ISSN 2414-3146

Received 6 April 2016 Accepted 7 May 2016

Edited by E. R. T. Tiekink, Sunway University, Malaysia

Keywords: crystal structure; 1,4-benzothiazine derivatives; hydrogen bonds.

CCDC reference: 1478623

Structural data: full structural data are available from iucrdata.iucr.org

4-Benzyl-2-(4-chlorobenzylidene)-3,4-dihydro-2*H*-1,4-benzothiazin-3(4*H*)-one

Mohamed Ellouz,^a Nada Kheira Sebbar,^a El Mokhtar Essassi,^a Younes Ouzidan,^b Joel T. Mague^c and Hafid Zouihri^d*

^aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, BP 1014, Avenue Ibn Batouta, Rabat, Morocco, ^bLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Iimmouzzer, BP 2202, Fez, Morocco, ^cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and ^dLaboratoire d'Ingénierie des Matériaux et d'Environnement: Modélisation et Application (LIMEMA), Ibn Tofail University, Kénitra, Morocco. *Correspondence e-mail: hafid.zouihri@gmail.com

The title compound, $C_{22}H_{16}CINOS$, has three aromatic systems, *viz*. (i) a phenyl ring, (ii) a chlorobenzene ring and (iii) a 1,4-benzothiazine fused-ring system (r.m.s. deviation of the ten fitted atoms = 0.023 Å). The dihedral angle between planes (ii) and (iii) is 1.68 (8)°, indicating a coplanar arrangement, and between plane (i) and each of (ii) and (iii) is 85.61 (8) and 86.74 (8)°, respectively, indicating the phenyl ring is approximately perpendicular to the remaining residue. In the crystal, pairwise methylene-C-H···O(carbonyl) hydrogen bonds form dimers which stack along the *b*-axis direction.

Structure description

Several sulfur- and nitrogen-containing heterocyclic compounds have been well studied. Various 1,4-benzothiazine derivatives have been synthesized by several methods (Parai & Panda, 2009; Barange *et al.*, 2007; Saadouni *et al.*, 2014). 1,4-Benzothiazine derivatives are important because of their interesting biological properties such as anti-bacterial (Guarda *et al.*, 2003; Sabatini *et al.*, 2008), anti-fungal (Schiaffella *et al.*, 2006; Gupta & Wagh, 2006), anti-hypertensive (Cecchetti *et al.*, 2000) and anti-inflammatory (Kaneko *et al.*, 2002) activities. As a continuation of our research devoted to the development of substituted 1,4-benzothiazine derivatives (Ellouz *et al.*, 2015; Sebbar *et al.*, 2015), we report here the synthesis of the title compound by reaction of benzyl chloride with 2-(4-chlorobenzylidene)-3,4-dihydro-2*H*-1,4-benzothiazin-3-one and potassium carbonate in the presence of tetra-*n*-butylammonium bromide (as catalyst).

data reports

Table 1	
Hydrogen-bond geometry	r (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C16-H16B\cdotsO1^{i}$	0.99	2.43	3.271 (2)	142

Symmetry code: (i) -x + 1, -y + 2, -z + 1.

In the title compound (Fig. 1), a Cremer–Pople analysis of the conformation of the heterocyclic ring gave puckering parameters Q = 0.095 (15) Å, $\theta = 69.3$ (9)° and $\varphi = 233.6$ (9)°. In the crystal, pairwise C16–H16B···O1(-x + 1, -y + 2, -z + 1) hydrogen bonds form dimers which stack along the *b*axis direction (Table 1 and Fig. 2).

Synthesis and crystallization

To a solution of 2-(4-chlorobenzylidene)-3,4-dihydro-2H-1,4benzothiazin-3-one (0.944 g, 3.29 mmol), benzyl chloride (0.76 ml, 6.58 mmol) and potassium carbonate (0.91 g, 6.58 mmol) in DMF (15 ml) was added a catalytic amount of tetra-*n*-butylammonium bromide (0.11 g, 0.33 mmol). The mixture was stirred for 24 h. The solid material was removed by filtration and the solvent evaporated under vacuum. The solid product was purified by recrystallization from ethanol to afford colourless crystals in 80% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Owing to poor agreement, on reflection, *i.e.* $(1\ 1\ 7)$, was omitted from the final cycles of refinement.

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

Figure 1

The molecular structure of the title compound, showing the atom numbering. Displacement ellipsoids are drawn at the 50% probability level.

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	C22H16CINOS
M _r	377.87
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	150
a, b, c (Å)	11.8931 (11), 6.5358 (6), 22.817 (2)
β (°)	93.239 (1)
$V(Å^3)$	1770.7 (3)
Z	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.35
Crystal size (mm)	$0.33 \times 0.18 \times 0.13$
Data collection	
Diffractometer	Bruker SMART APEX CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2016)
T_{\min}, T_{\max}	0.84, 0.96
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	32976, 4771, 3718
R _{int}	0.047
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.686
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.044, 0.132, 1.12
No. of reflections	4771
No. of parameters	235
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	1.01, -0.47

Computer programs: *APEX3* and *SAINT* (Bruker, 2016), *SHELXT* (Sheldrick, 2015), *SHELXL2014* (Sheldrick, 2015a), *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

References

- Barange, D. K., Batchu, V. R., Gorja, D., Pattabiraman, V. R., Tatini, L. K., Babu, J. M. & Pal, M. (2007). *Tetrahedron*, 63, 1775–1789.
- Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cecchetti, V., Schiaffella, F., Tabarrini, O. & Fravolini, A. (2000). Bioorg. Med. Chem. Lett. 10, 465–468.
- Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o1022–o1023.
- Guarda, V. L. de M., Perrissin, M., Thomasson, F., Ximenes, E. A., Galdino, S. L., Pitta, I. R., Luu-Duc, C. & Barbe, J. (2003). *Eur. J. Med. Chem.* 38, 769–773.

The crystal packing of the title compound, viewed along the b axis. Intermolecular hydrogen bonds (see Table 2) are shown as dashed lines. Gupta, G. & Wagh, S. B. (2006). Indian J. Chem. Sect. B, 45, 697-702.

- Kaneko, T., Clark, R. S., Ohi, N., Kawahara, T., Akamatsu, H., Ozaki, F., Kamada, A., Okano, K., Yokohama, H., Muramoto, K., Ohkuro, M., Takenaka, O. & Kobayashi, S. (2002). *Chem. Pharm. Bull.* 50, 922–929.
- Parai, M. K. & Panda, G. A. (2009). *Tetrahedron Lett.* **50**, 4703–4705.
- Saadouni, M., Gailane, T., Baukhris, S., Hassikou, A., Habbadi, N. & Gailane, T. (2014). Org. Commun, 7, 77–84.
- Sabatini, S., Kaatz, G. W., Rossolini, G. M., Brandini, D. & Fravolini, A. (2008). J. Med. Chem. 51, 4321–4330.
- Schiaffella, F., Macchiarulo, A., Milanese, L., Vecchiarelli, A. & Fringuelli, R. (2006). *Bioorg. Med. Chem.* 14, 5196–5203.
- Sebbar, N. K., Ellouz, M., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, 0999.
- Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2016). **1**, x160764 [doi:10.1107/S2414314616007641]

4-Benzyl-2-(4-chlorobenzylidene)-3,4-dihydro-2H-1,4-benzothiazin-3(4H)-one

Mohamed Ellouz, Nada Kheira Sebbar, El Mokhtar Essassi, Younes Ouzidan, Joel T. Mague and Hafid Zouihri

F(000) = 784

 $\theta = 3.1 - 29.1^{\circ}$ $\mu = 0.35 \text{ mm}^{-1}$

T = 150 K

 $D_{\rm x} = 1.417 \ {\rm Mg \ m^{-3}}$

Column, colourless

 $0.33 \times 0.18 \times 0.13 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9932 reflections

(2Z)-4-Benzyl-[(4-chlorophenyl)methylidene]-3,4-dihydro-2H-1,4-benzothiazin-3(4H)-one

Crystal data

C₂₂H₁₆CINOS $M_r = 377.87$ Monoclinic, $P2_1/n$ a = 11.8931 (11) Å b = 6.5358 (6) Å c = 22.817 (2) Å $\beta = 93.239$ (1)° V = 1770.7 (3) Å³ Z = 4

Data collection

Bruker SMART APEX CCD	32976 measured reflections
diffractometer	4771 independent reflections
Radiation source: fine-focus sealed tube	3718 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.047$
Detector resolution: 8.3333 pixels mm ⁻¹	$\theta_{\rm max} = 29.2^{\circ}, \theta_{\rm min} = 1.8^{\circ}$
φ and ω scans	$h = -16 \rightarrow 16$
Absorption correction: multi-scan	$k = -8 \rightarrow 8$
(SADABS; Bruker, 2016)	$l = -31 \rightarrow 31$
$T_{\min} = 0.84, \ T_{\max} = 0.96$	

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.044$ Hydrogen site location: inferred from $wR(F^2) = 0.132$ neighbouring sites S = 1.12H-atom parameters constrained 4771 reflections $w = 1/[\sigma^2(F_0^2) + (0.0782P)^2 + 0.0974P]$ where $P = (F_0^2 + 2F_c^2)/3$ 235 parameters 0 restraints $(\Delta/\sigma)_{\rm max} = 0.001$ Primary atom site location: structure-invariant $\Delta \rho_{\rm max} = 1.01 \ {\rm e} \ {\rm \AA}^{-3}$ direct methods $\Delta \rho_{\rm min} = -0.47 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω , collected at $\varphi = 0.00, 90.00$ and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ , collected at $\omega = -30.00$ and 210.00° . The scan time was 10 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.15276 (4)	-0.28012 (7)	0.65534 (2)	0.03513 (14)	
S1	0.46828 (4)	0.63594 (7)	0.70652 (2)	0.02992 (13)	
01	0.53363 (10)	0.75024 (19)	0.54228 (5)	0.0313 (3)	
N1	0.57084 (10)	0.9526 (2)	0.62091 (5)	0.0209 (3)	
C1	0.54418 (13)	0.8579 (2)	0.72363 (7)	0.0224 (3)	
C2	0.56174 (14)	0.8979 (3)	0.78364 (7)	0.0283 (4)	
H2	0.5347	0.8045	0.8115	0.034*	
C3	0.61815 (15)	1.0723 (3)	0.80268 (8)	0.0327 (4)	
H3	0.6295	1.0995	0.8435	0.039*	
C4	0.65809 (14)	1.2075 (3)	0.76201 (8)	0.0321 (4)	
H4	0.6965	1.3282	0.7749	0.039*	
C5	0.64220 (13)	1.1672 (3)	0.70240 (8)	0.0264 (3)	
H5	0.6708	1.2603	0.6749	0.032*	
C6	0.58483 (12)	0.9922 (2)	0.68203 (7)	0.0211 (3)	
C7	0.52600 (13)	0.7785 (2)	0.59501 (7)	0.0218 (3)	
C8	0.46567 (12)	0.6241 (2)	0.63034 (7)	0.0207 (3)	
C9	0.40940 (13)	0.4769 (2)	0.59899 (7)	0.0221 (3)	
H9	0.4121	0.4924	0.5577	0.026*	
C10	0.34533 (12)	0.2989 (2)	0.61653 (7)	0.0218 (3)	
C11	0.33017 (14)	0.2371 (3)	0.67448 (7)	0.0265 (3)	
H11	0.3612	0.3173	0.7061	0.032*	
C12	0.27024 (14)	0.0599 (3)	0.68625 (7)	0.0275 (4)	
H12	0.2598	0.0205	0.7256	0.033*	
C13	0.22615 (13)	-0.0581 (3)	0.64020 (8)	0.0255 (3)	
C14	0.24071 (14)	-0.0036 (3)	0.58230 (7)	0.0281 (4)	
H14	0.2109	-0.0866	0.5510	0.034*	
C15	0.29934 (14)	0.1733 (3)	0.57106 (7)	0.0265 (3)	
H15	0.3089	0.2115	0.5315	0.032*	
C16	0.60272 (13)	1.1156 (2)	0.58024 (7)	0.0246 (3)	
H16A	0.5719	1.2466	0.5940	0.029*	
H16B	0.5658	1.0866	0.5411	0.029*	
C17	0.72728 (13)	1.1438 (2)	0.57301 (7)	0.0222 (3)	
C18	0.80536 (14)	0.9877 (3)	0.58319 (7)	0.0292 (4)	
H18	0.7813	0.8574	0.5960	0.035*	
C19	0.91849 (15)	1.0220 (3)	0.57456 (8)	0.0366 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

data reports

H19	0.9716	0.9148	0.5815	0.044*	
C20	0.95450 (16)	1.2124 (3)	0.55586 (9)	0.0393 (5)	
H20	1.0321	1.2363	0.5505	0.047*	
C21	0.87698 (16)	1.3658 (3)	0.54511 (8)	0.0363 (4)	
H21	0.9011	1.4954	0.5317	0.044*	
C22	0.76351 (15)	1.3329 (3)	0.55370 (7)	0.0289 (4)	
H22	0.7106	1.4401	0.5463	0.035*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Cl1	0.0349 (2)	0.0300 (2)	0.0403 (3)	-0.00950 (18)	0.00055 (18)	0.00775 (18)
S 1	0.0453 (3)	0.0251 (2)	0.0193 (2)	-0.01003 (18)	0.00228 (17)	0.00034 (15)
01	0.0420 (7)	0.0318 (7)	0.0207 (6)	-0.0086 (5)	0.0057 (5)	-0.0001 (5)
N1	0.0222 (6)	0.0198 (7)	0.0206 (6)	-0.0004 (5)	0.0003 (5)	0.0027 (5)
C1	0.0217 (7)	0.0219 (8)	0.0236 (7)	0.0015 (6)	-0.0001 (6)	-0.0010 (6)
C2	0.0317 (8)	0.0307 (9)	0.0226 (8)	0.0000 (7)	0.0014 (6)	-0.0031 (7)
C3	0.0338 (9)	0.0389 (10)	0.0250 (8)	-0.0011 (8)	-0.0015 (7)	-0.0083 (7)
C4	0.0283 (9)	0.0328 (9)	0.0350 (9)	-0.0052 (7)	-0.0004 (7)	-0.0106 (8)
C5	0.0232 (8)	0.0251 (8)	0.0311 (8)	-0.0013 (6)	0.0031 (6)	-0.0029 (7)
C6	0.0171 (7)	0.0223 (8)	0.0237 (7)	0.0027 (6)	0.0000 (5)	-0.0017 (6)
C7	0.0217 (7)	0.0215 (8)	0.0222 (7)	0.0017 (6)	0.0011 (6)	0.0012 (6)
C8	0.0213 (7)	0.0198 (7)	0.0211 (7)	0.0023 (6)	0.0030 (5)	0.0006 (6)
C9	0.0239 (7)	0.0231 (8)	0.0194 (7)	0.0015 (6)	0.0028 (6)	-0.0007 (6)
C10	0.0201 (7)	0.0221 (8)	0.0235 (7)	0.0011 (6)	0.0044 (6)	-0.0003 (6)
C11	0.0317 (8)	0.0248 (8)	0.0234 (8)	-0.0040 (7)	0.0061 (6)	-0.0035 (6)
C12	0.0297 (8)	0.0274 (9)	0.0260 (8)	-0.0014 (7)	0.0076 (6)	0.0032 (6)
C13	0.0207 (7)	0.0219 (8)	0.0342 (9)	-0.0015 (6)	0.0042 (6)	0.0020 (6)
C14	0.0280 (8)	0.0295 (9)	0.0267 (8)	-0.0041 (7)	0.0000 (6)	-0.0023 (7)
C15	0.0285 (8)	0.0279 (9)	0.0233 (8)	-0.0026 (7)	0.0031 (6)	0.0009 (6)
C16	0.0233 (8)	0.0222 (8)	0.0279 (8)	0.0005 (6)	-0.0013 (6)	0.0065 (6)
C17	0.0244 (7)	0.0235 (8)	0.0186 (7)	-0.0005 (6)	0.0015 (5)	-0.0001 (6)
C18	0.0299 (8)	0.0289 (9)	0.0289 (8)	0.0026 (7)	0.0020 (7)	0.0057 (7)
C19	0.0284 (9)	0.0448 (11)	0.0367 (10)	0.0081 (8)	0.0032 (7)	0.0048 (8)
C20	0.0296 (9)	0.0526 (12)	0.0367 (10)	-0.0057 (9)	0.0114 (8)	-0.0020 (9)
C21	0.0409 (10)	0.0342 (10)	0.0354 (10)	-0.0091 (8)	0.0146 (8)	0.0004 (8)
C22	0.0354 (9)	0.0248 (8)	0.0272 (8)	-0.0006 (7)	0.0071 (7)	0.0006 (6)

Geometric parameters (Å, °)

C11—C13	1.7383 (17)	C11—C12	1.394 (2)
S1—C8	1.7384 (15)	C11—H11	0.9500
S1—C1	1.7409 (16)	C12—C13	1.383 (2)
O1—C7	1.2256 (19)	C12—H12	0.9500
N1—C7	1.375 (2)	C13—C14	1.388 (2)
N1—C6	1.4189 (19)	C14—C15	1.382 (2)
N1-C16	1.4765 (19)	C14—H14	0.9500
C1—C2	1.398 (2)	С15—Н15	0.9500

C1—C6	1.399 (2)	C16—C17	1.511 (2)
C2—C3	1.381 (3)	С16—Н16А	0.9900
C2—H2	0.9500	C16—H16B	0.9900
C3—C4	1.385 (3)	C17—C22	1.389 (2)
C3—H3	0.9500	C17 - C18	1.390(2)
C4-C5	1 388 (3)	C18-C19	1.390(2)
C4-H4	0.9500	C18—H18	0.9500
C5-C6	1 398 (2)	C19-C20	1 391 (3)
C5H5	0.9500	C19 - H19	0.9500
C7 C8	1,500 (2)	C_{20} C_{21}	1.375(3)
C^{*}	1.300(2) 1.353(2)	C_{20} H_{20}	0.0500
C_{0} C_{10}	1.355(2) 1.459(2)	$C_{20} = 1120$	1.391(2)
C0 H0	0.0500	C21 H21	1.391(2)
$C_{2} = 115$	0.9500	$\begin{array}{c} C21 \\ \hline \\ C22 \\ \hline \\ H22 \\ \hline \end{array}$	0.9500
C10 - C11	1.404(2)	C22—H22	0.9300
010-013	1.409 (2)		
C8—S1—C1	103.94 (7)	C13—C12—C11	119.55 (15)
C7—N1—C6	126.48 (13)	C13—C12—H12	120.2
C7—N1—C16	115.70 (13)	C11—C12—H12	120.2
C6-N1-C16	117 77 (13)	C12 - C13 - C14	121 19 (15)
$C_{2}-C_{1}-C_{6}$	120.57(15)	C12 - C13 - C11	119 19 (13)
$C_2 - C_1 - S_1$	114 98 (13)	C14 - C13 - C11	119.61 (13)
C_{6}	124 44 (12)	C_{15} C_{14} C_{13}	118.84 (16)
$C_3 - C_2 - C_1$	120.39(16)	C_{15} C_{14} H_{14}	120.6
C_{3} C_{2} H_{2}	110.8	C_{13} C_{14} H_{14}	120.0
C_{1} C_{2} H_{2}	119.8	C_{14} C_{15} C_{10}	120.0
$C_{1} = C_{2} = 112$	119.67 (16)	C14 - C15 - H15	119.0
С2—С3—Н3	120.2	C10-C15-H15	119.0
$C_2 = C_3 = H_3$	120.2	N1 C16 C17	115.0
$C_4 = C_5 = 115$	120.2 120.20(17)	N1 = C16 = H16A	108.2
$C_3 = C_4 = H_4$	120.20 (17)	C_{17} C_{16} H_{16A}	108.2
$C_5 = C_4 = H_4$	119.9	N1 C16 H16P	108.2
$C_3 = C_4 = H_4$	119.9	$\begin{array}{cccc} \mathbf{N} & -\mathbf{C} & \mathbf{I} & \mathbf{O} \\ \mathbf{C} & \mathbf{I} & \mathbf{C} & \mathbf{I} & \mathbf{I} & \mathbf{O} \\ \mathbf{C} & \mathbf{I} & \mathbf{C} & \mathbf{I} & \mathbf{I} & \mathbf{O} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{O} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{O} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} \\ \mathbf{I} & \mathbf{I} \\ \mathbf{I} \\ \mathbf{I} \\ \mathbf{I} & \mathbf{I} \\ \mathbf{I} $	108.2
C4 = C5 = U5	121.19 (10)		108.2
C4-C5-H5	119.4	10A - 10 - 100B	107.3 110.32(15)
	117.4	$C_{22} = C_{17} = C_{18}$	119.32(13)
C_{5} C_{6} N_{1}	117.97(13) 120.27(14)	$C_{22} = C_{17} = C_{16}$	117.84(14) 122.81(15)
$C_{1} = C_{0} = N_{1}$	120.27(14) 121.75(14)	$C_{10} = C_{17} = C_{10}$	122.01(13)
CI = CO = NI	121.75(14)	C19 - C18 - C17	120.08 (17)
O1 = C7 = C8	119.88 (14)	С17—С18—Н18	120.0
01 - 07 - 08	119.37 (14)	C17—C18—H18	120.0
NI = C / = C8	120.74 (13)	C18 - C19 - C20	120.35 (17)
$C_{2} = C_{2} = C_{1}$	115.58 (14)	C10 - C19 - H19	119.8
C9—C8—S1	122.72 (12)	C20-C19-H19	119.8
C/-C8-S1	121./1 (11)	$C_{21} = C_{20} = C_{19}$	119.49 (17)
$C_8 = C_9 = C_{10}$	132.25 (15)	C_{21} — C_{20} —H20	120.3
С8—С9—Н9	113.9	C19—C20—H20	120.3
С10—С9—Н9	113.9	C20—C21—C22	120.53 (17)
C11—C10—C15	117.47 (15)	C20—C21—H21	119.7

C11—C10—C9 C15—C10—C9 C12—C11—C10 C12—C11—H11 C10—C11—H11	125.75 (15) 116.71 (14) 120.96 (16) 119.5 119.5	C22—C21—H21 C17—C22—C21 C17—C22—H22 C21—C22—H22	119.7 120.22 (17) 119.9 119.9
C8—S1—C1—C2	-177.74 (12)	C7—C8—C9—C10	177.40 (15)
C8—S1—C1—C6	3.15 (15)	S1—C8—C9—C10	-2.8 (2)
C6—C1—C2—C3	0.9 (3)	C8—C9—C10—C11	-1.7 (3)
S1—C1—C2—C3	-178.23 (13)	C8—C9—C10—C15	-178.50 (16)
C1—C2—C3—C4	-0.4 (3)	C15—C10—C11—C12	-1.0 (2)
C2—C3—C4—C5	-0.4 (3)	C9-C10-C11-C12	-177.82 (15)
C3—C4—C5—C6	0.8 (3)	C10-C11-C12-C13	0.7 (3)
C4—C5—C6—C1	-0.3 (2)	C11—C12—C13—C14	0.2 (3)
C4—C5—C6—N1	-179.15 (15)	C11—C12—C13—Cl1	179.37 (13)
C2-C1-C6-C5	-0.6 (2)	C12-C13-C14-C15	-0.8 (3)
S1—C1—C6—C5	178.50 (12)	Cl1—C13—C14—C15	-179.96 (13)
C2-C1-C6-N1	178.28 (14)	C13-C14-C15-C10	0.5 (3)
S1—C1—C6—N1	-2.7 (2)	C11-C10-C15-C14	0.4 (2)
C7—N1—C6—C5	173.47 (15)	C9-C10-C15-C14	177.50 (15)
C16—N1—C6—C5	-9.2 (2)	C7—N1—C16—C17	-105.82 (16)
C7—N1—C6—C1	-5.4 (2)	C6—N1—C16—C17	76.60 (17)
C16—N1—C6—C1	171.94 (14)	N1-C16-C17-C22	-157.04 (15)
C6—N1—C7—O1	-169.28 (14)	N1-C16-C17-C18	24.9 (2)
C16—N1—C7—O1	13.4 (2)	C22-C17-C18-C19	0.6 (2)
C6—N1—C7—C8	11.9 (2)	C16—C17—C18—C19	178.62 (16)
C16—N1—C7—C8	-165.44 (13)	C17-C18-C19-C20	0.1 (3)
O1—C7—C8—C9	-9.2 (2)	C18—C19—C20—C21	-1.0 (3)
N1—C7—C8—C9	169.63 (14)	C19—C20—C21—C22	1.0 (3)
O1—C7—C8—S1	171.00 (12)	C18—C17—C22—C21	-0.5 (2)
N1-C7-C8-S1	-10.2 (2)	C16—C17—C22—C21	-178.64 (15)
C1—S1—C8—C9	-176.80 (13)	C20—C21—C22—C17	-0.3 (3)
C1—S1—C8—C7	2.99 (14)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C16—H16B…O1 ⁱ	0.99	2.43	3.271 (2)	142

Symmetry code: (i) -x+1, -y+2, -z+1.