

ISSN 2414-3146

Received 29 April 2016
Accepted 12 May 2016

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; one-dimensional coordination polymer; chain structure; PbBr_{2} adduct.

CCDC reference: 1479535

Structural data: full structural data are available from iucrdata.iucr.org

catena-Poly[[(2,2'-bipyridine- $\left.\kappa^{2} N, N^{\prime}\right)$ lead(II)]-di- μ bromido]

Bi-Song Zhang* and Chang-Sheng Wu

College of Pharmaceutics and Material Engineering, Jinhua Polytechnic, Jinhua, Zhejiang 321007, People's Republic of China. *Correspondence e-mail: zbs_jy@163.com

The polymeric title compound, $\left[\mathrm{PbBr}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]_{n}$, consists of $\alpha_{\infty}^{1}\left[\mathrm{PbBr}_{4 / 2}\right]$ chains running parallel to [001]. Each $\mathrm{Pb}^{\mathrm{II}}$ atom is additionally chelated by a 2,2'-bipyridine ligand, completing a distorted octahedral $\mathrm{Br}_{4} \mathrm{~N}_{2}$ coordination set. In the crystal, weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds and $\pi-\pi$ stacking interactions link the $\left[\mathrm{PbBr}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]_{n}$ chains into a three-dimensional supramolecular structure.

Chemical scheme

Structure description

In the context of studies of metal complexes derived from halogen benzoic acids X $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COOH}$, where X is $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ or I , and ancilliary chelating ligands (Zhang et al., 2004; Zhang, 2005, 2006), we originally intended to synthesize a lead(II) complex derived from 6-bromo-2-pyridinecarboxylic acid and 2,2'-bipyridine (bpy). However, we accidentally obtained instead an 1:1 adduct of PbBr_{2} with bpy, $\left[\mathrm{PbBr}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]_{n}$ (Fig. 1), that supposedly formed due to decomposition of the acid under the applied solvothermal conditions.
Both the $\mathrm{Pb}^{\mathrm{II}}$ atom and the chelating pby molecule lie on a twofold rotation axis. In the crystal, $\mathrm{Pb} 1^{\mathrm{II}}$ atoms are bridged by two pairs of Br 1 ligands into ${ }_{\infty}^{1}\left[\mathrm{PbBr}_{4 / 2}\right]$ chains $(\mathrm{Br}-$ $\mathrm{Pb}-\mathrm{Br}$ and $\mathrm{Pb}-\mathrm{Br}-\mathrm{Pb}$ angles are 89.87 (6) and 90.13 (6) ${ }^{\circ}$, respectively) with a $\mathrm{Pb} \cdots \mathrm{Pb}$ distance in the chain of 4.3434 (9) A (Fig. 1). The closest plane-to-plane distance between two bpy ligands of 3.376 (2) \AA indicates the existence of $\pi-\pi$ interactions, which results in the formation of a layered arrangement of the $\left[\mathrm{PbBr}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]_{n}$ chains parallel to (100). The layers are associated through weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds (Table 1, Fig. 2) into an overall three-dimensional supramolecular set-up.

The chain structure of the title compound resembles that of related cadmium compounds with composition $\left[\mathrm{Cd} X_{2}\right.$ (phen)] (phen $=1,10$-phenanthroline), $X=\mathrm{Cl}$, Chen et al., 2003; $X=\mathrm{Br}$, (Zhang, 2007) or $\left[\mathrm{CdCl}_{2}(2,2-\mathrm{bpy})\right]$ (Zhou et al., 2003).

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{Br}^{\mathrm{i}}$	0.93	2.98	$3.906(9)$	174

Symmetry code: (i) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$.

Synthesis and crystallization

Freshly prepared $\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.1890 \mathrm{~g} 0.50 \mathrm{mmol})$, 2,2'-bipyridine (bpy) $\quad(0.0399 \mathrm{~g} \quad 0.25 \mathrm{mmol})$, 6-bromo-2pyridinecarboxylic acid $(0.0504 \mathrm{~g} \quad 0.25 \mathrm{mmol})$, and 15 ml $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}(1: 2, v / v)$ were mixed and stirred for ca 2.0 h . Subsequently, the resulting suspension was heated in a 23 ml Teflon-lined stainless steel autoclave at 433 K for 7 days. After the autoclave was cooled to room temperature, yellow crystals with a cuboid form were obtained.

Figure 1
A view of the chain of bromide-bridged $\mathrm{Pb}^{\mathrm{II}}$ ions in the title compound extending parallel to [001]. Displacement ellipsoids are drawn at the 40% probability level [symmetry code (i) $1-x, y, \frac{1}{2}-z$].

Figure 2
A packing diagram of the title compound viewed along [001]. Dashed lines indicate $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds.

Table 2
Experimental details.

Crystal data	
Chemical formula	$\left[\mathrm{PbBr}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$
M_{r}	523.19
Crystal system, space group	Monoclinic, $C 2 / c$
Temperature (K)	293
$a, b, c(\AA)$	$16.249(3), 9.878(2), 8.2425(16)$
$\beta\left({ }^{\circ}\right)$	$104.79(3)$
$V\left(\AA^{3}\right)$	$1279.2(4)$
Z	4
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{~mm}^{-1}\right)$	19.41
Crystal size (mm)	$0.24 \times 0.23 \times 0.21$
Data collection	Rigaku R-AXIS RAPID
Diffractometer	Multi-scan $(A B S C O R ;$ Higashi,
Absorption correction	$1995)$
	$0.013,0.017$
$T_{\text {min }}, T_{\text {max }}$	$4632,1053,871$
No. of measured, independent and	
\quad observed $[I>2 \sigma(I)]$ reflections	0.123
$R_{\text {int }}$	0.583
$(\text { sin } \theta / \lambda)_{\text {max }}\left(\AA \AA^{-1}\right)$	
Refinement	$0.043,0.124,1.21$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	1053
No. of reflections	58
No. of parameters	21
No. of restraints	$\mathrm{H}-$ atom parameters constrained
$\mathrm{H}-$ atom treatment	$1.64,-1.97$
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 and SHELXTL (Sheldrick, 2008) and SHELXL97 (Sheldrick, 2008).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (grant No. 51343003).

References

Chen, H.-B., Zhou, Z.-H., Wan, H.-L. \& Ng, S. W. (2003). Acta Cryst. E59, m845-m846.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC. The Woodlands, Texas, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Zhang, B. S. (2005). Z. Kristallogr. New Cryst. Struct. 220, 73-74.
Zhang, B. S. (2006). Z. Kristallogr. New Cryst. Struct. 221, 355-356.
Zhang, B.-S. (2007). Acta Cryst. E63, m1562.
Zhang, B. S., Ying, T.-K. \& Cheng, C.-G. (2004). Z. Kristallogr. New Cryst. Struct. 219, 483-484.
Zhou, Y.-F., Xu, Y., Yuan, D.-Q. \& Hong, M.-C. (2003). Acta Cryst. E59, m821-m823.

full crystallographic data

IUCrData (2016). 1, x160782 [doi:10.1107/S2414314616007823]

catena-Poly[[(2,2'-bipyridine- $\left.\kappa^{2} N, N^{\prime}\right)$ lead(II)]-di- μ-bromido]

Bi-Song Zhang and Chang-Sheng Wu

catena-Poly[[(2,2'-bipyridine- $\left.\kappa^{2} N, N^{\prime}\right)$ lead(III)]-di- μ-bromido]

Crystal data

$\left[\mathrm{PbBr}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$
$M_{r}=523.19$
Monoclinic, $C 2 / c$
Hall symbol: -C 2yc
$a=16.249$ (3) \AA
$b=9.878(2) \AA$
$c=8.2425(16) \AA$
$\beta=104.79$ (3) ${ }^{\circ}$
$V=1279.2(4) \AA^{3}$
$Z=4$

Data collection

Rigaku R-AXIS RAPID
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\min }=0.013, T_{\text {max }}=0.017$
$F(000)=936$
$D_{\mathrm{x}}=2.717 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4297 reflections
$\theta=3.3-24.5^{\circ}$
$\mu=19.41 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Cuboid, yellow
$0.24 \times 0.23 \times 0.21 \mathrm{~mm}$

4632 measured reflections
1053 independent reflections
871 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.123$
$\theta_{\text {max }}=24.5^{\circ}, \theta_{\text {min }}=3.3^{\circ}$
$h=-18 \rightarrow 18$
$k=-11 \rightarrow 11$
$l=-9 \rightarrow 8$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.124$
$S=1.21$
1053 reflections
58 parameters
21 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0 . P)^{2}+35.8179 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=1.64 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.97$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0010 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Pb 1	0.5000	$0.43060(8)$	0.2500	$0.0502(5)$
Br 1	$0.62002(14)$	$0.3951(2)$	$0.0295(3)$	$0.0700(6)$
C 1	$0.3595(8)$	$0.2242(10)$	$-0.0180(13)$	$0.073(6)$
H 1	0.3389	0.3078	-0.0624	0.087^{*}
C 2	$0.3177(7)$	$0.1061(13)$	$-0.0845(14)$	$0.086(5)$
H 2	0.2692	0.1106	-0.1733	0.103^{*}
C 3	$0.3485(8)$	$-0.0188(10)$	$-0.0181(17)$	$0.086(5)$
H 3	0.3206	-0.0979	-0.0626	0.103^{*}
C 4	$0.4210(8)$	$-0.0256(7)$	$0.1147(16)$	$0.061(4)$
H 4	0.4416	-0.1092	0.1590	0.073^{*}
C 5	$0.4628(6)$	$0.0925(9)$	$0.1811(12)$	$0.059(4)$
N 1	$0.4320(7)$	$0.2174(8)$	$0.1147(12)$	$0.055(4)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pb 1	$0.0539(7)$	$0.0463(6)$	$0.0447(6)$	0.000	$0.0023(4)$	0.000
Br 1	$0.0603(14)$	$0.0770(12)$	$0.0718(12)$	$0.0152(10)$	$0.0151(9)$	$0.0157(9)$
C 1	$0.074(15)$	$0.092(13)$	$0.043(9)$	$0.022(11)$	$-0.002(10)$	$-0.022(9)$
C 2	$0.060(11)$	$0.098(10)$	$0.101(12)$	$-0.010(9)$	$0.022(10)$	$-0.046(10)$
C 3	$0.060(11)$	$0.098(10)$	$0.101(12)$	$-0.010(9)$	$0.023(10)$	$-0.046(10)$
C 4	$0.063(9)$	$0.050(6)$	$0.083(9)$	$-0.009(6)$	$0.041(8)$	$-0.010(6)$
C 5	$0.060(9)$	$0.049(6)$	$0.081(9)$	$-0.008(6)$	$0.042(8)$	$-0.010(6)$
N 1	$0.045(9)$	$0.062(8)$	$0.059(8)$	$-0.003(7)$	$0.011(7)$	$-0.016(7)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Pb} 1-\mathrm{N} 1$	$2.504(7)$	$\mathrm{C} 1-\mathrm{H} 1$	0.9300
$\mathrm{~Pb} 1-\mathrm{N} 1^{\mathrm{i}}$	$2.504(15)$	$\mathrm{C} 2-\mathrm{C} 3$	1.3900
$\mathrm{~Pb} 1-\mathrm{Br} 1$	$3.006(2)$	$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{~Pb} 1-\mathrm{Br} 1^{\mathrm{i}}$	$3.006(2)$	$\mathrm{C} 3-\mathrm{C} 4$	1.3900
$\mathrm{~Pb} 1-\mathrm{Br} 1^{\mathrm{ii}}$	$3.128(2)$	$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{~Pb} 1-\mathrm{Br} 1^{\mathrm{iii}}$	$3.128(2)$	$\mathrm{C} 4-\mathrm{C} 5$	1.3900
$\mathrm{Br} 1-\mathrm{Pb} 1^{\mathrm{iii}}$	$3.128(2)$	$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{C} 1-\mathrm{C} 2$	1.3900	$\mathrm{C} 5-\mathrm{N} 1$	1.3900
$\mathrm{C} 1-\mathrm{N} 1$	1.3900	$\mathrm{C} 5-\mathrm{C} 5$	$1.433(17)$

$\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{N} 1^{\text {i }}$	65.5 (6)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	120.0
$\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{Br} 1$	85.0 (3)	N1-C1-H1	120.0
$\mathrm{N} 1{ }^{\text {i }}-\mathrm{Pb} 1-\mathrm{Br} 1$	83.7 (6)	C1-C2-C3	120.0
$\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{Br} 1^{\text {i }}$	83.7 (3)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.0
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{Br} 1^{\mathrm{i}}$	85.0 (6)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.0
$\mathrm{Br} 1-\mathrm{Pb} 1-\mathrm{Br} 1^{\mathrm{i}}$	166.60 (8)	C2-C3-C4	120.0
$\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{Br} 1^{1 i}$	155.8 (2)	C2-C3-H3	120.0
$\mathrm{N1}{ }^{\text {i }}-\mathrm{Pb} 1-\mathrm{Br} 1^{\text {ii }}$	90.8 (4)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.0
$\mathrm{Br} 1-\mathrm{Pb} 1-\mathrm{Br} 1^{\text {ii }}$	97.52 (7)	C5-C4-C3	120.0
$\mathrm{Br} 1^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{Br} 1^{\text {ii }}$	89.87 (6)	C5-C4-H4	120.0
$\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{Br} 1^{\text {iii }}$	90.8 (2)	C3-C4-H4	120.0
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{Br} 1^{\text {iii }}$	155.8 (4)	C4-C5-N1	120.0
$\mathrm{Br} 1-\mathrm{Pb} 1-\mathrm{Br} 1^{\text {iii }}$	89.87 (6)	C4-C5-C5 ${ }^{\text {i }}$	122.73 (11)
$\mathrm{Br} 1^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{Br} 1^{\text {iii }}$	97.52 (7)	N1-C5-C5 ${ }^{\text {i }}$	117.27 (9)
$\mathrm{Br} 1^{\text {iii }}$ - $\mathrm{Pb} 1-\mathrm{Br} 1^{\text {iii }}$	113.19 (9)	C5-N1-C1	120.0
$\mathrm{Pb} 1-\mathrm{Br} 1-\mathrm{Pb} 1^{\text {iii }}$	90.13 (6)	C5-N1-Pb1	119.9 (5)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	120.0	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Pb} 1$	120.0 (5)

Symmetry codes: (i) $-x+1, y,-z+1 / 2$; (ii) $x,-y+1, z+1 / 2$; (iii) $-x+1,-y+1,-z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2 — \mathrm{H} 2 \cdots \mathrm{Br}^{\mathrm{iv}}$	0.93	2.98	$3.906(9)$	174

Symmetry code: (iv) $x-1 / 2,-y+1 / 2, z-1 / 2$.

