

ISSN 2414-3146

Received 28 April 2016 Accepted 11 May 2016

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; benzimidazole; carbaldehyde; C—H···O hydrogen bonding; offset π - π interactions.

CCDC reference: 1442202

Structural data: full structural data are available from iucrdata.iucr.org

Benzo[4,5]imidazo[2,1-b]thiazole-2-carbaldehyde

Basappa Yallur,^b P. Murali Krishna^a* and Amar A Hosamani^c

^aDepartment of Chemistry, M. S. Ramaiah Institute of Technology, Bangalore 560 054, Karnataka, India, ^bVisvesvaraya Technological University, Belagavi 590 018, India, and ^cSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India. *Correspondence e-mail: muralikp21@gmail.com

The title compound, $C_{10}H_6N_2OS$, is planar, with an r.m.s. deviation of 0.021 Å for the non-H atoms. In the crystal, molecules are linked *via* a pair of $C-H\cdots O$ hydrogen bonds, forming inversion dimers with an $R_2^2(6)$ ring motif. The molecules stack up the *c* axis and are linked by offset $\pi-\pi$ interactions [shortest inter-centroid distance = 3.647 (2) Å], forming undulating layers parallel to (100).

Structure description

Substituted and unsubstituted benzimidazole derivatives occupy an important position among medications due to their vast range of biological activities, such as immunomodulator (Fenichel *et al.*, 1980; Dillman *et al.*, 1992) anti-ulcer, anticancer (Abdel-Aziz *et al.*, 2010), antifungal (Pattanaik *et al.*, 1998), antibacterial (Oh *et al.*, 1995), antidiabetic (El-Shorbagi *et al.*, 2001) and fungicidal (Chaudhary *et al.*, 1970). Benzimidazole derivatives are also used as building blocks for the synthesis of nonpeptide antagonists of angiotensin II receptor (Abdel-Aziz *et al.*, 2010; Chaudhary *et al.*, 1970). In view of the current interest in designing new benzimidazole derivatives, we have synthesized benzo[4,5]imidazo[2,1-*b*]thiazole-2-carbaldehyde and report herein its crystal structure.

The title compound (Fig. 1) is planar, with an r.m.s. deviation of 0.021 Å for all the non-H atoms [maximum deviation = 0.032 (4) Å for atom C3]. The bond lengths and angles are close to those observed for the similar compound 1-(6-bromo-3-methyl-1,3-thiazolo[3,2-*a*]benzimidazol-2-yl)ethanone (Abdel-Aziz *et al.*, 2011).

In the crystal of the title compound, molecules are linked by a pair of C-H···O hydrogen bonds, forming inversion dimers with an $R_2^2(6)$ ring motif (Table 1 and Fig. 2). The molecules stack up the *c* axis and are linked by slipped parallel π - π interactions, involving inversion-related molecules, forming undulating layers parallel to the *bc* plane (Fig. 2). The shortest interaction is Cg1···· $Cg2^{11}$ of 3.647 (2) Å, with an interplanar

Figure 1

The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Table 1 Hydrogen-bond geometry (Å °)

Hydrogen bond geometry (H,).					
$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$	
$C1 - H1 \cdots O1^i$	0.93	2.55	3.248 (4)	132	

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

distance of 3.417 (1) Å and a slippage of 1.239 Å [*Cg*1 and *Cg*2 are the centroids of the S1/N2/C2/C3/C10 and N1/N2/C4/C9/ C10 rings, respectively; symmetry code: (ii) -x, -y, -z].

Synthesis and crystallization

To synthesize the title compound, a number of attempts were made with different bases, like K2CO3, NaOH, KOH, triethylamine and ACONa, for the nucleophilic reaction in different solvents, like EtOH, MeOH, CH₃CN and dimethylformamide (DMF). Success was achieved with the following procedure. To a stirred solution of 2-mercaptobenzimidazole (250 mg, 0.0016 mol) in dry acetone, an acetone solution of 2bromomalonaldehyde (252 mg, 0.0016 mol) was added dropwise with stirring over a period of 60 min. After evaporating the solvent, ice-cold water was added and the mixture neutralized with ammonium hydroxide. The reaction was monitored by thin-layer-chromatography (TLC). The palecoloured solid which was produced was collected by filtration, washed several times with ice-cold water and petroleum ether, and finally dried in vacuo. Colourless block-shaped crystals were obtained by slow evaporation of a solution in water/ DMF (1:9 v/v).

Table 2 Experimental details.	
Crystal data	
Chemical formula	$C_{10}H_6N_2OS$
M _r	202.23
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	298
a, b, c (Å)	5.6514 (16), 21.220 (7), 7.381 (2)
β(°)	96.473 (17)
$V(Å^3)$	879.5 (5)
Z	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.33
Crystal size (mm)	$0.24 \times 0.23 \times 0.22$
Data collection	
Diffractometer	Bruker SMART APEXII area- detector
Absorption correction	Multi-scan (SADABS; Bruker, 2012)
T_{\min}, T_{\max}	0.584, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	15536, 2357, 935
R _{int}	0.129
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.705
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.058, 0.150, 0.91
No. of reflections	2357
No. of parameters	131
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	0.23, -0.35

Computer programs: APEX2 and SAINT (Bruker, 2012), olex2.solve (Bourhis et al., 2015), SHELXL2014 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors thank Professor T. N. Guru Row, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for data collection at the CCD facility and Professor Kandikere Ramaiah Prabhu, Department of Organic Chemistry, Indian Institute of Science, Bangalore, for kind technical support.

References

Abdel-Aziz, H. A., Hamdy, N. N., Gamal-Eldeen, A. M. & Fakhr, I. M. (2011). Z. Naturforsch. Teil C, 66, 7–16.

Figure 2

A view along the c axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1) and, for clarity, only the H atom (grey ball) involved in this interaction has been included.

- Abdel-Aziz, H. A., Saleh, T. S. & El-Zahabi, H. S. A. (2010). Arch. Pharm. 343, 24–30.
- Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.
- Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chaudhary, H. S., Parda, C. S. & Pujari, H. K. (1970). Indian J. Chem. 8, 10.
- Dillman, R. O., Ryan, K. P., Dillman, J. B., Shawler, D. L. & Maguire, R. (1992). *Mol. Biother.* 4, 10–14.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

- El-Shorbagi, A. A., Hayallah, A. A., Omar, N. M. & Ahmed, A. N. (2001). *Chem. Abstr.* **136**, 151102.
- Fenichel, R. L., Alburn, H. E., Schreck, P. A., Bloom, R. & Gregory, F. J. (1980). *J. Immunopharmacol.* **2**, 491–508.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Oh, C., Ham, Y., Hong, S. & Cho, J. (1995). Arch. Pharm. Pharm. Med. Chem. 328, 289–291.
- Pattanaik, J. M., Pattanaik, M. & Bhatta, D. (1998). Indian J. Heterocycl. Chem. 8, 75–76.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2016). **1**, x160778 [doi:10.1107/S2414314616007781]

Benzo[4,5]imidazo[2,1-b]thiazole-2-carbaldehyde

Basappa Yallur, P. Murali Krishna and Amar A Hosamani

Benzo[4,5]imidazo[2,1-b]thiazole-2-carbaldehyde

Crystal data

 $\begin{array}{l} {\rm C}_{10}{\rm H_6N_2OS} \\ M_r = 202.23 \\ {\rm Monoclinic}, \ P2_1/c \\ a = 5.6514 \ (16) \ {\rm \AA} \\ b = 21.220 \ (7) \ {\rm \AA} \\ c = 7.381 \ (2) \ {\rm \AA} \\ \beta = 96.473 \ (17)^\circ \\ V = 879.5 \ (5) \ {\rm \AA}^3 \\ Z = 4 \end{array}$

Data collection

Bruker SMART APEXII area-detector diffractometer
Radiation source: microfocus sealed X-ray tube, Incoatec Iμs
Mirror optics monochromator
Detector resolution: 7.9 pixels mm⁻¹
ω and φ scans
Absorption correction: multi-scan (SADABS; Bruker, 2012)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.058$ $wR(F^2) = 0.150$	Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent
S = 0.91	and constrained refinement $1/[-2(T_{c}^{2})] + (0.0502 D)^{2}$
131 parameters	$W = 1/[\sigma^{2}(F_{o}^{2}) + (0.0595P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant direct methods	$\Delta ho_{ m max} = 0.23 \ { m e} \ { m \AA}^{-3}$ $\Delta ho_{ m min} = -0.35 \ { m e} \ { m \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

F(000) = 416

 $\theta = 5 - 25.0^{\circ}$

T = 298 K

 $R_{\rm int} = 0.129$

 $h = -6 \rightarrow 7$

 $k = -29 \longrightarrow 29$ $l = -10 \longrightarrow 10$

 $\mu = 0.33 \text{ mm}^{-1}$

Block, colourless

 $0.24 \times 0.23 \times 0.22 \text{ mm}$

 $T_{\rm min} = 0.584, T_{\rm max} = 0.746$

 $\theta_{\text{max}} = 30.1^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$

15536 measured reflections

2357 independent reflections

935 reflections with $I > 2\sigma(I)$

 $D_{\rm x} = 1.527 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 563 reflections

	x	y	Z	$U_{ m iso}$ */ $U_{ m eq}$	
S 1	0.00346 (15)	0.35868 (4)	0.24538 (14)	0.0456 (3)	
01	0.2732 (5)	0.47879 (12)	0.3388 (4)	0.0712 (9)	
N1	-0.0906 (5)	0.22884 (13)	0.2066 (4)	0.0405 (7)	
N2	0.2655 (4)	0.26299 (12)	0.3445 (4)	0.0344 (7)	
C1	0.3851 (6)	0.43192 (18)	0.3864 (5)	0.0524 (10)	
H1	0.5378	0.4367	0.4465	0.063*	
C2	0.2933 (6)	0.36898 (16)	0.3546 (5)	0.0386 (8)	
C3	0.4060 (6)	0.31408 (16)	0.3987 (5)	0.0394 (9)	
Н3	0.5596	0.3111	0.4583	0.047*	
C4	0.2798 (5)	0.19764 (15)	0.3477 (5)	0.0354 (8)	
C5	0.4609 (6)	0.15669 (16)	0.4114 (5)	0.0437 (9)	
Н5	0.6083	0.1711	0.4640	0.052*	
C6	0.4101 (6)	0.09323 (17)	0.3922 (5)	0.0513 (10)	
H6	0.5260	0.0639	0.4339	0.062*	
C7	0.1898 (7)	0.0720 (2)	0.3120 (5)	0.0519 (10)	
H7	0.147 (6)	0.0268 (17)	0.294 (5)	0.066 (12)*	
C8	0.0123 (6)	0.11321 (17)	0.2454 (5)	0.0468 (9)	
H8	-0.1335	0.0984	0.1909	0.056*	
C9	0.0572 (5)	0.17760 (16)	0.2619 (4)	0.0370 (8)	
C10	0.0414 (5)	0.27784 (16)	0.2589 (5)	0.0402 (9)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0405 (5)	0.0460 (6)	0.0480 (6)	0.0017 (4)	-0.0050 (4)	0.0016 (5)
01	0.080(2)	0.0409 (17)	0.087 (2)	0.0059 (14)	-0.0140 (16)	0.0041 (15)
N1	0.0381 (15)	0.0419 (19)	0.0404 (18)	-0.0038 (14)	-0.0014 (13)	-0.0023 (14)
N2	0.0296 (14)	0.0401 (18)	0.0326 (17)	-0.0034 (13)	-0.0003 (12)	-0.0016 (14)
C1	0.049 (2)	0.050 (3)	0.055 (3)	-0.007(2)	-0.0069 (19)	-0.007(2)
C2	0.0372 (18)	0.042 (2)	0.035 (2)	-0.0044 (16)	-0.0012 (15)	0.0009 (17)
C3	0.0356 (18)	0.045 (2)	0.037 (2)	-0.0053 (17)	0.0011 (15)	-0.0020 (17)
C4	0.0340 (18)	0.040 (2)	0.032 (2)	-0.0024 (16)	0.0007 (14)	-0.0039 (17)
C5	0.0357 (18)	0.049 (2)	0.046 (2)	0.0009 (16)	0.0013 (16)	0.0043 (18)
C6	0.055 (2)	0.042 (2)	0.057 (3)	0.0080 (18)	0.0087 (19)	0.0030 (19)
C7	0.057 (3)	0.044 (3)	0.055 (3)	-0.005 (2)	0.009 (2)	-0.006 (2)
C8	0.044 (2)	0.053 (2)	0.044 (2)	-0.011 (2)	0.0066 (16)	-0.006 (2)
C9	0.0359 (19)	0.046 (2)	0.029 (2)	-0.0055 (16)	0.0025 (16)	-0.0020 (17)
C10	0.0321 (19)	0.050 (2)	0.037 (2)	-0.0026 (16)	-0.0013 (16)	0.0002 (18)

Geometric parameters (Å, °)

S1—C10	1.730 (3)	С3—Н3	0.9300
S1—C2	1.756 (3)	C4—C5	1.384 (4)
01—C1	1.210 (4)	C4—C9	1.409 (4)
N1—C10	1.312 (4)	C5—C6	1.381 (5)

N1 C0	1 402 (4)	C5 U5	0.0200
N2 C2	1.403(4)	C5—II5	1 202 (5)
$N_2 = C_1 O_1 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2$	1.370(4)		1.392(3)
N2-C10	1.360 (4)		0.9300
N2	1.389 (4)	C7—C8	1.379 (5)
	1.442 (5)	C/—H/	0.99 (3)
C1—H1	0.9300	C8—C9	1.393 (4)
С2—С3	1.350 (4)	С8—Н8	0.9300
C10—S1—C2	89.64 (16)	С6—С5—Н5	121.9
C10—N1—C9	103.2 (3)	C4—C5—H5	121.9
C3-N2-C10	1149(3)	$C_{5}-C_{6}-C_{7}$	121.7(3)
$C_3 - N_2 - C_4$	138.6 (3)	C5-C6-H6	119.2
$C10 - N^2 - C4$	1065(2)	C7—C6—H6	119.2
01-C1-C2	100.5(2) 123 2 (3)	$C_{8} - C_{7} - C_{6}$	119.2 1217(4)
01	118.4	C8—C7—H7	121.7(1) 114(2)
C2C1H1	118.4	C6-C7-H7	114(2) 124(2)
$C_2 = C_1 = III$	127.5 (3)	C_{7} C_{8} C_{9}	12+(2) 118 2 (3)
$C_{3} = C_{2} = C_{1}$	127.5(3) 113.2(3)	C7 C8 H8	110.2 (5)
$C_{3} = C_{2} = S_{1}$	113.2(3) 110.2(2)	$C = C = H \delta$	120.9
$C_1 = C_2 = S_1$	119.5(3)	$C_{2} = C_{0} = 118$	120.9
$C_2 = C_3 = N_2$	111.0 (5)	C_{8} C_{9} C_{4}	129.0(3)
C2—C3—H3	124.2	$C_8 = C_9 = C_4$	118.7(3)
$N_2 = C_3 = H_3$	124.2	NI-C9-C4	111.6(3)
C_{3}	132.2 (3)	NI = C10 = N2	114.4 (3)
C5—C4—C9	123.5 (3)	NI-CIO-SI	134.9 (3)
N2—C4—C9	104.3 (3)	N2—C10—S1	110.7 (2)
C6—C5—C4	116.1 (3)		
01—C1—C2—C3	178.4 (4)	C7—C8—C9—N1	-179.9 (3)
O1—C1—C2—S1	-1.2 (5)	C7—C8—C9—C4	-0.8 (5)
C10—S1—C2—C3	-0.7(3)	C10—N1—C9—C8	179.0 (3)
C10—S1—C2—C1	179.0 (3)	C10—N1—C9—C4	-0.1(3)
C1-C2-C3-N2	-178.8(3)	C5-C4-C9-C8	2.4 (5)
\$1-C2-C3-N2	0.8 (4)	N2-C4-C9-C8	-179.1(3)
$C10 - N^2 - C^3 - C^2$	-0.5(4)	C5-C4-C9-N1	-1784(3)
C4-N2-C3-C2	178.8 (3)	N_{2} C4 C9 N1	0.2 (3)
$C_3 - N_2 - C_4 - C_5$	-11(6)	C9-N1-C10-N2	0.1(4)
$C10 - N^2 - C4 - C5$	178 3 (3)	C9-N1-C10-S1	1796(3)
C_{3} N2 C_{4} C_{9}	-1794(3)	$C_{3}N_{2}C_{10}N_{1}$	179.5(3)
$C_{10} N_{2} C_{4} C_{9}$	-0.1(3)	C4 - N2 - C10 - N1	0.0(4)
N2-C4-C5-C6	179 7 (3)	C_{3} N2 C_{10} S1	-0.1(3)
C9 - C4 - C5 - C6	-21(5)	C4 N2 C10 S1	-179.6(2)
$C_{4} = C_{5} = C_{6} = C_{7}$	2.1(3)	$C_{7} = 102 - C_{10} - S_{1}$	-1701(4)
$C_{-} C_{-} C_{-$	0.0(5)	$C_2 = S_1 = C_{10} = N_1$	1/2.1(4)
$C_{2} = C_{2} = C_{2} = C_{2}$	0.7(3)	C2-51-C10-IN2	0.4 (2)
0-0/-08-09	-0.7 (5)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
C1—H1···O1 ⁱ	0.93	2.55	3.248 (4)	132

Symmetry code: (i) -x+1, -y+1, -z+1.