

ISSN 2414-3146

Received 15 April 2016 Accepted 18 April 2016

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China

Keywords: crystal structure; pyridines; piperidinium salts.

CCDC reference: 1474600

Structural data: full structural data are available from iucrdata.iucr.org

Piperidinium 4-(4-chlorophenyl)-3-cyano-5-ethoxycarbonyl-6-methylpyridine-2-thiolate

Joel T. Mague,^a Mehmet Akkurt,^b Shaaban K. Mohamed,^{c,d} Etify A. Bakhite^e and Mustafa R. Albayati^f*

^aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, ^bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, ^dChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, ^cChemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt, and ^fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq. *Correspondence e-mail: shaabankamel@yahoo.com

In the crystal of the title salt, $C_5H_{12}N^+ \cdot C_{16}H_{12}ClN_2O_2S^-$, the cation adopts a chair conformation, and $N-H \cdot \cdot \cdot N$ and $N-H \cdot \cdot \cdot S$ hydrogen bonds form chains of alternating cations and anions running parallel to the *c* axis. The crystal structure contains a solvent-accessible void of 50 Å³, but no solvent molecule is located there.

Structure description

Pyridine derivatives continue to attract great interest due to the wide variety of interesting biological activities observed for these compounds, such as anticancer, analgesic, antimicrobial and antidepressant activities (Kumar *et al.*, 2011). In addition, pyridines are used in the pharmaceutical industry as raw materials for the synthesis of various drugs, vitamins and fungicides (Kumar *et al.*, 2011). These facts prompted us to synthesize the title compound, which contains both pyridine and piperidine moieties, and confirm its crystal structure by X-ray analysis.

In the anion (Fig. 1), the dihedral angle between the pyridine and chlorobenze rings is 69.48 (7)°. The cation has a chair conformation with puckering parameters of $Q_{\rm T} = 0.5684$ (16) Å, $\theta = 176.46$ (16) and $\varphi = 199$ (3)°.

In the crystal, the cations and anions are linked by $N-H\cdots N$ and $N-H\cdots S$ hydrogen bonds (Table 1), forming chains of alternating cations and anions parallel to the *c* axis (Fig. 2).

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} N3 - H3A \cdots N1 \\ N3 - H3B \cdots S1^{i} \end{array}$	0.92 (2)	2.01 (2)	2.9288 (17)	174.5 (17)
	0.93 (2)	2.64 (2)	3.4249 (12)	142.6 (15)

Symmetry code: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$.

Synthesis and crystallization

The title compound was prepared by refluxing equimolar quantities of ethyl 3-cyano-1,2-dihydro-6-methyl-4-(4-chlorophenyl)-2-thioxopyridine-5-carboxylate and piperidine (10 mmol) in absolute ethanol (25 ml) for 5 min. The product that formed on cooling was collected and recrystallized from ethanol (95%) as yellow needles. Yield: 83%, m. p. 433–435 K.

IR: 3410, 2520, 2400 (N⁺H₂), 2964 (C–H, aliphatic), 2217 (C=N), 1713 (C=O) cm^{-1. 1}H NMR (CDCl₃) δ : 7.35 (*s*, 2H, N⁺H₂), 7.19–7.33 (*m*, 4H, Ar–H), 3.89–3.90 (*q*, 2H, OCH₂), 3.17 (*t*, 4H, CH₂NCH₂), 2.41 (*s*, 3H, CH₃), 1.79 (*m*, 2H, CH₂),

Figure 1

The title molecule with labeling scheme and 50% probability ellipsoids.

Figure 2

Packing viewed along the *a* axis with $N-H\cdots N$ and $N-H\cdots S$ hydrogen bonds shown as blue and brown dashed lines, respectively.

Experimental details.	
Crystal data	
Chemical formula	$C_5H_{12}N^+ \cdot C_{16}H_{12}ClN_2O_2S^-$
M _r	417.94
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	150
a, b, c (Å)	7.2363 (2), 24.2600 (7), 12.9049 (4)
β (°)	105.603 (1)
$V(\dot{A}^3)$	2182.00 (11)
Ζ	4
Radiation type	Cu Ka
$\mu \text{ (mm}^{-1})$	2.61
Crystal size (mm)	$0.26 \times 0.14 \times 0.13$
Data collection	
Diffractometer	Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2016)
T_{\min}, T_{\max}	0.61, 0.72
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	16665, 4350, 3985
R _{int}	0.028
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.625
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.036, 0.097, 1.04
No. of reflections	4350
No. of parameters	263
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta ho_{ m max}, \Delta ho_{ m min} ({ m e} { m \AA}^{-3})$	0.26, -0.46

Computer programs: *APEX3* and *SAINT* (Bruker, 2016), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2014* (Sheldrick, 2015*b*), *DIAMOND* (Brandenburg & Putz, 2012) and *SHELXTL* (Sheldrick, 2008).

1.61 (*m*, 2H, CH₂), 1.19–1.25 (*m*, 2H, CH₂), 0.84 (*t*, 3H, CH₃). Elemental analysis calculated for $C_{21}H_{24}ClN_3O_2S$ (%): C, 60.35; H, 5.79; N, 10.05; S, 7.67. Found (%): C, 60.28; H, 5.68; N, 10.09; S, 7.33.

Refinement

Table 2

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

- Brandenburg, K. & Putz, H. (2012). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Kumar, S., Sharma, P. K., Dudhe, R. & Kumar, N. (2011). J. Chronother. Drug Deliv. 2, 71–78.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2016). **1**, x160651 [doi:10.1107/S2414314616006519]

Piperidinium 4-(4-chlorophenyl)-3-cyano-5-ethoxycarbonyl-6-methylpyridine-2thiolate

Joel T. Mague, Mehmet Akkurt, Shaaban K. Mohamed, Etify A. Bakhite and Mustafa R. Albayati

Piperidin-1-ium [4-(4-chlorophenyl)-3-cyano-5-(ethoxycarbonyl)-6-methylpyridin-2-yl]sulfanide

Crystal data

 $\begin{array}{l} C_{5}H_{12}N^{+} \cdot C_{16}H_{12}ClN_{2}O_{2}S^{-}\\ M_{r} = 417.94\\ \text{Monoclinic, } P2_{1}/c\\ a = 7.2363 \ (2) \ \text{\AA}\\ b = 24.2600 \ (7) \ \text{\AA}\\ c = 12.9049 \ (4) \ \text{\AA}\\ \beta = 105.603 \ (1)^{\circ}\\ V = 2182.00 \ (11) \ \text{\AA}^{3}\\ Z = 4 \end{array}$

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer
Radiation source: INCOATEC IμS micro–focus source
Mirror monochromator
Detector resolution: 10.4167 pixels mm⁻¹
ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2016)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.097$ S = 1.044350 reflections 263 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 880 $D_x = 1.272 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9892 reflections $\theta = 3.6-74.3^{\circ}$ $\mu = 2.61 \text{ mm}^{-1}$ T = 150 KBlock, colourless $0.26 \times 0.14 \times 0.13 \text{ mm}$

 $T_{\min} = 0.61, T_{\max} = 0.72$ 16665 measured reflections 4350 independent reflections 3985 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.028$ $\theta_{\text{max}} = 74.6^{\circ}, \theta_{\text{min}} = 3.6^{\circ}$ $h = -9 \rightarrow 8$ $k = -30 \rightarrow 29$ $l = -16 \rightarrow 16$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0538P)^2 + 0.8348P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.26 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.46 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of F² > 2sigma(F²) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms were placed in calculated positions (C—H = 0.95 - 0.99 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached carbon atoms.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	-0.39999 (7)	0.47748 (2)	0.81495 (4)	0.04801 (14)
S1	0.59234 (5)	0.72882 (2)	0.82912 (3)	0.02541 (11)
01	-0.01709 (18)	0.59943 (6)	0.41297 (10)	0.0469 (3)
O2	-0.21430 (15)	0.63592 (5)	0.50149 (9)	0.0366 (3)
N1	0.37767 (17)	0.71321 (5)	0.62901 (9)	0.0245 (2)
N2	0.3246 (2)	0.63295 (6)	0.96028 (10)	0.0395 (3)
C1	0.4064 (2)	0.69910 (6)	0.73433 (11)	0.0226 (3)
C2	0.2804 (2)	0.66016 (6)	0.76156 (10)	0.0230 (3)
C3	0.13227 (19)	0.63537 (6)	0.68331 (10)	0.0223 (3)
C4	0.1123 (2)	0.64998 (6)	0.57583 (10)	0.0231 (3)
C5	0.2355 (2)	0.68969 (6)	0.55271 (11)	0.0246 (3)
C6	0.2084 (2)	0.71053 (7)	0.43991 (11)	0.0333 (3)
H6A	0.2103	0.6794	0.3918	0.050*
H6B	0.3123	0.7361	0.4382	0.050*
H6C	0.0849	0.7297	0.4161	0.050*
C7	0.3071 (2)	0.64525 (6)	0.87240 (11)	0.0270 (3)
C8	0.0020 (2)	0.59527 (6)	0.71526 (10)	0.0229 (3)
C9	-0.1251 (2)	0.61412 (6)	0.77162 (11)	0.0270 (3)
H9	-0.1268	0.6521	0.7891	0.032*
C10	-0.2488 (2)	0.57806 (6)	0.80233 (12)	0.0300 (3)
H10	-0.3361	0.5910	0.8401	0.036*
C11	-0.2431 (2)	0.52261 (6)	0.77703 (12)	0.0295 (3)
C12	-0.1176 (2)	0.50282 (6)	0.72201 (12)	0.0291 (3)
H12	-0.1150	0.4647	0.7057	0.035*
C13	0.0050(2)	0.53949 (6)	0.69076 (11)	0.0261 (3)
H13	0.0914	0.5264	0.6524	0.031*
C14	-0.0433 (2)	0.62493 (6)	0.48768 (11)	0.0265 (3)
C15	-0.3827 (3)	0.61023 (9)	0.42940 (14)	0.0456 (4)
H15A	-0.3432	0.5850	0.3789	0.055*
H15B	-0.4682	0.6388	0.3870	0.055*
C16	-0.4853 (3)	0.57877 (8)	0.49676 (16)	0.0458 (4)
H16A	-0.6079	0.5652	0.4512	0.069*
H16B	-0.5090	0.6030	0.5526	0.069*
H16C	-0.4062	0.5475	0.5307	0.069*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

N3	0.65498 (18)	0.79520 (5)	0.59790 (9)	0.0248 (3)	
H3A	0.572 (3)	0.7694 (8)	0.6125 (15)	0.038 (5)*	
H3B	0.604 (3)	0.8040 (8)	0.5259 (16)	0.036 (5)*	
C17	0.6606 (2)	0.84628 (6)	0.66329 (11)	0.0286 (3)	
H17A	0.7135	0.8375	0.7405	0.034*	
H17B	0.5288	0.8607	0.6527	0.034*	
C18	0.7836 (2)	0.88953 (6)	0.63022 (13)	0.0323 (3)	
H18A	0.7904	0.9226	0.6761	0.039*	
H18B	0.7241	0.9005	0.5547	0.039*	
C19	0.9854 (2)	0.86807 (7)	0.64069 (13)	0.0343 (3)	
H19A	1.0520	0.8624	0.7176	0.041*	
H19B	1.0586	0.8957	0.6115	0.041*	
C20	0.9797 (2)	0.81383 (7)	0.57999 (13)	0.0333 (3)	
H20A	0.9329	0.8209	0.5017	0.040*	
H20B	1.1113	0.7987	0.5947	0.040*	
C21	0.8506 (2)	0.77161 (6)	0.61209 (12)	0.0299 (3)	
H21A	0.8424	0.7382	0.5670	0.036*	
H21B	0.9054	0.7609	0.6882	0.036*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0480 (3)	0.0416 (2)	0.0606 (3)	-0.01460 (19)	0.0251 (2)	0.00572 (19)
S 1	0.02572 (18)	0.02913 (19)	0.02096 (17)	-0.00411 (13)	0.00555 (13)	-0.00248 (12)
01	0.0394 (7)	0.0654 (9)	0.0355 (6)	-0.0050 (6)	0.0094 (5)	-0.0263 (6)
O2	0.0245 (5)	0.0521 (7)	0.0311 (5)	-0.0041 (5)	0.0038 (4)	-0.0120 (5)
N1	0.0267 (6)	0.0266 (6)	0.0211 (5)	-0.0012 (5)	0.0080 (5)	-0.0011 (4)
N2	0.0400 (8)	0.0512 (9)	0.0247 (7)	-0.0119 (7)	0.0044 (6)	0.0053 (6)
C1	0.0240 (7)	0.0237 (6)	0.0210 (6)	0.0028 (5)	0.0076 (5)	-0.0017 (5)
C2	0.0249 (7)	0.0249 (6)	0.0197 (6)	0.0011 (5)	0.0070 (5)	0.0000 (5)
C3	0.0230 (7)	0.0228 (6)	0.0219 (6)	0.0022 (5)	0.0073 (5)	-0.0017 (5)
C4	0.0241 (7)	0.0256 (6)	0.0194 (6)	0.0007 (5)	0.0056 (5)	-0.0029 (5)
C5	0.0265 (7)	0.0274 (7)	0.0206 (6)	0.0008 (6)	0.0073 (5)	-0.0015 (5)
C6	0.0392 (9)	0.0400 (8)	0.0206 (7)	-0.0076 (7)	0.0079 (6)	0.0014 (6)
C7	0.0257 (7)	0.0302 (7)	0.0240 (7)	-0.0046 (6)	0.0049 (5)	-0.0006 (6)
C8	0.0236 (7)	0.0255 (6)	0.0189 (6)	-0.0001 (5)	0.0043 (5)	0.0004 (5)
C9	0.0300 (7)	0.0253 (7)	0.0275 (7)	-0.0014 (6)	0.0107 (6)	-0.0037 (5)
C10	0.0297 (7)	0.0341 (8)	0.0292 (7)	-0.0012 (6)	0.0131 (6)	-0.0017 (6)
C11	0.0290 (7)	0.0300 (7)	0.0288 (7)	-0.0053 (6)	0.0066 (6)	0.0045 (6)
C12	0.0336 (8)	0.0225 (6)	0.0296 (7)	-0.0002 (6)	0.0057 (6)	0.0011 (5)
C13	0.0277 (7)	0.0264 (7)	0.0245 (6)	0.0020 (6)	0.0074 (5)	-0.0005 (5)
C14	0.0292 (7)	0.0290 (7)	0.0209 (6)	-0.0022 (6)	0.0059 (5)	-0.0013 (5)
C15	0.0298 (8)	0.0668 (12)	0.0345 (8)	-0.0117 (8)	-0.0014 (7)	-0.0086 (8)
C16	0.0367 (9)	0.0450 (10)	0.0478 (10)	-0.0083 (8)	-0.0021 (8)	0.0044 (8)
N3	0.0275 (6)	0.0272 (6)	0.0200 (5)	-0.0009 (5)	0.0069 (5)	-0.0001 (5)
C17	0.0329 (8)	0.0297 (7)	0.0233 (6)	0.0028 (6)	0.0078 (6)	-0.0046 (5)
C18	0.0369 (8)	0.0273 (7)	0.0306 (7)	-0.0002 (6)	0.0058 (6)	-0.0031 (6)
C19	0.0333 (8)	0.0364 (8)	0.0322 (8)	-0.0066 (7)	0.0069 (6)	-0.0037 (6)

data reports

C20	0.0292 (8)	0.0393 (8)	0.0332 (8)	-0.0001 (7)	0.0113 (6)	-0.0062 (6)
C21	0.0306 (8)	0.0291 (7)	0.0295 (7)	0.0044 (6)	0.0070 (6)	-0.0023(6)

Geometric parameters (Å, °)

Cl1—C11	1.7398 (15)	C12—H12	0.9500	
S1—C1	1.7150 (14)	C13—H13	0.9500	
O1—C14	1.2027 (18)	C15—C16	1.496 (3)	
O2—C14	1.3238 (19)	C15—H15A	0.9900	
O2—C15	1.4591 (19)	C15—H15B	0.9900	
N1—C5	1.3447 (18)	C16—H16A	0.9800	
N1—C1	1.3623 (17)	C16—H16B	0.9800	
N2—C7	1.146 (2)	C16—H16C	0.9800	
C1—C2	1.4212 (19)	N3—C21	1.4918 (19)	
C2—C3	1.3957 (19)	N3—C17	1.4937 (18)	
C2—C7	1.4371 (19)	N3—H3A	0.92 (2)	
C3—C4	1.4009 (18)	N3—H3B	0.93 (2)	
C3—C8	1.4877 (19)	C17—C18	1.510(2)	
C4—C5	1.399 (2)	C17—H17A	0.9900	
C4—C14	1.4973 (19)	C17—H17B	0.9900	
C5—C6	1.5031 (19)	C18—C19	1.522 (2)	
С6—Н6А	0.9800	C18—H18A	0.9900	
С6—Н6В	0.9800	C18—H18B	0.9900	
С6—Н6С	0.9800	C19—C20	1.526 (2)	
C8—C13	1.3912 (19)	C19—H19A	0.9900	
С8—С9	1.3945 (19)	C19—H19B	0.9900	
C9—C10	1.383 (2)	C20—C21	1.517 (2)	
С9—Н9	0.9500	C20—H20A	0.9900	
C10—C11	1.387 (2)	C20—H20B	0.9900	
C10—H10	0.9500	C21—H21A	0.9900	
C11—C12	1.381 (2)	C21—H21B	0.9900	
C12—C13	1.391 (2)			
C14—O2—C15	118.59 (13)	C16—C15—H15A	110.1	
C5—N1—C1	120.36 (12)	O2—C15—H15B	110.1	
N1-C1-C2	118.54 (12)	C16—C15—H15B	110.1	
N1—C1—S1	119.07 (10)	H15A—C15—H15B	108.4	
C2C1S1	122.38 (10)	C15—C16—H16A	109.5	
C3—C2—C1	121.77 (12)	C15—C16—H16B	109.5	
C3—C2—C7	118.90 (13)	H16A—C16—H16B	109.5	
C1—C2—C7	119.32 (12)	C15—C16—H16C	109.5	
C2—C3—C4	117.52 (13)	H16A—C16—H16C	109.5	
C2—C3—C8	120.11 (12)	H16B—C16—H16C	109.5	
C4—C3—C8	122.37 (12)	C21—N3—C17	111.59 (11)	
C5—C4—C3	118.92 (12)	C21—N3—H3A	111.3 (12)	
C5—C4—C14	120.65 (12)	C17—N3—H3A	111.6 (12)	
C3—C4—C14	120.39 (12)	C21—N3—H3B	108.7 (12)	
N1C5C4	122.83 (12)	C17—N3—H3B	108.5 (12)	

N1—C5—C6	116.19 (13)	H3A—N3—H3B	104.8 (17)
C4—C5—C6	120.91 (13)	N3—C17—C18	110.21 (12)
С5—С6—Н6А	109.5	N3—C17—H17A	109.6
С5—С6—Н6В	109.5	C18—C17—H17A	109.6
H6A—C6—H6B	109.5	N3—C17—H17B	109.6
С5—С6—Н6С	109.5	C18—C17—H17B	109.6
Н6А—С6—Н6С	109.5	H17A—C17—H17B	108.1
H6B—C6—H6C	109.5	C17—C18—C19	111.20 (13)
N2-C7-C2	178.55 (16)	C17—C18—H18A	109.4
$C_{13} - C_{8} - C_{9}$	119 36 (13)	C19— $C18$ — $H18A$	109.4
$C_{13} - C_{8} - C_{3}$	121 55 (12)	C17— $C18$ — $H18B$	109.4
C9-C8-C3	121.00(12) 119.09(12)	C19— $C18$ — $H18B$	109.1
C_{10} C_{9} C_{8}	120.70(12)	H18A - C18 - H18B	108.0
C10 - C9 - H9	110 7	C_{18} C_{19} C_{20}	110.88 (13)
	119.7	C18 - C19 - H19A	109.5
$C_{0} - C_{10} - C_{11}$	119.7	$C_{10} - C_{10} - H_{10A}$	109.5
C_{P} C_{10} H_{10}	120.6	$C_{20} = C_{10} = H_{10}R$	109.5
	120.0	$C_{10} = C_{10} = H_{10}B$	109.5
$C_{11} = C_{10} = 110$	120.0 121 56 (14)	U10A C10 U10P	109.5
$C_{12} = C_{11} = C_{10}$	121.50(14) 110.68(12)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.1 112.07(12)
C_{12} C_{11} C_{11} C_{11}	119.08 (12)	$C_{21} = C_{20} = C_{19}$	112.07 (13)
C_{11} C_{12} C_{13}	110.70(12) 110.07(14)	$C_{21} - C_{20} - H_{20A}$	109.2
$C_{11} = C_{12} = C_{13}$	119.07 (14)	C19 - C20 - H20A C21 - C20 - H20P	109.2
C12 - C12 - H12	120.5	С21—С20—Н20В	109.2
C12 - C12 - C12	120.3	C19 - C20 - H20B	109.2
C12 - C13 - C8	120.41 (13)	$H_2 OA - C_2 O - H_2 OB$	107.9
C12—C13—H13	119.8	$N_{3} = C_{21} = C_{20}$	109.95 (12)
C8-C13-H13	119.8	N3 - C21 - H21A	109.7
01 - C14 - C2	124.49 (14)	C_{20} C_{21} H_{21} H_{21}	109.7
01 - C14 - C4	124./1 (14)	N3-C21-H21B	109.7
02 - C14 - C4	110.78 (12)	C20—C21—H21B	109.7
02-015-016	107.90 (14)	H21A—C21—H21B	108.2
02—C15—H15A	110.1		
C5 N1 C1 C2	-1.5(2)	C13 C8 C9 C10	-0.6(2)
$C_5 = N_1 = C_1 = C_2$	1.3(2) 178.60(10)	$C_{13} = C_{6} = C_{7} = C_{10}$	170.78(13)
$C_3 = N_1 = C_1 = S_1$	178.00(10) 1.5(2)	$C_{3} = C_{3} = C_{3} = C_{10}$	1/9.70(13)
$N_{1} = C_{1} = C_{2} = C_{3}$	-17853(11)	$C_{0} = C_{10} = C_{11} = C_{12}$	-0.1(2)
$S_1 = C_1 = C_2 = C_3$	-170.30(11)	$C_{9} = C_{10} = C_{11} = C_{12}$	-170.55(12)
$S_1 = C_1 = C_2 = C_7$	179.50(15)	$C_{10} = C_{10} = C_{11} = C_{12}$	-0.4(2)
$C_1 = C_2 = C_1$	0.03(17)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	179.03(11)
$C_1 - C_2 - C_3 - C_4$	-178.80(13)	$C_{11} = C_{12} = C_{13}$	179.03(11) 0.4(2)
$C_{1} - C_{2} - C_{3} - C_{4}$	-170.00(13)	$C_{11} - C_{12} - C_{13} - C_{0}$	0.7(2)
$C_1 - C_2 - C_3 - C_6$	15.31(12)	C_{3} C_{8} C_{13} C_{12} C_{12}	170 68 (12)
$C_{1} = C_{2} = C_{3} = C_{6}$	-2 20 (10)	C_{3} C_{0} C_{13} C_{12} C_{12} C_{12} C_{14} C_{12}	$7 \times (2)$
$C_2 = C_3 = C_4 = C_3$	2.27 (17) 177 28 (12)	$C_{13} = 0_2 = C_{14} = 0_1$	-173 02 (14)
$C_{0} - C_{3} - C_{4} - C_{3}$	177.30(12) 170 01 (12)	$C_{13} - C_{2} - C_{14} - C_{4}$	1/3.92(14)
$C_2 = C_3 = C_4 = C_{14}$	-0.4(2)	$C_3 = C_4 = C_1 + \cdots + O_1$	37.7(2) -122.20(17)
$C_{1} = C_{2} = C_{4} = C_{14}$	-0.4(2)	$C_{3} - C_{4} - C_{14} - O_{1}$	-122.30(17)
$\cup 1 - 1 \vee 1 - \cup 3 - \cup 4$	-0.3(2)	UJ-U4-U14-U2	-110.34(13)

C1—N1—C5—C6	176.48 (13)	C3—C4—C14—O2	59.42 (18)
C3-C4-C5-N1	2.5 (2)	C14—O2—C15—C16	123.12 (17)
C14—C4—C5—N1	-179.73 (13)	C21—N3—C17—C18	59.88 (15)
C3—C4—C5—C6	-174.38 (13)	N3-C17-C18-C19	-56.81 (16)
C14—C4—C5—C6	3.4 (2)	C17—C18—C19—C20	53.36 (17)
C2—C3—C8—C13	-111.09 (15)	C18—C19—C20—C21	-52.65 (18)
C4—C3—C8—C13	69.24 (18)	C17—N3—C21—C20	-58.50 (15)
C2—C3—C8—C9	68.53 (18)	C19—C20—C21—N3	54.82 (17)
C4—C3—C8—C9	-111.14 (15)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A
N3—H3A…N1	0.92 (2)	2.01 (2)	2.9288 (17)	174.5 (17)
N3—H3 <i>B</i> ···S1 ⁱ	0.93 (2)	2.64 (2)	3.4249 (12)	142.6 (15)

Symmetry code: (i) x, -y+3/2, z-1/2.