

ISSN 2414-3146

Received 4 March 2016 Accepted 14 April 2016

Edited by P. Bombicz, Hungarian Academy of Sciences, Hungary

Keywords: crystal structure; trimesic acid homologue; C—H···O hydrogen bond; C— H··· π contact.

CCDC reference: 1474004

Structural data: full structural data are available from iucrdata.iucr.org

Trimethyl 3,3',3"-(benzene-1,3,5-triyl)tripropynoate

Felix Katzsch,^a Tobias Gruber^b and Edwin Weber^a*

^aInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany, and ^bSchool of Pharmacy, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln LN6 7DL, England. *Correspondence e-mail: edwin.weber@chemie.tu-freiberg.de

In the title compound, $C_{18}H_{12}O_6$, the alkyne bonds are distorted, featuring bond angles around the C–C=C–C group of 173.6 (1)/179.0 (1), 178.1 (1)/178.4 (1) and 174.9 (1)/175.9 (1)°, and the ester groups make angles of 3.5 (1), 13.8 (1) and 14.5 (1)° with the central benzene ring. In the crystal, molecules are connected in layers parallel to (131) by weak C–H···O hydrogen bonds, giving rise to a system of hydrogen-bonded ring motifs with graph sets $R_2^2(14)$ and $R_4^4(22)$. The layers are linked by C–H···O and C–H··· π contacts.

Structure description

The title compound, $C_{18}H_{12}O_6$, is an interesting synthetic intermediate for the preparation of application–oriented solid materials involving both porous coordination polymers (MacGillivray, 2010) or metal-organic frameworks (Noro & Kitagawa, 2010) and crystalline inclusion hosts (Weber, 1996; Katzsch *et al.*, 2016).

In the structure of the molecule (Fig. 1), the alkyne bonds are distorted which is shown by the corresponding bond angles $[C2-C3-C4 = 173.6 (1), C3-C4-C13 = 179.0 (1), C6-C7-C8 = 178.1 (1), C7-C8-C15 = 178.4 (1), C10-C11-C12 = 174.9 (1), C11-C12-C17 = 175.9 (1)^{\circ}]$ and the ester functions are not arranged in the benzene plane [interplanar angles: 3.5 (1) (C2, O1, O2), 13.8 (1) (C6, O3, O4) and 14.5 (1)^{\circ} (C10, O5, O10)].

In the crystal, molecules are connected in layers parallel to (131) by weak C-H···O hydrogen bonds (Desiraju & Steiner, 1999) (Table 1) giving rise to hydrogen-bonded ring motifs with graph sets $R_2^2(14)$ and $R_4^4(22)$ (Fig. 2). The layers are linked by weak C-H···O contacts and additionally by C-H··· π interactions.

Figure 1

A view of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Synthesis and crystallization

The title compound was prepared from 1,3,5-triethynylbenzene (Münch *et al.*, 2013) and methyl chloroformiate as described in the literature (Katzsch *et al.*, 2016). Colorless single crystals of prismatic shape suitable for X-ray diffraction were obtained by slow crystallization from a solvent mixture of acetone, ethyl acetate and *n*-hexane. For the synthesis of a related compound, see: Welti & Diederich (2003).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Figure 2

A partial view of the crystal packing of the title compound, showing the formation of the C-H···O bonded layer structure, enclosing the system of $R_2^2(14)$ and $R_4^4(22)$ ring motifs. Hydrogen bonds are indicated by dashed lines.

Table 1

Hydrogen-bond geometry (Å, $^\circ).$

Cg1 is the centroid of the C13–C18 ring and Cg3 is the mid-point of atoms C7 and C8.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C1-H1C\cdots O6^{i}$	0.98	2.70	3.4378 (15)	133
$C5-H5B\cdots O5^{ii}$	0.98	2.66	3.4517 (15)	138
$C14 - H14 \cdots O2^{iii}$	0.95	2.31	3.2278 (13)	162
$C16-H16\cdots O6^{iv}$	0.95	2.35	3.2390 (13)	155
$C1 - H1A \cdots Cg3^{v}$	0.98	2.85	3.5506 (13)	130
$C9-H9A\cdots Cg1^{vi}$	0.98	2.76	3.6302 (13)	148

Symmetry codes: (i) x - 1, y + 1, z - 1; (ii) x - 1, y, z + 1; (iii) -x + 1, -y + 1, -z + 1; (iv) -x + 3, -y, -z + 2; (v) x, y, z - 1; (vi) x + 1, y, z.

Table	2	
Experi	mental	details

Crystal data	
Chemical formula	$C_{18}H_{12}O_{6}$
$M_{\rm r}$	324.28
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	100
a, b, c (Å)	8.5765 (2), 9.8469 (2), 10.2677 (2)
α, β, γ (°)	78.903 (1), 79.552 (1), 68.655 (1)
$V(Å^3)$	786.65 (3)
Ζ	2
Radiation type	Μο Κα
$\mu \ (\mathrm{mm}^{-1})$	0.10
Crystal size (mm)	$0.54 \times 0.43 \times 0.37$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Sheldrick, 2004)
T_{\min}, T_{\max}	0.946, 0.963
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	16379, 2769, 2558
R _{int}	0.022
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.595
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.030, 0.082, 1.08
No. of reflections	2769
No. of parameters	220
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.15, -0.24

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008).

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under the program SPP 1362/1.

References

- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Desiraju, G. R. & Steiner, T. (1999). *The Weak Hydrogen Bond in Structural Chemistry and Biology*, pp. 29–121. New York: Oxford University Press Inc.
- Katzsch, F., Gruber, T. & Weber, E. (2016). J. Mol. Struct. 1114, 48-64.
- MacGillivray, L. R. (2010). In *Metal Organic Frameworks*. Hoboken: Wiley.
- Münch, A. S., Katzsch, F., Weber, E. & Mertens, F. O. R. L. (2013). J. Mol. Struct. 1043, 103–108.

- Noro, S.-I. & Kitagawa, S. (2010). In *The Supramolecular Chemistry* of Organic–Inorganic Hybrid Materials, edited by K. Rurack & R. Martinez-Manez, pp. 235–269. Hoboken: Wiley.
- Martinez-Manez, pp. 235–269. Hoboken: Wiley. Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Weber, E. (1996). In Comprehensive Supramolecular Chemistry, Vol. 6, edited by D. D. MacNicol, F. Toda & R. Bishop, pp. 535–592. Oxford: Elsevier.
- Welti, R. & Diederich, F. (2003). Helv. Chim. Acta, 86, 494-503.

full crystallographic data

IUCrData (2016). **1**, x160629 [doi:10.1107/S2414314616006295]

Trimethyl 3,3',3''-(benzene-1,3,5-triyl)tripropynoate

Felix Katzsch, Tobias Gruber and Edwin Weber

Trimethyl 3,3',3''-(benzene-1,3,5-triyl)tripropynoate

Crystal data

C₁₈H₁₂O₆ $M_r = 324.28$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 8.5765 (2) Å b = 9.8469 (2) Å c = 10.2677 (2) Å a = 78.903 (1)° $\beta = 79.552$ (1)° $\gamma = 68.655$ (1)° V = 786.65 (3) Å³

Data collection

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.030$	Hydrogen site location: inferred from
$wR(F^2) = 0.082$	neighbouring sites
<i>S</i> = 1.08	H-atom parameters constrained
2769 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0423P)^2 + 0.2206P]$
220 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.15 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Z = 2

F(000) = 336

 $\theta = 2.8 - 35.9^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$

Prism, colourless

 $0.54 \times 0.43 \times 0.37 \text{ mm}$

 $\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 2.0^\circ$

16379 measured reflections 2769 independent reflections 2558 reflections with $I > 2\sigma(I)$

T = 100 K

 $R_{\rm int} = 0.022$

 $h = -10 \rightarrow 10$ $k = -11 \rightarrow 11$ $l = -12 \rightarrow 12$

 $D_{\rm x} = 1.369 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9912 reflections

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
O1	0.83566 (10)	0.52293 (9)	0.16775 (8)	0.0236 (2)
O2	0.57685 (10)	0.57849 (10)	0.28339 (8)	0.0293 (2)
O3	0.65384 (9)	0.22546 (9)	1.31248 (7)	0.02084 (19)
O4	0.41386 (10)	0.31372 (9)	1.21571 (8)	0.0268 (2)
O5	1.77215 (9)	-0.03869 (9)	0.67379 (8)	0.0236 (2)
O6	1.70937 (10)	-0.04808 (10)	0.89660 (8)	0.0299 (2)
C1	0.75769 (16)	0.59765 (14)	0.04628 (11)	0.0278 (3)
H1A	0.6774	0.5528	0.0338	0.042*
H1B	0.8452	0.5882	-0.0308	0.042*
H1C	0.6982	0.7021	0.0544	0.042*
C2	0.72764 (14)	0.52404 (12)	0.27834 (11)	0.0190 (2)
C3	0.81227 (13)	0.45041 (12)	0.39566 (11)	0.0194 (2)
C4	0.86741 (13)	0.38829 (12)	0.49835 (11)	0.0185 (2)
C5	0.55244 (15)	0.23382 (15)	1.44175 (11)	0.0278 (3)
H5A	0.4759	0.3352	1.4466	0.042*
H5B	0.6263	0.2036	1.5123	0.042*
H5C	0.4865	0.1683	1.4539	0.042*
C6	0.56511 (13)	0.26911 (12)	1.20822 (11)	0.0188 (2)
C7	0.67830 (14)	0.25513 (12)	1.08442 (11)	0.0203 (2)
C8	0.77122 (13)	0.24785 (11)	0.98194 (11)	0.0188 (2)
C9	1.94875 (14)	-0.09886 (14)	0.69328 (13)	0.0277 (3)
H9A	1.9750	-0.0336	0.7404	0.042*
H9B	2.0182	-0.1071	0.6062	0.042*
H9C	1.9726	-0.1965	0.7465	0.042*
C10	1.66647 (14)	-0.01980 (12)	0.78696 (11)	0.0190 (2)
C11	1.49194 (13)	0.04128 (12)	0.76135 (10)	0.0193 (2)
C12	1.34504 (14)	0.09501 (12)	0.74997 (10)	0.0183 (2)
C13	0.93204 (13)	0.31191 (12)	0.62162 (11)	0.0175 (2)
C14	0.82157 (13)	0.31487 (12)	0.73950 (11)	0.0183 (2)
H14	0.7041	0.3661	0.7379	0.022*
C15	0.88415 (13)	0.24233 (12)	0.85995 (11)	0.0178 (2)
C16	1.05675 (14)	0.16784 (12)	0.86244 (11)	0.0180 (2)
H16	1.0992	0.1189	0.9445	0.022*
C17	1.16685 (13)	0.16532 (11)	0.74421 (11)	0.0171 (2)
C18	1.10490 (13)	0.23615 (12)	0.62325 (11)	0.0178 (2)
H18	1.1797	0.2329	0.5425	0.021*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

data reports

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
01	0.0233 (4)	0.0293 (4)	0.0145 (4)	-0.0059 (3)	-0.0046 (3)	0.0018 (3)
O2	0.0194 (5)	0.0351 (5)	0.0271 (5)	-0.0035 (4)	-0.0074 (3)	0.0034 (4)
O3	0.0171 (4)	0.0290 (4)	0.0140 (4)	-0.0066 (3)	-0.0007 (3)	-0.0010 (3)
O4	0.0179 (4)	0.0345 (5)	0.0225 (4)	-0.0033 (4)	-0.0029 (3)	-0.0018 (3)
05	0.0146 (4)	0.0310 (4)	0.0222 (4)	-0.0039 (3)	-0.0028 (3)	-0.0036 (3)
O6	0.0230 (4)	0.0434 (5)	0.0209 (5)	-0.0074 (4)	-0.0089 (3)	-0.0005 (4)
C1	0.0363 (7)	0.0292 (6)	0.0153 (6)	-0.0082 (5)	-0.0099 (5)	0.0038 (5)
C2	0.0204 (6)	0.0181 (5)	0.0186 (6)	-0.0061 (4)	-0.0053 (4)	-0.0007 (4)
C3	0.0162 (5)	0.0209 (5)	0.0196 (6)	-0.0046 (4)	-0.0020 (4)	-0.0025 (4)
C4	0.0153 (5)	0.0205 (5)	0.0185 (6)	-0.0050 (4)	-0.0015 (4)	-0.0026 (4)
C5	0.0248 (6)	0.0411 (7)	0.0133 (5)	-0.0097 (5)	0.0017 (4)	-0.0005 (5)
C6	0.0191 (6)	0.0179 (5)	0.0177 (5)	-0.0050 (4)	-0.0023 (4)	-0.0009 (4)
C7	0.0203 (6)	0.0211 (6)	0.0187 (6)	-0.0059 (4)	-0.0048 (5)	-0.0008 (4)
C8	0.0186 (5)	0.0191 (5)	0.0178 (6)	-0.0052 (4)	-0.0042 (4)	-0.0012 (4)
C9	0.0139 (5)	0.0309 (6)	0.0358 (7)	-0.0024 (5)	-0.0033 (5)	-0.0090 (5)
C10	0.0176 (5)	0.0185 (5)	0.0203 (6)	-0.0055 (4)	-0.0049 (4)	-0.0002 (4)
C11	0.0194 (6)	0.0225 (6)	0.0149 (5)	-0.0070 (5)	-0.0035 (4)	0.0008 (4)
C12	0.0200 (6)	0.0201 (5)	0.0151 (5)	-0.0076 (4)	-0.0034 (4)	-0.0003 (4)
C13	0.0175 (5)	0.0185 (5)	0.0163 (5)	-0.0057 (4)	-0.0044 (4)	-0.0009 (4)
C14	0.0147 (5)	0.0193 (5)	0.0199 (6)	-0.0039 (4)	-0.0037 (4)	-0.0026 (4)
C15	0.0184 (5)	0.0190 (5)	0.0166 (5)	-0.0071 (4)	-0.0020 (4)	-0.0024 (4)
C16	0.0204 (6)	0.0188 (5)	0.0157 (5)	-0.0073 (4)	-0.0055 (4)	-0.0005 (4)
C17	0.0156 (5)	0.0174 (5)	0.0188 (5)	-0.0053 (4)	-0.0046 (4)	-0.0015 (4)
C18	0.0166 (5)	0.0207 (5)	0.0162 (5)	-0.0070 (4)	-0.0013 (4)	-0.0021 (4)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

01—C2	1.3280 (14)	C6—C7	1.4490 (15)
01—C1	1.4612 (13)	C7—C8	1.1961 (16)
O2—C2	1.2018 (14)	C8—C15	1.4345 (15)
O3—C6	1.3379 (13)	С9—Н9А	0.9800
O3—C5	1.4478 (13)	С9—Н9В	0.9800
O4—C6	1.2015 (13)	С9—Н9С	0.9800
O5—C10	1.3359 (13)	C10—C11	1.4485 (15)
О5—С9	1.4478 (13)	C11—C12	1.1938 (16)
O6—C10	1.1980 (14)	C12—C17	1.4371 (15)
C1—H1A	0.9800	C13—C14	1.3931 (15)
C1—H1B	0.9800	C13—C18	1.3978 (15)
C1—H1C	0.9800	C14—C15	1.3963 (15)
C2—C3	1.4496 (15)	C14—H14	0.9500
C3—C4	1.1965 (16)	C15—C16	1.3950 (15)
C4—C13	1.4351 (15)	C16—C17	1.3945 (15)
С5—Н5А	0.9800	C16—H16	0.9500
C5—H5B	0.9800	C17—C18	1.3955 (15)
C5—H5C	0.9800	C18—H18	0.9500

C2—O1—C1 114.65 (9) H9A—C9—H9B 10	9.5
C6—O3—C5 114.53 (8) O5—C9—H9C 10	9.5
C10—O5—C9 114.15 (9) H9A—C9—H9C 10	9.5
01—C1—H1A 109.5 H9B—C9—H9C 10	9.5
O1—C1—H1B 109.5 O6—C10—O5 12	24.66 (10)
H1A—C1—H1B 109.5 06—C10—C11 12	23.62 (10)
O1—C1—H1C 109.5 O5—C10—C11 11	1.72 (9)
H1A—C1—H1C 109.5 C12—C11—C10 17	4.86 (11)
H1B—C1—H1C 109.5 C11—C12—C17 17	75.86 (11)
O2-C2-O1 125.16 (10) C14-C13-C18 12	20.36 (10)
O2—C2—C3 122.68 (10) C14—C13—C4 11	9.56 (9)
O1—C2—C3 112.16 (9) C18—C13—C4 12	20.08 (10)
C4—C3—C2 173.59 (11) C13—C14—C15 11	9.76 (10)
C3—C4—C13 178.97 (12) C13—C14—H14 12	20.1
O3—C5—H5A 109.5 C15—C14—H14 12	20.1
O3—C5—H5B 109.5 C16—C15—C14 12	20.15 (10)
H5A—C5—H5B 109.5 C16—C15—C8 11	9.93 (10)
O3—C5—H5C 109.5 C14—C15—C8 11	9.90 (10)
H5A—C5—H5C 109.5 C17—C16—C15 11	9.89 (10)
H5B—C5—H5C 109.5 C17—C16—H16 12	20.1
O4—C6—O3 125.17 (10) C15—C16—H16 12	20.1
O4—C6—C7 124.83 (10) C16—C17—C18 12	20.25 (9)
O3—C6—C7 110.00 (9) C16—C17—C12 11	9.01 (9)
C8—C7—C6 178.08 (11) C18—C17—C12 12	20.67 (10)
C7—C8—C15 178.35 (11) C17—C18—C13 11	9.58 (10)
О5—С9—Н9А 109.5 С17—С18—Н18 12	20.2
O5—C9—H9B 109.5 C13—C18—H18 12	20.2
C1 = C1 = C2 = C2 = C109(16) $C13 = C14 = C15 = C8 = 17$	78 64 (10)
C1 = O1 = C2 = C3 $-179 = 11 (9)$ $C14 = C15 = C16 = C17 = -170 = C14 = C15 = C16 = C17$	0.04(10)
C_{5} C_{6} C_{6	78 57 (9)
$C_{5} = 03 = C_{6} = C_{7}$ $-179 = 49 (9)$ $C_{15} = C_{16} = C_{17} = C_{18} = -0$	170.57(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26 57 (9)
C9-O5-C10-C11 179.68 (9) C16-C17-C18-C13 1	13 (15)
C18 - C13 - C14 - C15 $0.32(16)$ $C12 - C17 - C18 - C13$ -1	75.85 (10)
C4-C13-C14-C15 -179.16 (10) $C14-C13-C18-C17$ -1	1.06 (16)
	10, 10, (10)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C13–C18 ring and Cg3 is the mid-point of atoms C7 and C8.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
C1—H1 <i>C</i> ···O6 ⁱ	0.98	2.70	3.4378 (15)	133
C5—H5 <i>B</i> ···O5 ⁱⁱ	0.98	2.66	3.4517 (15)	138
C14—H14…O2 ⁱⁱⁱ	0.95	2.31	3.2278 (13)	162
C16—H16····O6 ^{iv}	0.95	2.35	3.2390 (13)	155

C1—H1A···Cg3^v 0.98 2.85 3.5506 (13) 130 C9—H9A···Cg1^{vi} 0.98 2.76 3.6302 (13) 148

Symmetry codes: (i) *x*-1, *y*+1, *z*-1; (ii) *x*-1, *y*, *z*+1; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) -*x*+3, -*y*, -*z*+2; (v) *x*, *y*, *z*-1; (vi) *x*+1, *y*, *z*.