

ISSN 2414-3146

Received 25 April 2016 Accepted 3 May 2016

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; oxamide compounds; hydrogen bonds.

CCDC reference: 1446193

Structural data: full structural data are available from iucrdata.iucr.org

N-(5-Chloro-2-hydroxyphenyl)-N'-(3-hydroxypropyl)oxalamide

Chang-Kai Wang, Kang Zheng, Yan-Tuan Li and Zhi-Yong Wu*

Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China. *Correspondence e-mail: wuzy@ouc.edu.cn

In the structure of the title N,N'-bis(substituted)oxamide compound, $C_{11}H_{13}ClN_2O_4$, the chlorohydroxyphenyl ring plane subtends an angle of 15.06 (13)° to the plane of the oxalamide unit. This in turn is inclined to the hydroxypropyl substituent by 78.03 (14)°. In the crystal, classical $O-H \cdots O$ and $N{-}H{\cdot}{\cdot}{\cdot}O$ hydrogen bonds give rise to a three-dimensional supramolecular structure.

Structure description

Oxamide complexes are of considerable current interest due to their DNA-binding properties and cytotoxic activity (Martínez-Martínez et al., 1998; Li et al., 2012; Yue et al., 2012 and Zheng et al., 2012). The title oxamide compound, N-(5-chloro-2-hydroxyphenyl)-N'-(3-hydroxypropyl)oxalamide (H₃chhpox), adopts a *transoid* conformation as expected (Fig. 1). The benzene ring substituent is almost coplanar with the oxamide group with a C7-N1-C1-C6 torsion angle of 11.8 (4)° while the other hydroxyphenyl substituent arm is almost orthogonal to this plane with a C8-N2-C9-C10 torsion angle of 92.4 $(3)^{\circ}$.

In the crystal, layers are formed parallel to the *ac* plane through $O-H \cdots O$ hydrogen bonds (Fig. 2, Table 1). Inversion-related $N-H \cdots O$ hydrogen bonds between the oxamide groups connect the parallel layers into a three-dimensional supramolecular structure.

Synthesis and crystallization

The synthesis of the title compound (H_3chpox) was achieved in two steps. The first was the preparation of N-(5-chloro-2-hydroxyphenyl)oxalamide (H₃chox) according to a reported method (Marmur, 1961). Next, H₃chox (5 mmol, 1.22 g) in 20 mL absolute

Figure 1

The molecular structure with displacement ellipsoids drawn at the 30% probability level.

ethanol was added dropwise to 20 mL of an absolute ethanol solution containing 3-amino-1-propanol (6 mmol, 0.76 mL) at 273 K. The resulting solution was stirred for 2 h, and H₃chhpox was precipitated as a white powder. It was then recrystallized from ethanol at 273 K and dried under vacuum. Well-shaped colorless single crystals were obtained by slow evaporation of an ethanol solution of the recrystallized product. Yield: 83%. Analysis calculated for $C_{11}H_{13}N_2O_4Cl$: C, 48.45; H, 4.81; N, 10.27%. Found: C, 48.96; H, 4.77; N, 10.65%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Nos. 51273184 and 81202399) and the Open Research Fund Program of the Key Laboratory of

Figure 2

The two-dimensional hydrogen-bonding network parallel to (010), constructed by classical O-H···O interactions. [Symmetry codes: (i) $x - \frac{3}{2}, \frac{3}{2} - y, z + \frac{1}{2}$; (ii) x + 1, y, z; (iii) $x + \frac{3}{2}, \frac{3}{2} - y, z - \frac{1}{2}$; (iv) x - 1, y, z.]

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1A\cdots O4^{i}$ $O4-H4A\cdots O3^{ii}$	0.81 (2) 0.81 (2)	1.88 (2) 1.98 (2)	2.690 (2) 2.794 (2)	173 (3) 178 (3)
$N2-H2\cdots O2^{iii}$	0.88 (2)	2.12 (3)	2.916 (2)	150 (2)

Symmetry codes: (i) $x - \frac{3}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$; (ii) x + 1, y, z; (iii) -x + 2, -y + 1, -z.

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{11}H_{13}CIN_2O_4$
M _r	272.68
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	296
a, b, c (Å)	6.1422 (14), 18.117 (4), 11.061 (2)
β (°)	98.896 (8)
$V(\text{\AA}^3)$	1216.0 (5)
Ζ	4
Radiation type	Μο Κα
$\mu \ (\mathrm{mm}^{-1})$	0.32
Crystal size (mm)	$0.49 \times 0.16 \times 0.03$
Data collection	
Diffractometer	Bruker APEX area-detector
Absorption correction	Multi-scan (SADABS; Bruker, 2002)
T_{\min}, T_{\max}	0.697, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	10616, 2779, 1672
R _{int}	0.054
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.651
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.047, 0.107, 1.00
No. of reflections	2779
No. of parameters	215
No. of restraints	2
H-atom treatment	All H-atom parameters refined
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.25, -0.20
No. of restraints H-atom treatment $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}}$ (e Å ⁻³)	2 All H-atom parameters refined 0.25, -0.20

Computer programs: *SMART* and *SAINT* (Bruker, 2002), *SHELXS97* and *XP* in *SHELXTL* (Sheldrick, 2008), *SHELXL2014* (Sheldrick, 2015), and *WinGX* (Farrugia, 2012).

Marine Drugs (Ocean University of China), Ministry of Education [No. KLMD(OUC) 201401].

References

- Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Li, X.-W., Tao, L., Li, Y.-T., Wu, Z.-Y. & Yan, C.-W. (2012). Eur. J. Med. Chem. 54, 697–708.
- Marmur, J. (1961). J. Mol. Biol. 3, 208-218.
- Martínez-Martínez, F. J., Padilla-Martínez, I. I., Brito, M. A., Geniz, E. D., Rojas, R. C., Saavedra, J. B. R., Höpfl, H., Tlahuextl, M. & Contreras, R. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 401–406.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Yue, X.-T., Li, X.-W. & Wu, Z.-Y. (2012). Acta Cryst. E68, 08.

Zheng, Y.-J., Zheng, K., Wu, Z.-Y. & Li, Y. (2012). Acta Cryst. E68, 0895.

full crystallographic data

IUCrData (2016). **1**, x160737 [doi:10.1107/S2414314616007379]

N-(5-Chloro-2-hydroxyphenyl)-N'-(3-hydroxypropyl)oxalamide

F(000) = 568

 $\theta = 3.5 - 25.0^{\circ}$ $\mu = 0.32 \text{ mm}^{-1}$

Prism, colorless

 $0.49 \times 0.16 \times 0.03 \text{ mm}$

 $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.5^{\circ}$

2779 independent reflections

1672 reflections with $I > 2\sigma(I)$

T = 296 K

 $R_{\rm int} = 0.054$

 $h = -7 \rightarrow 7$

 $k = -23 \rightarrow 23$

 $l = -13 \rightarrow 14$

 $D_{\rm x} = 1.490 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2400 reflections

Chang-Kai Wang, Kang Zheng, Yan-Tuan Li and Zhi-Yong Wu

N-(5-Chloro-2-hydroxyphenyl)-N'-(3-hydroxypropyl)ethanediamide

Crystal data

 $C_{11}H_{13}ClN_2O_4$ $M_r = 272.68$ Monoclinic, $P2_1/n$ a = 6.1422 (14) Å b = 18.117 (4) Å c = 11.061 (2) Å $\beta = 98.896$ (8)° V = 1216.0 (5) Å³ Z = 4

Data collection

Bruker APEX area-detector diffractometer Radiation source: fine-focus sealed tube φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2002) $T_{\min} = 0.697, T_{\max} = 0.746$ 10616 measured reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.107$	All H-atom parameters refined
S = 1.00	$w = 1/[\sigma^2(F_0^2) + (0.0419P)^2 + 0.2977P]$
2779 reflections	where $P = (F_o^2 + 2F_c^2)/3$
215 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
2 restraints	$\Delta ho_{ m max} = 0.25$ e Å ⁻³
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.20 \text{ e} \text{ Å}^{-3}$
direct methods	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C11	0.54932 (13)	0.33941 (3)	0.39890 (7)	0.0621 (3)
01	0.2065 (3)	0.63169 (9)	0.24549 (16)	0.0484 (5)
O2	0.7936 (3)	0.50435 (8)	0.08106 (16)	0.0485 (5)
O3	0.6905 (2)	0.69246 (8)	0.03286 (14)	0.0400 (4)
O4	1.4561 (3)	0.80399 (10)	-0.10518 (19)	0.0523 (5)
N1	0.5547 (3)	0.58139 (10)	0.15803 (17)	0.0334 (5)
N2	0.8959 (3)	0.61585 (10)	-0.06633 (18)	0.0356 (5)
C1	0.4604 (3)	0.53575 (11)	0.23849 (19)	0.0312 (5)
C2	0.2779 (4)	0.56333 (12)	0.2848 (2)	0.0356 (5)
C3	0.1802 (4)	0.52106 (14)	0.3647 (2)	0.0449 (6)
C4	0.2617 (4)	0.45182 (13)	0.4005 (2)	0.0450 (6)
C5	0.4420 (4)	0.42605 (12)	0.3552 (2)	0.0390 (6)
C6	0.5429 (4)	0.46656 (12)	0.2747 (2)	0.0345 (5)
C7	0.7077 (3)	0.56439 (11)	0.0884 (2)	0.0310 (5)
C8	0.7663 (3)	0.63118 (11)	0.0148 (2)	0.0308 (5)
C9	0.9727 (4)	0.67265 (14)	-0.1426 (2)	0.0385 (6)
C10	1.1919 (4)	0.70438 (13)	-0.0862 (2)	0.0363 (6)
C11	1.2472 (4)	0.77284 (13)	-0.1527 (2)	0.0398 (6)
H1	0.507 (4)	0.6260 (14)	0.150 (2)	0.049 (7)*
H1A	0.122 (4)	0.6487 (14)	0.288 (2)	0.061 (9)*
H2	0.946 (4)	0.5705 (14)	-0.068 (2)	0.052 (8)*
H3	0.060 (4)	0.5401 (13)	0.394 (2)	0.048 (7)*
H4	0.191 (4)	0.4237 (12)	0.453 (2)	0.044 (7)*
H4A	1.527 (5)	0.7724 (14)	-0.065 (3)	0.086 (12)*
H6	0.663 (4)	0.4498 (12)	0.2439 (19)	0.038 (6)*
H9A	0.863 (4)	0.7103 (13)	-0.158 (2)	0.048 (7)*
H9B	0.985 (4)	0.6512 (13)	-0.223 (2)	0.051 (7)*
H10A	1.300 (4)	0.6690 (13)	-0.089 (2)	0.049 (7)*
H10B	1.191 (4)	0.7173 (12)	0.001 (2)	0.047 (7)*
H11A	1.134 (4)	0.8107 (13)	-0.142 (2)	0.051 (7)*
H11B	1.244 (4)	0.7627 (13)	-0.239 (2)	0.055 (8)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0836 (6)	0.0395 (4)	0.0696 (5)	0.0142 (3)	0.0319 (4)	0.0192 (3)
01	0.0533 (12)	0.0387 (9)	0.0596 (12)	0.0148 (8)	0.0290 (10)	0.0017 (8)
O2	0.0544 (11)	0.0292 (9)	0.0709 (12)	0.0096 (8)	0.0384 (10)	0.0073 (8)
O3	0.0459 (10)	0.0263 (8)	0.0499 (10)	0.0023 (7)	0.0141 (8)	0.0018 (7)
O4	0.0427 (11)	0.0400 (10)	0.0750 (14)	-0.0110 (9)	0.0117 (10)	0.0195 (10)

N1	0.0382 (11)	0.0235 (10)	0.0425 (12)	0.0032 (8)	0.0186 (9)	0.0008 (8)
N2	0.0357 (11)	0.0289 (10)	0.0461 (12)	-0.0019 (9)	0.0184 (10)	0.0019 (9)
C1	0.0342 (12)	0.0274 (11)	0.0339 (12)	-0.0022 (9)	0.0108 (10)	-0.0037 (9)
C2	0.0374 (13)	0.0289 (11)	0.0425 (14)	0.0035 (10)	0.0127 (11)	-0.0046 (10)
C3	0.0439 (15)	0.0473 (15)	0.0495 (16)	0.0031 (12)	0.0257 (13)	-0.0036 (12)
C4	0.0556 (17)	0.0402 (14)	0.0447 (15)	-0.0047 (12)	0.0253 (13)	0.0021 (12)
C5	0.0497 (15)	0.0310 (12)	0.0383 (14)	0.0001 (11)	0.0129 (12)	-0.0003 (10)
C6	0.0364 (14)	0.0310 (12)	0.0393 (13)	0.0033 (10)	0.0154 (11)	-0.0009 (10)
C7	0.0307 (12)	0.0257 (11)	0.0383 (13)	-0.0012 (10)	0.0105 (10)	-0.0026 (10)
C8	0.0272 (12)	0.0285 (11)	0.0366 (13)	-0.0026 (9)	0.0050 (10)	-0.0007 (10)
C9	0.0384 (15)	0.0399 (14)	0.0395 (15)	-0.0035 (12)	0.0129 (12)	0.0060 (12)
C10	0.0351 (14)	0.0324 (12)	0.0430 (15)	-0.0028 (11)	0.0105 (11)	0.0063 (11)
C11	0.0433 (15)	0.0352 (13)	0.0429 (16)	-0.0037 (12)	0.0131 (12)	0.0075 (12)

Geometric parameters (Å, °)

Cl1—C5	1.742 (2)	C3—C4	1.385 (3)
O1—C2	1.362 (3)	С3—Н3	0.92 (2)
O1—H1A	0.813 (17)	C4—C5	1.366 (3)
O2—C7	1.217 (2)	C4—H4	0.93 (2)
O3—C8	1.232 (2)	C5—C6	1.374 (3)
O4—C11	1.426 (3)	С6—Н6	0.91 (2)
O4—H4A	0.812 (17)	C7—C8	1.532 (3)
N1—C7	1.340 (3)	C9—C10	1.507 (3)
N1—C1	1.404 (3)	С9—Н9А	0.96 (2)
N1—H1	0.86 (2)	С9—Н9В	0.98 (2)
N2—C8	1.317 (3)	C10—C11	1.507 (3)
N2—C9	1.454 (3)	C10—H10A	0.93 (2)
N2—H2	0.88 (2)	C10—H10B	0.99 (2)
C1—C6	1.388 (3)	C11—H11A	1.00 (2)
C1—C2	1.395 (3)	C11—H11B	0.97 (2)
C2—C3	1.375 (3)		
C2—O1—H1A	111.1 (19)	С1—С6—Н6	118.3 (14)
C11—O4—H4A	107 (2)	O2—C7—N1	126.43 (19)
C7—N1—C1	128.59 (18)	O2—C7—C8	122.01 (18)
C7—N1—H1	114.1 (16)	N1—C7—C8	111.56 (17)
C1—N1—H1	117.2 (16)	O3—C8—N2	125.7 (2)
C8—N2—C9	122.0 (2)	O3—C8—C7	119.94 (18)
C8—N2—H2	117.3 (16)	N2—C8—C7	114.32 (18)
C9—N2—H2	120.4 (16)	N2-C9-C10	112.3 (2)
C6—C1—C2	119.7 (2)	N2—C9—H9A	109.1 (14)
C6—C1—N1	123.15 (19)	С10—С9—Н9А	111.4 (14)
C2-C1-N1	117.09 (18)	N2—C9—H9B	108.7 (14)
O1—C2—C3	124.1 (2)	С10—С9—Н9В	109.7 (14)
O1—C2—C1	116.49 (19)	Н9А—С9—Н9В	106 (2)
C3—C2—C1	119.4 (2)	C11—C10—C9	111.5 (2)
C2—C3—C4	120.9 (2)	C11—C10—H10A	109.9 (14)

С2—С3—Н3	118.0 (15)	C9—C10—H10A	108.7 (14)
С4—С3—Н3	121.1 (15)	C11—C10—H10B	108.4 (13)
C5—C4—C3	118.8 (2)	C9—C10—H10B	110.5 (13)
C5—C4—H4	121.6 (14)	H10A-C10-H10B	108 (2)
C3—C4—H4	119.6 (14)	O4—C11—C10	113.8 (2)
C4—C5—C6	121.9 (2)	O4—C11—H11A	106.9 (13)
C4—C5—C11	119.99 (18)	C10-C11-H11A	107.2 (13)
C6—C5—C11	118.14 (17)	O4—C11—H11B	108.6 (14)
C5—C6—C1	119.2 (2)	C10-C11-H11B	110.7 (15)
С5—С6—Н6	122.5 (14)	H11A—C11—H11B	109.4 (19)
C7—N1—C1—C6	11.8 (4)	C2-C1-C6-C5	0.5 (3)
C7—N1—C1—C2	-169.5 (2)	N1—C1—C6—C5	179.1 (2)
C6-C1-C2-O1	179.8 (2)	C1—N1—C7—O2	0.9 (4)
N1-C1-C2-O1	1.1 (3)	C1—N1—C7—C8	-179.4 (2)
C6—C1—C2—C3	-0.9 (3)	C9—N2—C8—O3	2.5 (4)
N1—C1—C2—C3	-179.5 (2)	C9—N2—C8—C7	-178.6 (2)
O1—C2—C3—C4	179.9 (2)	O2—C7—C8—O3	-173.5 (2)
C1—C2—C3—C4	0.5 (4)	N1—C7—C8—O3	6.7 (3)
C2—C3—C4—C5	0.2 (4)	O2—C7—C8—N2	7.5 (3)
C3—C4—C5—C6	-0.6 (4)	N1-C7-C8-N2	-172.22 (19)
C3—C4—C5—Cl1	179.7 (2)	C8—N2—C9—C10	92.4 (3)
C4—C5—C6—C1	0.3 (4)	N2-C9-C10-C11	-168.6 (2)
Cl1—C5—C6—C1	179.97 (18)	C9—C10—C11—O4	-178.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A	
O1—H1A····O4 ⁱ	0.81 (2)	1.88 (2)	2.690 (2)	173 (3)	
O4—H4 <i>A</i> ···O3 ⁱⁱ	0.81 (2)	1.98 (2)	2.794 (2)	178 (3)	
N2—H2···O2 ⁱⁱⁱ	0.88 (2)	2.12 (3)	2.916 (2)	150 (2)	

Symmetry codes: (i) *x*-3/2, -*y*+3/2, *z*+1/2; (ii) *x*+1, *y*, *z*; (iii) -*x*+2, -*y*+1, -*z*.