| N2_N1_C1                   | 107.30(13)<br>122.3(2)   | C15-C16-H16                         | 120.00                 |
| N1 N2 C7                   | 122.3(2)<br>1173(2)      | C18 - C17 - C22                     | 120.00<br>119.5(2)     |
| N1—N2—C7<br>N2—N1—H1       | 117.5 (2)                | N4 - C17 - C22                      | 119.3(2)<br>116.9(2)   |
| C1N1H1                     | 123.00                   | N4 - C17 - C18                      | 110.9(2)<br>123.6(2)   |
| H33_N3_H34                 | 108.00                   | C17 - C18 - C19                     | 123.0(2)<br>119.9(2)   |
| S1_N3_H33                  | 114.00                   | C18 - C19 - C20                     | 119.9(2)<br>119.9(2)   |
| S1N3H34                    | 118.00                   | $S_{2}$ $C_{20}$ $C_{19}$ $C_{20}$  | 119.9(2)<br>120.63(19) |
| N5-N4-C17                  | 121 8 (2)                | C19-C20-C21                         | 120.03(1))<br>120.3(2) |
| N4—N5—C23                  | 121.0(2)<br>1174(2)      | $S_{2}$ $C_{20}$ $C_{21}$           | 120.3(2)<br>119.0(2)   |
| N5-N4-H4                   | 117.4 (2)                | $C_{20} - C_{21} - C_{22}$          | 119.0(2)<br>119.7(3)   |
| C17—N4—H4                  | 123.00                   | $C_{17}$ $C_{27}$ $C_{21}$ $C_{22}$ | 119.7(3)<br>120.7(3)   |
| S2N6H35                    | 112.00                   | N5-C23-C28                          | 120.7(3)<br>1164(2)    |
| S2N6H36                    | 112.00                   | $C_{24}$ $C_{23}$ $C_{20}$          | 110.7(2)               |
| H35—N6—H36                 | 115.00                   | N5-C23-C24                          | 113.7(2)<br>123.9(2)   |
| N1-C1-C6                   | 116.0(2)                 | 04-C24-C23                          | 123.3(2)<br>121.3(2)   |
| N1 - C1 - C2               | 123.6 (2)                | 04 - C24 - C25                      | 121.3(2)<br>120.7(3)   |
| $C^2 - C^1 - C^6$          | 123.0(2)<br>120.4(2)     | $C^{23}$ $C^{24}$ $C^{25}$          | 120.7(3)<br>1180(2)    |
| $C_{1} - C_{2} - C_{3}$    | 120.1(2)<br>119.2(2)     | $C_{24}$ $C_{25}$ $C_{26}$ $C_{26}$ | 120.9(3)               |
| $C_{2} - C_{3} - C_{4}$    | 119.2(2)<br>1203(2)      | $C_{25} = C_{26} = C_{27}$          | 120.3(3)<br>123.3(3)   |
| S1 - C4 - C5               | 120.0(2)<br>118.08(19)   | $C_{26}^{}C_{27}^{}C_{32}^{}$       | 123.3(3)<br>121.4(3)   |
| S1 - C4 - C3               | 121 43 (19)              | $C_{28} = C_{27} = C_{32}$          | 121.1(3)<br>1190(3)    |
| $C_{3}$ $C_{4}$ $C_{5}$    | 121.45(17)<br>1204(2)    | $C_{26} = C_{27} = C_{32}$          | 119.6(3)               |
| $C_{4} - C_{5} - C_{6}$    | 120.4(2)<br>119.6(2)     | $C_{23}$ $C_{23}$ $C_{28}$ $C_{29}$ | 117.0(3)<br>122.7(2)   |
| C1 - C6 - C5               | 120 2 (3)                | C27 - C28 - C29                     | 122.7(2)<br>1190(2)    |
| $N_{2}$ C7 C12             | 116 5 (2)                | $C_{23}$ $C_{28}$ $C_{27}$          | 119.0(2)<br>118 4 (2)  |
| $N_2 = C_7 = C_8$          | 123 6 (2)                | $C_{23} = C_{23} = C_{24}$          | 120.4(2)               |
| C8-C7-C12                  | 119 8 (2)                | $C_{29}$ $C_{30}$ $C_{31}$          | 120.0(3)<br>120.3(3)   |
| 01 - C8 - C7               | 121.8(2)                 | $C_{30}$ $C_{31}$ $C_{32}$          | 120.5(3)<br>120.4(3)   |
| J. JU U/                   | 121.0 (2)                | 000 001 002                         | 12011 (2)              |

| С7—С8—С9                                                                                                        | 117.6 (2)            | C27—C32—C31                                           | 120.8 (3)     |
|-----------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------|---------------|
| O1—C8—C9                                                                                                        | 120.6 (3)            | C17—C18—H18                                           | 120.00        |
| C8—C9—C10                                                                                                       | 121.5 (3)            | C19—C18—H18                                           | 120.00        |
| C9—C10—C11                                                                                                      | 122.9 (3)            | C18—C19—H19                                           | 120.00        |
| C12—C11—C16                                                                                                     | 119.2 (3)            | C20—C19—H19                                           | 120.00        |
| C10—C11—C16                                                                                                     | 121.4 (2)            | C20—C21—H21                                           | 120.00        |
| C10-C11-C12                                                                                                     | 119.4 (3)            | C22—C21—H21                                           | 120.00        |
| C7—C12—C11                                                                                                      | 118.8 (2)            | C17—C22—H22                                           | 120.00        |
| $C_{11} - C_{12} - C_{13}$                                                                                      | 118.6 (3)            | $C_{21} - C_{22} - H_{22}$                            | 120.00        |
| C7-C12-C13                                                                                                      | 122.6(2)             | $C_{24}$ $C_{25}$ $H_{25}$                            | 120.00        |
| $C_{12}$ $C_{13}$ $C_{14}$                                                                                      | 122.0(2)<br>120.3(3) | $C_{26} = C_{25} = H_{25}$                            | 119.00        |
| $C_{12} = C_{13} = C_{14} = C_{15}$                                                                             | 120.3(3)<br>121.2(3) | $C_{25} = C_{25} = H_{25}$                            | 118.00        |
| $C_{14}$ $C_{15}$ $C_{16}$                                                                                      | 121.2(3)<br>110.8(3) | $C_{23}^{-23} = C_{20}^{-23} = H_{20}^{-120}$         | 118.00        |
| $C_{14} = C_{15} = C_{16}$                                                                                      | 119.8(3)             | $C_{23} = C_{20} = H_{20}$                            | 120.00        |
| C1 $C2$ $H2$                                                                                                    | 120.8 (3)            | $C_{20}$ $C_{20}$ $H_{20}$                            | 120.00        |
| $C_1 - C_2 - H_2$                                                                                               | 120.00               | $C_{20}$ $C_{29}$ $H_{20}$                            | 120.00        |
| $C_3 = C_2 = H_2$                                                                                               | 120.00               | C29—C30—H30                                           | 120.00        |
| C2-C3-H3                                                                                                        | 120.00               | $C_{31} = C_{30} = H_{30}$                            | 120.00        |
| С4—С3—Н3                                                                                                        | 120.00               | C30—C31—H31                                           | 120.00        |
| С4—С5—Н5                                                                                                        | 120.00               | C32—C31—H31                                           | 120.00        |
| С6—С5—Н5                                                                                                        | 120.00               | C27—C32—H32                                           | 120.00        |
| C1—C6—H6                                                                                                        | 120.00               | C31—C32—H32                                           | 120.00        |
| O2—S1—C4—C3                                                                                                     | -155.6 (2)           | C10—C11—C12—C7                                        | 1.1 (3)       |
| O2—S1—C4—C5                                                                                                     | 28.0 (2)             | C10-C11-C12-C13                                       | 179.6 (2)     |
| O3—S1—C4—C3                                                                                                     | -25.2 (2)            | C16—C11—C12—C7                                        | -178.4 (2)    |
| O3—S1—C4—C5                                                                                                     | 158.4 (2)            | C12-C11-C16-C15                                       | 0.5 (4)       |
| N3—S1—C4—C3                                                                                                     | 89.8 (2)             | C16—C11—C12—C13                                       | 0.2 (4)       |
| N3—S1—C4—C5                                                                                                     | -86.7 (2)            | C10-C11-C16-C15                                       | -179.0 (3)    |
| O6—S2—C20—C19                                                                                                   | -158.62 (19)         | C11—C12—C13—C14                                       | -0.9 (4)      |
| O5—S2—C20—C19                                                                                                   | -28.7 (2)            | C7—C12—C13—C14                                        | 177.6 (3)     |
| O5—S2—C20—C21                                                                                                   | 155.0 (2)            | C12—C13—C14—C15                                       | 1.1 (4)       |
| N6—S2—C20—C21                                                                                                   | -90.3(2)             | C13—C14—C15—C16                                       | -0.5(5)       |
| O6—S2—C20—C21                                                                                                   | 25.1 (2)             | C14—C15—C16—C11                                       | -0.3(5)       |
| N6—S2—C20—C19                                                                                                   | 86.0 (2)             | N4—C17—C18—C19                                        | 177.3 (2)     |
| C1 - N1 - N2 - C7                                                                                               | 177.7 (2)            | C22—C17—C18—C19                                       | -1.9(4)       |
| $N_{2} - N_{1} - C_{1} - C_{2}$                                                                                 | 7.4 (4)              | N4—C17—C22—C21                                        | -177.5(3)     |
| $N_{2} = N_{1} = C_{1} = C_{6}$                                                                                 | -174.0(2)            | C18 - C17 - C22 - C21                                 | 1.8 (4)       |
| N1—N2—C7—C8                                                                                                     | -1.8(4)              | C17 - C18 - C19 - C20                                 | 04(3)         |
| N1 - N2 - C7 - C12                                                                                              | -179.1(2)            | C18 - C19 - C20 - S2                                  | -174.83(18)   |
| C17 - N4 - N5 - C23                                                                                             | -1787(2)             | C18 - C19 - C20 - C21                                 | 1 4 (4)       |
| $N_{5} N_{4} C_{17} C_{18}$                                                                                     | -46(4)               | 82-C20-C21-C22                                        | 1747(2)       |
| $N_5 - N_4 - C_{17} - C_{22}$                                                                                   | 174.6(2)             | C19 - C20 - C21 - C22                                 | -1.6(4)       |
| N4—N5—C23—C24                                                                                                   | -1.8(4)              | $C_{20}$ $C_{21}$ $C_{22}$ $C_{21}$ $C_{22}$ $C_{17}$ | 0.0(4)        |
| N4—N5—C23—C28                                                                                                   | 179 4 (2)            | $N_{5} C_{23} C_{24} O_{4}$                           | 4 6 (4)       |
| C6-C1-C2-C3                                                                                                     | -0.3(4)              | $N_{5} = C_{23} = C_{24} = C_{4}$                     | -174 5 (2)    |
| N1 - C1 - C6 - C5                                                                                               | -179 2 (3)           | $C_{28}$ $C_{23}$ $C_{24}$ $C_{25}$ $C_{24}$ $C_{25}$ | -176.7(2)     |
| N1 - C1 - C2 - C3                                                                                               | 178 3 (2)            | $C_{28}$ $C_{23}$ $C_{24}$ $C_{25}$                   | 4 2 (4)       |
| $C_2 - C_1 - C_6 - C_5$                                                                                         | -0.5(4)              | $N_{23} = C_{23} = C_{24} = C_{23}$                   | (172, 2, (7)) |
| $\mathcal{O}_{\mathcal{I}}$ $\mathcal{O}_{\mathcal{I}}$ $\mathcal{O}_{\mathcal{I}}$ $\mathcal{O}_{\mathcal{I}}$ | U.J (T)              | 113 023 020 021                                       | 1/2.2 (4)     |

| C1—C2—C3—C4    | 0.7 (3)      | N5-C23-C28-C29  | -6.2 (4)   |
|----------------|--------------|-----------------|------------|
| C2—C3—C4—C5    | -0.3 (4)     | C24—C23—C28—C27 | -5.6 (3)   |
| C2—C3—C4—S1    | -176.65 (18) | C24—C23—C28—C29 | 174.9 (2)  |
| S1—C4—C5—C6    | 176.0 (2)    | O4—C24—C25—C26  | 180.0 (3)  |
| C3—C4—C5—C6    | -0.5 (4)     | C23—C24—C25—C26 | -0.9 (4)   |
| C4—C5—C6—C1    | 0.9 (4)      | C24—C25—C26—C27 | -1.1 (5)   |
| N2-C7-C12-C11  | 175.8 (2)    | C25—C26—C27—C28 | -0.4 (4)   |
| N2-C7-C12-C13  | -2.7 (4)     | C25—C26—C27—C32 | 179.5 (3)  |
| C8—C7—C12—C11  | -1.6 (3)     | C26—C27—C28—C23 | 3.7 (3)    |
| C8—C7—C12—C13  | 179.9 (3)    | C26—C27—C28—C29 | -176.8 (2) |
| C12—C7—C8—O1   | -178.6 (2)   | C32—C27—C28—C23 | -176.2 (2) |
| N2-C7-C8-O1    | 4.2 (4)      | C32—C27—C28—C29 | 3.3 (4)    |
| N2—C7—C8—C9    | -176.3 (2)   | C26—C27—C32—C31 | 179.0 (3)  |
| С12—С7—С8—С9   | 0.9 (4)      | C28—C27—C32—C31 | -1.1 (4)   |
| O1—C8—C9—C10   | 179.8 (3)    | C23—C28—C29—C30 | 176.6 (3)  |
| C7—C8—C9—C10   | 0.3 (4)      | C27—C28—C29—C30 | -2.9 (4)   |
| C8—C9—C10—C11  | -0.8 (5)     | C28—C29—C30—C31 | 0.4 (4)    |
| C9—C10—C11—C16 | 179.6 (3)    | C29—C30—C31—C32 | 1.9 (5)    |
| C9—C10—C11—C12 | 0.1 (4)      | C30—C31—C32—C27 | -1.5 (4)   |
|                |              |                 |            |

Symmetry codes: (i) *x*, *y*, *z*+1; (ii) *x*, -*y*+1/2, *z*+1/2; (iii) *x*, -*y*+1/2, *z*-1/2; (iv) -*x*+1, -*y*, -*z*+1; (v) -*x*+2, -*y*, -*z*+1; (vi) -*x*+2, -*y*, -*z*+2; (vii) -*x*+1, -*y*, -*z*; (viii) *x*, -*y*-1/2, *z*-1/2; (ix) *x*, -*y*-1/2, *z*+1/2; (x) *x*, *y*, *z*-1.

Hydrogen-bond geometry (Å, °)

| D—H···A                  | <i>D</i> —Н | H···A | $D \cdots A$ | D—H···A |
|--------------------------|-------------|-------|--------------|---------|
| N1—H1…O1                 | 0.88        | 1.75  | 2.520 (3)    | 145     |
| N3—H33…O2 <sup>ii</sup>  | 0.89        | 2.19  | 3.073 (4)    | 172     |
| N3—H34…O3 <sup>iv</sup>  | 0.89        | 2.23  | 3.023 (3)    | 147     |
| N4—H4…O4                 | 0.92        | 1.73  | 2.525 (3)    | 142     |
| N6—H35…O5 <sup>v</sup>   | 0.93        | 2.09  | 2.993 (4)    | 162     |
| N6—H36…O6 <sup>iii</sup> | 0.90        | 2.11  | 3.009 (4)    | 179     |

Symmetry codes: (ii) x, -y+1/2, z+1/2; (iii) x, -y+1/2, z-1/2; (iv) -x+1, -y, -z+1; (v) -x+2, -y, -z+1.