

ISSN 2414-3146

Received 12 April 2016 Accepted 14 April 2016

Edited by O. Blacque, University of Zürich, Switzerland

Keywords: crystal structure; N-(aryl)arylsulfonamides; N—H···O hydrogen bonds; C— H···O interactions; Br···Br contacts.

CCDC reference: 1474176

Structural data: full structural data are available from iucrdata.iucr.org

4-Bromo-N-(4-bromophenyl)benzenesulfonamide

Vinola Z. Rodrigues,^a S. Naveen,^b N. K. Lokanath^c and P. A. Suchetan^{d*}

^aDepartment of PG Studies and Research in Chemistry, St. Aloysius College, Mangalore, India, ^bInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru-6, India, ^cDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru-6, India, and ^dDepartment of Chemistry, University College of Science, Tumkur University, Tumkur 572 103, India. *Correspondence e-mail: pasuchetan@yahoo.co.in

The molecule of the title compound, $C_{12}H_9Br_2NO_2S$, is U shaped with the central C-S-N-C segment having a torsion angle of 63.2 (4)°. Further, the dihedral angle between the benzene rings is 38.5 (2)°. The crystal structure features strong N-H···O hydrogen bonds that form infinite [100] C(4) chains. Molecules in adjacent chains are interlinked *via* C-H···O interactions which run along the *b* axis, forming C(7) chains. This results in a two-dimensional network in the *ab* plane; adjacent networks are connected by short Br···Br contacts [3.5092 (8) Å] propagating along the diagonal of the *ac* plane, so that a three-dimensional supramolecular architecture ensues.

Structure description

Sulfonamide drugs were the first chemotherapeutic agents to be used to cure and prevent bacterial infection in human beings (Shiva Prasad *et al.*, 2011). They play a vital role as key constituents in a number of biologically active molecules being known to exhibit a wide variety of biological activities such as antibacterial (Subhakara Reddy *et al.*, 2012), insecticidal (Himel *et al.*, 1971), antifungal (Hanafy *et al.*, 2007), antihepatitis (Yan-Fang *et al.*, 2010), anti-inflamatory (Küçükgüzel *et al.*, 2013), antitumor (Ghorab *et al.*, 2011), anticancer (Al-Said *et al.*, 2011), anti-HIV (Sahu *et al.*, 2007) and antitubercular activities (Vora *et al.*, 2012). In recent years, extensive research has been carried out on the synthesis and evaluation of the pharmacological activities of molecules containing the sulfonamide moiety, and they have been reported to be important pharmacophores (Mohan *et al.*, 2013). In this context and as part of our continued investigations of *N*-(4-substitutedphenyl)-4-bromobenzenesulfonamides (Vinola *et al.*, 2015), we report herein the crystal structure of *N*-(4-bromophenyl)-4-bromobenzenesulfonamide.

A view of the molecular structure of the compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

The molecule of the title compound (I) (Fig. 1) is U shaped, the central segment having a C1-S1-N1-C7 torsion angle of 63.2 (4)°. Further, the dihedral angle between the benzene rings is 38.5 (2)°.

The crystal structure features strong N1-H1····O2 hydrogen bonds (Table 1) that result in infinite [100] C(4)chains (Fig. 2). Molecules in adjacent chains are interlinked via C9-H9···O1 interactions which run along the b axis, forming C(7) chains. This results in a two-dimensional network in the ab plane (Fig. 3); adjacent networks are connected by short Br1···Br2 contacts [3.5092 (8) Å] propagating along the diagonal of the ac plane, so that a threedimensional supramolecular architecture ensues (Fig. 4).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$\begin{array}{l} N1 - H1 \cdots O2^{i} \\ C9 - H9 \cdots O1^{ii} \end{array}$	0.90 (3)	2.06 (2)	2.945 (5)	170 (5)
	0.93	2.48	3.238 (6)	138

Symmetry codes: (i) x - 1, y, z; (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$.

Figure 3

Formation of a two-dimensional network in the *ab* plane *via* $N-H\cdots O$ hydrogen bonds and $C-H\cdots O$ interactions.

Figure 2 Crystal packing of the title compound, displaying the $N-H\cdots O$ chains running along [100].

Figure 4 The three-dimensional architecture in the crystal structure.

Table 2Experimental details.

Crystal data Chemical formula C12H9Br2NO2S 391.08 М., Crystal system, space group Monoclinic, P21/n Temperature (K) 296 5.0643 (3), 12.8006 (7), *a*, *b*, *c* (Å) 20.5540 (11) $\beta (^{\circ})$ V (Å³) 91.076(2)1332.20 (13) Ζ 4 Cu Ka Radiation type $\mu \,({\rm mm}^{-1})$ 9.14 $0.28 \times 0.27 \times 0.22$ Crystal size (mm) Data collection Bruker APEXII Diffractometer Absorption correction Multi-scan (SADABS; Bruker, 2009) 0.184, 0.238 T_{\min}, T_{\max} No. of measured, independent and 9589, 2142, 2092 observed $[I > 2\sigma(I)]$ reflections 0.050 Rint $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$ 0.585 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.061, 0.181, 1.16 No. of reflections 2142 No. of parameters 167 No. of restraints 1 H-atom treatment H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ 1.15, -1.26

Computer programs: APEX2, SAINT-Plus and XPREP (Bruker, 2009), SHELXS97 and SHELXL97 (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

The dihedral angle between the benzene rings in 4-bromo-N-(4-nitrophenyl)-benzenesulfonamide (II) (Vinola *et al.*, 2015) is slightly less than that in (I), being 32.6 (6)°. The central segment C1–S1–N1–C7 has a torsion angle of -64.2 (3)° in (II), compared to 63.2 (4)° in (I). Similar to (I), the crystal structure of (II) displays a three-dimensional architecture. A structure-directing N–H···O hydrogen bond and three different structure-directing C–H···O interactions along with weak C–Br···O interactions, consolidate the crystal structure of (II) into a three dimensional architecture.

Synthesis and crystallization

Compound (I) was prepared according to the literature method (Vinola *et al.*, 2015). The purity of the compound was checked by determining its melting point. Prismatic single

crystals of (I) suitable for X-ray diffraction study were obtained by slow evaporation of an ethanolic solution of (I) at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. To improve considerably the values of R1, wR2, and GOOF, the bad (132), (105) and (024) reflections were omitted from the final refinement.

Acknowledgements

The authors are thankful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, Mysore, for providing the single-crystal X-ray diffraction data. VZR is thankful to the University Grants Commission, Delhi, for financial assistance under its MRP scheme.

References

- Al-Said, M. S., Ghorab, M. M., Al-Dosari, M. S. & Hamed, M. M. (2011). Eur. J. Med. Chem. 46, 201–207.
- Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ghorab, M. M., Ragab, A. F., Heiba, I. H. & Agha, M. H. (2011). J. Basic Appl. Chem. 1(2), 8–14.
- Hanafy, A., Uno, J., Mitani, H., Kang, Y. & Mikami, Y. (2007). Jpn J. Med. Mycol. 48, 47–50.
- Himel, C. M., Aboul-Saad, W. G. & Uk, S. (1971). J. Agric. Food Chem. 19, 1175–1180.
- Küçükgüzel, Ş., Coşkun, I., İnci, , Aydın, S., Aktay, G., Gürsoy, , Şule, , Çevik, Ö., Özakpınar, Ö., Özsavcı, D., Şener, A., Kaushik-Basu, N., Basu, A. & Talele, T. (2013). *Molecules*, **18**, 3595–3614.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Mohan, N. R., Sreenivasa, S., Manojkumar, K. E. & Chakrapani Rao, T. M. (2013). J. Appl. Chem. 2, 722–729.
- Sahu, K. K., Ravichandran, V., Mourya, V. K. & Agrawal, R. K. (2007). *Med. Chem. Res.* **15**, 418–430.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shiva Prasad, K., Shiva Kumara, L., Vinay, K. B., Chandra Shekar, S., Jayalakshmi, B. & Revanasiddappa, H. D. (2011). *Int. J. Chem. Res.* 2, 1–6.
- Subhakara Reddy, N., Srinivas Rao, A., Adharvana Chari, M., Ravi Kumar, V., Jyothy, V. & Himabindu, V. (2012). J. Chem. Sci. 124, 723–730.
- Vinola, Z. R., Snehala, Naveen, S., Lokanath, N. K. & Suchetan, P. A. (2015). Der Pharma Chem. 7, 299–307.
- Vora, P. J. & Mehta, A. G. (2012). IOSR J. Appl. Chem. 1(4), 34-39.
- Yan-Fang, Z., Run-Liang, F., Ya-Jing, L., Yi-Kun, Z. & Ping, G. (2010). Chem. Res. Chin. Univ. 26, 272–277.

full crystallographic data

IUCrData (2016). **1**, x160631 [doi:10.1107/S2414314616006313]

4-Bromo-N-(4-bromophenyl)benzenesulfonamide

Vinola Z. Rodrigues, S. Naveen, N. K. Lokanath and P. A. Suchetan

4-Bromo-N-(4-bromophenyl)benzenesulfonamide

Crystal data

C₁₂H₉Br₂NO₂S $M_r = 391.08$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 5.0643 (3) Å b = 12.8006 (7) Å c = 20.5540 (11) Å $\beta = 91.076$ (2)° V = 1332.20 (13) Å³ Z = 4F(000) = 760

Data collection

Bruker APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 1 pixels mm⁻¹ phi and φ scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\min} = 0.184, T_{\max} = 0.238$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.061$ $wR(F^2) = 0.181$ S = 1.162142 reflections 167 parameters 1 restraint Primary atom site location: structure-invariant direct methods Prism

 $D_x = 1.950 \text{ Mg m}^{-3}$ Melting point: 413 K Cu $K\alpha$ radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 167 reflections $\theta = 4.1-64.5^{\circ}$ $\mu = 9.14 \text{ mm}^{-1}$ T = 296 KPrism, colourless $0.28 \times 0.27 \times 0.22 \text{ mm}$

9589 measured reflections 2142 independent reflections 2092 reflections with $I > 2\sigma(I)$ $R_{int} = 0.050$ $\theta_{max} = 64.5^\circ, \ \theta_{min} = 4.1^\circ$ $h = -5 \rightarrow 5$ $k = -14 \rightarrow 14$ $l = -23 \rightarrow 23$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.1331P)^2 + 1.7178P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 1.15$ e Å⁻³ $\Delta\rho_{min} = -1.26$ e Å⁻³

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.5612 (9)	0.6558 (3)	0.1853 (2)	0.0144 (9)
C2	0.6912 (9)	0.5603 (4)	0.1886 (2)	0.0212 (10)
H2	0.8316	0.5506	0.2178	0.025*
C3	0.6100 (11)	0.4798 (4)	0.1481 (3)	0.0246 (11)
Н3	0.6959	0.4157	0.1497	0.030*
C4	0.3999 (10)	0.4956 (3)	0.1053 (2)	0.0195 (10)
C5	0.2722 (10)	0.5905 (4)	0.1016 (2)	0.0225 (10)
Н5	0.1330	0.5999	0.0720	0.027*
C6	0.3507 (10)	0.6715 (4)	0.1418 (2)	0.0174 (10)
H6	0.2646	0.7356	0.1398	0.021*
C7	0.5220 (8)	0.6491 (3)	0.3422 (2)	0.0122 (9)
C8	0.3527 (9)	0.5641 (4)	0.3350 (3)	0.0227 (10)
H8	0.2089	0.5684	0.3063	0.027*
C9	0.3960 (10)	0.4734 (4)	0.3701 (3)	0.0218 (10)
Н9	0.2810	0.4172	0.3655	0.026*
C10	0.6108 (9)	0.4672 (3)	0.4119 (2)	0.0187 (10)
C11	0.7797 (10)	0.5524 (4)	0.4209 (2)	0.0230 (10)
H11	0.9224	0.5483	0.4500	0.028*
C12	0.7313 (10)	0.6431 (4)	0.3860 (2)	0.0201 (10)
H12	0.8412	0.7006	0.3921	0.024*
N1	0.4784 (7)	0.7427 (3)	0.30503 (18)	0.0142 (8)
O1	0.5684 (6)	0.8555 (2)	0.21164 (16)	0.0192 (7)
O2	0.9253 (6)	0.7423 (2)	0.25806 (16)	0.0189 (7)
S1	0.65243 (19)	0.75847 (8)	0.23895 (5)	0.0125 (4)
Br1	0.28679 (13)	0.38445 (4)	0.05096 (3)	0.0339 (3)
Br2	0.68273 (11)	0.34108 (4)	0.45686 (2)	0.0271 (3)
H1	0.312 (4)	0.751 (4)	0.290 (2)	0.010 (12)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.015 (2)	0.013 (2)	0.016 (2)	-0.0018 (16)	0.0027 (17)	0.0005 (16)
C2	0.023 (2)	0.021 (2)	0.019 (2)	0.0029 (19)	-0.0061 (18)	-0.0004 (19)
C3	0.035 (3)	0.017 (2)	0.022 (3)	0.0076 (19)	-0.002(2)	-0.0035 (19)
C4	0.033 (3)	0.015 (2)	0.011 (2)	-0.0025 (19)	-0.0005 (18)	-0.0009 (17)
C5	0.031 (3)	0.019 (2)	0.018 (3)	0.0024 (19)	-0.0083 (19)	0.0000 (19)

C6	0.024 (2)	0.016 (2)	0.012 (2)	0.0034 (17)	-0.0042 (18)	-0.0014 (16)
C7	0.010 (2)	0.014 (2)	0.013 (2)	0.0003 (16)	0.0024 (17)	-0.0034 (16)
C8	0.019 (2)	0.017 (2)	0.032 (3)	-0.0026 (18)	-0.0089 (19)	0.0001 (19)
C9	0.026 (2)	0.013 (2)	0.026 (3)	-0.0046 (18)	-0.0082 (19)	-0.0004 (18)
C10	0.023 (2)	0.014 (2)	0.019 (2)	0.0010 (17)	0.0021 (18)	-0.0022 (17)
C11	0.026 (2)	0.025 (2)	0.018 (2)	-0.0054 (19)	-0.0073 (19)	0.0050 (19)
C12	0.028 (3)	0.020 (2)	0.012 (2)	-0.0113 (19)	-0.0055 (19)	0.0026 (18)
N1	0.0108 (18)	0.0145 (17)	0.017 (2)	0.0023 (13)	-0.0016 (15)	-0.0013 (15)
01	0.0214 (17)	0.0144 (15)	0.0215 (18)	-0.0005 (12)	-0.0043 (13)	0.0010 (13)
O2	0.0117 (15)	0.0205 (15)	0.0245 (18)	-0.0008 (11)	-0.0030 (12)	-0.0001 (13)
S1	0.0116 (6)	0.0123 (6)	0.0135 (6)	-0.0008 (3)	-0.0022 (4)	0.0006 (4)
Br1	0.0600 (5)	0.0180 (5)	0.0234 (5)	0.0004 (2)	-0.0122 (3)	-0.00819 (19)
Br2	0.0410 (5)	0.0172 (5)	0.0228 (4)	0.00183 (18)	-0.0048 (3)	0.00593 (18)

Geometric parameters (Å, °)

C1—C2	1.389 (7)	C7—N1	1.435 (6)	
C1—C6	1.393 (7)	C8—C9	1.382 (7)	
C1—S1	1.772 (4)	C8—H8	0.9300	
C2—C3	1.381 (7)	C9—C10	1.375 (7)	
C2—H2	0.9300	С9—Н9	0.9300	
C3—C4	1.382 (7)	C10—C11	1.396 (7)	
С3—Н3	0.9300	C10—Br2	1.892 (5)	
C4—C5	1.377 (7)	C11—C12	1.385 (7)	
C4—Br1	1.892 (5)	C11—H11	0.9300	
C5—C6	1.380 (7)	C12—H12	0.9300	
С5—Н5	0.9300	N1—S1	1.646 (4)	
С6—Н6	0.9300	N1—H1	0.895 (10)	
C7—C12	1.380 (7)	O1—S1	1.425 (3)	
С7—С8	1.391 (6)	O2—S1	1.445 (3)	
C2-C1-C6	121.0 (4)	С7—С8—Н8	119.7	
C2-C1-S1	120.3 (4)	C10—C9—C8	119.4 (4)	
C6-C1-S1	118.7 (3)	С10—С9—Н9	120.3	
C3—C2—C1	119.4 (4)	С8—С9—Н9	120.3	
С3—С2—Н2	120.3	C9—C10—C11	120.9 (4)	
C1—C2—H2	120.3	C9—C10—Br2	119.8 (3)	
C2—C3—C4	119.4 (4)	C11—C10—Br2	119.3 (4)	
С2—С3—Н3	120.3	C12-C11-C10	118.9 (5)	
С4—С3—Н3	120.3	C12—C11—H11	120.5	
C5—C4—C3	121.3 (4)	C10-C11-H11	120.5	
C5-C4-Br1	119.6 (4)	C7—C12—C11	120.8 (4)	
C3—C4—Br1	119.2 (4)	C7—C12—H12	119.6	
C4—C5—C6	120.0 (5)	C11—C12—H12	119.6	
C4—C5—H5	120.0	C7—N1—S1	117.5 (3)	
С6—С5—Н5	120.0	C7—N1—H1	114 (3)	
C5—C6—C1	118.9 (4)	S1—N1—H1	103 (3)	
С5—С6—Н6	120.5	O1—S1—O2	120.63 (19)	

С1—С6—Н6	120.5	O1—S1—N1	105.77 (19)
C12—C7—C8	119.3 (4)	O2—S1—N1	106.41 (19)
C12—C7—N1	120.2 (4)	O1—S1—C1	109.2 (2)
C8—C7—N1	120.5 (4)	O2—S1—C1	107.4 (2)
C9—C8—C7	120.7 (4)	N1—S1—C1	106.58 (19)
С9—С8—Н8	119.7		
C6—C1—C2—C3	-0.1 (7)	Br2-C10-C11-C12	177.6 (4)
S1—C1—C2—C3	177.3 (4)	C8—C7—C12—C11	2.3 (7)
C1—C2—C3—C4	-0.4 (7)	N1-C7-C12-C11	-178.4 (4)
C2—C3—C4—C5	0.9 (8)	C10-C11-C12-C7	-0.9 (7)
C2-C3-C4-Br1	-179.1 (4)	C12—C7—N1—S1	82.2 (5)
C3—C4—C5—C6	-1.0 (8)	C8—C7—N1—S1	-98.5 (4)
Br1-C4-C5-C6	179.0 (4)	C7—N1—S1—O1	179.3 (3)
C4—C5—C6—C1	0.5 (7)	C7—N1—S1—O2	-51.3 (4)
C2-C1-C6-C5	0.0 (7)	C7—N1—S1—C1	63.2 (4)
S1—C1—C6—C5	-177.5 (4)	C2-C1-S1-O1	158.4 (4)
C12—C7—C8—C9	-1.5 (7)	C6-C1-S1-O1	-24.1 (4)
N1—C7—C8—C9	179.2 (4)	C2-C1-S1-O2	25.9 (4)
C7—C8—C9—C10	-0.8 (8)	C6-C1-S1-O2	-156.6 (4)
C8—C9—C10—C11	2.3 (8)	C2-C1-S1-N1	-87.8 (4)
C8—C9—C10—Br2	-176.8 (4)	C6-C1-S1-N1	89.7 (4)
C9—C10—C11—C12	-1.4 (7)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A
N1—H1···O2 ⁱ	0.90 (3)	2.06 (2)	2.945 (5)	170 (5)
С9—Н9…О1 ^{іі}	0.93	2.48	3.238 (6)	138

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+1/2, *y*-1/2, -*z*+1/2.