

ISSN 2414-3146

Received 11 May 2016 Accepted 13 May 2016

Edited by M. Zeller, Purdue University, USA

Keywords: crystal structure; platinum(II) biphenyl diethyl sulfide dimer; intermediate complex.

CCDC reference: 1479776

Structural data: full structural data are available from iucrdata.iucr.org

Bis(μ-diethyl sulfide-κ²S:S)bis[(biphenyl-2,2'-diyl)platinum(ll)]

D. Paul Rillema,^a* Curtis Moore^b and Ali Jehan^a

^aDepartment of Chemistry, Wichita State University, Wichita, KS 67260, USA, and ^bCrystallographic Laboratory, University of California, San Diego, La Jolla, CA 92093, USA. *Correspondence e-mail: paul.rillema@wichita.edu

The C₄S₂ donor set in the title compound, $[Pt(C_{12}H_8)\{(C_2H_5)_2S\}]_2$, defines a distorted square-planar geometry about the two Pt^{II} atoms, with very small deviations from planarity. The bidentate nature of the biphenyl dianionic ligand results in C-Pt-C bond angles of 80.9 (2) and 81.2 (2)°; the S-Pt-S bond angles are 78.08 (5) and 78.09 (5)°. The average Pt-C bond length is 2.023 Å [range 2.016 (5)–2.028 (6) Å] and the average of Pt-S bond length is 2.3790 Å [range 2.3742 (14)–2.3837 (14) Å].

Structure description

We are interested in preparing Pt^{II} complexes containing the biphenyl dianion with diimine ligands due to their excited state emission properties (Rillema *et al.*, 2015). [Pt(C₁₂H₈){(C₂H₅)₂S}]₂ (Fig. 1) is a synthetic intermediate. The bidentate nature of the 2,2'-biphenyl ligand gave C-Pt-C bite angles of 80.9 (2) and 81.2 (2)°, as expected from previous studies (Rillema *et al.*, 2013), but the S-Pt-S angles of 78.08 (5) and 78.09 (5)° for the square-planar biphenyl-Pt^{II} units bridged by sulfur ligands was ~2° less than what had been found for a similar diethyl sulfide-bridged platinum(II) complex with four 4-fluorophenyl groups in place of the two bidentate biphenyl ligands (Escola *et al.*, 2014). Substitution of the bridging sulfur ligands with Br gave Br-Pt-Br angles of 83.0 (1)° and Pt-C bond lengths of 2.01 (2) and 2.01 (2) Å for the bis{(μ_2 -bromido)[(2,2'- η^2)-4,4'-bis(trifluoromethyl)biphenyl]platinum(II)}

Synthesis and crystallization

The title compound was synthesized according to previously published procedures (Gilman & Gaj, 1957; Gardner *et al.*, 1973). X-ray quality crystals were obtained by recrystallization from benzene.

Figure 1

The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids. H atoms have been omitted for clarity.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

Acknowledgements

We are grateful for support from the National Science Foundation (EPSCoR), the Wichita State University Office of Research Administration, and the Department of Energy.

References

Bruker (2012). *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2013). *APEX2*. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2015). *SADABS*. Bruker AXS Inc., Madison, Wisconsin,

- USA. Brune, H.-A., Roth, H., Debaerdemaeker, T. & Schible, H.-M. (1991). J. Organomet. Chem. **402**, 435–442.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Experimental details.	
Crystal data	
Chemical formula	$[Pt_2(C_{12}H_8)_2(C_4H_{10}S)_2]$
$M_{ m r}$	874.91
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	100
a, b, c (Å)	19.2938 (15), 7.8839 (6), 19.6969 (17)
β (°)	109.639 (5)
$V(Å^3)$	2821.8 (4)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	10.07
Crystal size (mm)	$0.05 \times 0.02 \times 0.01$
Data collection	
Diffractometer	Bruker APEXII Ultra
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2015)
T_{\min}, T_{\max}	0.018, 0.048
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	39433, 6763, 5668
R _{int}	0.052
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.668
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.033, 0.066, 1.10
No. of reflections	6763
No. of parameters	329
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} \ {\rm \AA}^{-3})$	1.93, -1.80

Table 1

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), SHELXT (Sheldrick, 2015*a*), SHELXL2015 (Sheldrick, 2015*b*) and OLEX2 (Dolomanov *et al.*, 2009).

- Escola, A., Crespo, M., Quirante, J., Cortes, R., Jayaraman, A., Badia, J., Calvet, T., Font-Bardia, M. & Cascante, M. (2014). Organometallics, 33, 1740–1750.
- Gardner, S. A., Gordon, H. B. & Rausch, M. P. (1973). J. Organomet. Chem. 60, 179–188.
- Gilman, H. & Gaj, H. J. (1957). J. Org. Chem. 22, 447-449.
- Rillema, D. P., Cruz, A. J., Tasset, B. J., Moore, C., Siam, K. & Huang, W. (2013). J. Mol. Struct. 1041, 82–91.

Rillema, D. P., Stoyanov, S., Cruz, A., Huag, W., Moore, C., Siam, K., Jehan, A. & Nguyen, T. (2015). *Dalton Trans.* 44, 17075–17090.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.

Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2016). **1**, x160789 [doi:10.1107/S2414314616007896]

Bis(μ -diethyl sulfide- $\kappa^2 S$:S)bis[(biphenyl-2,2'-diyl)platinum(ll)]

F(000) = 1664

 $\theta = 2.2 - 28.3^{\circ}$

T = 100 K

Rod, yellow

 $R_{\rm int} = 0.052$

 $h = -23 \rightarrow 25$

 $k = -10 \rightarrow 10$

 $l = -26 \rightarrow 26$

 $\mu = 10.07 \text{ mm}^{-1}$

 $0.05\times0.02\times0.01~mm$

 $T_{\rm min} = 0.018, T_{\rm max} = 0.048$

 $\theta_{\rm max} = 28.3^\circ, \ \theta_{\rm min} = 2.8^\circ$

39433 measured reflections

6763 independent reflections

5668 reflections with $I > 2\sigma(I)$

 $D_{\rm x} = 2.059 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9904 reflections

D. Paul Rillema, Curtis Moore and Ali Jehan

Bis(μ-diethyl sulfide-κ²S:S)bis[(biphenyl-2,2'-diyl)platinum(ll)]

Crystal data

 $[Pt_2(C_{12}H_{10})_2(C_4H_8S)_2]$ $M_r = 874.91$ Monoclinic, $P2_1/n$ a = 19.2938 (15) Å b = 7.8839 (6) Å c = 19.6969 (17) Å $\beta = 109.639$ (5)° V = 2821.8 (4) Å³ Z = 4

Data collection

Bruker APEXII Ultra diffractometer Radiation source: Micro Focus Rotating Anode, Bruker TXS Double Bounce Multilayer Mirrors monochromator Detector resolution: 7.9 pixels mm⁻¹ ω and φ scans Absorption correction: multi-scan (*SADABS*; Bruker, 2015)

Refinement

Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.033$	Hydrogen site location: inferred from
$wR(F^2) = 0.066$	neighbouring sites
S = 1.10	H-atom parameters constrained
6763 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0141P)^2 + 15.5401P]$
329 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.93 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -1.80 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Pt1	1.06321 (2)	0.28426 (3)	0.22858 (2)	0.01920 (6)	
Pt2	0.92032 (2)	0.59665 (3)	0.22827 (2)	0.01973 (6)	
S1	0.96358 (8)	0.43818 (17)	0.14799 (7)	0.0201 (3)	
S2	1.02012 (8)	0.44260 (17)	0.30952 (7)	0.0209 (3)	
C1	1.1019 (3)	0.1619 (7)	0.1581 (3)	0.0205 (11)	
C2	1.1493 (3)	0.1631 (7)	0.2996 (3)	0.0198 (11)	
C3	0.8333 (3)	0.7156 (7)	0.1570 (3)	0.0216 (12)	
C4	0.8827 (3)	0.7209 (7)	0.2990 (3)	0.0210 (11)	
C5	1.0705 (3)	0.1585 (7)	0.0830 (3)	0.0230 (12)	
Н5	1.0250	0.2150	0.0607	0.028*	
C6	1.1040 (3)	0.0741 (7)	0.0399 (3)	0.0234 (12)	
H6	1.0818	0.0746	-0.0110	0.028*	
C7	1.1697 (3)	-0.0101 (7)	0.0720 (3)	0.0250 (13)	
H7	1.1932	-0.0667	0.0431	0.030*	
C8	1.2013 (3)	-0.0117 (7)	0.1466 (3)	0.0248 (12)	
H8	1.2462	-0.0708	0.1686	0.030*	
C9	1.1680(3)	0.0720 (7)	0.1893 (3)	0.0204 (11)	
C10	1.1955 (3)	0.0738 (7)	0.2690 (3)	0.0207 (12)	
C11	1.2586 (3)	-0.0065 (7)	0.3120 (3)	0.0244 (12)	
H11	1.2890	-0.0643	0.2903	0.029*	
C12	1.2781 (3)	-0.0034 (7)	0.3867 (3)	0.0263 (13)	
H12	1.3220	-0.0568	0.4163	0.032*	
C13	1.2327 (3)	0.0781 (7)	0.4172 (3)	0.0264 (13)	
H13	1.2445	0.0776	0.4681	0.032*	
C14	1.1696 (3)	0.1612 (7)	0.3741 (3)	0.0249 (12)	
H14	1.1395	0.2182	0.3964	0.030*	
C15	0.8112 (3)	0.7139 (7)	0.0820(3)	0.0227 (12)	
H15	0.8405	0.6553	0.0593	0.027*	
C16	0.7473 (3)	0.7956 (7)	0.0391 (3)	0.0241 (12)	
H16	0.7338	0.7915	-0.0120	0.029*	
C17	0.7035 (3)	0.8824 (7)	0.0704 (3)	0.0259 (13)	
H17	0.6594	0.9356	0.0412	0.031*	
C18	0.7250 (3)	0.8909 (7)	0.1456 (3)	0.0257 (13)	
H18	0.6963	0.9538	0.1676	0.031*	
C19	0.7881 (3)	0.8078 (7)	0.1883 (3)	0.0221 (12)	
C20	0.8163 (3)	0.8089 (7)	0.2682 (3)	0.0231 (12)	
C21	0.7823 (3)	0.8892 (7)	0.3106 (3)	0.0259 (13)	
H21	0.7366	0.9452	0.2885	0.031*	
C22	0.8140 (3)	0.8894 (8)	0.3854 (3)	0.0280 (13)	
H22	0.7900	0.9433	0.4146	0.034*	
C23	0.8807 (4)	0.8101 (7)	0.4164 (3)	0.0284 (13)	
H23	0.9036	0.8122	0.4672	0.034*	
C24	0.9149 (3)	0.7269 (7)	0.3742 (3)	0.0257 (13)	
H24	0.9610	0.6731	0.3968	0.031*	
C25	0.9924 (3)	0.5681 (7)	0.0864 (3)	0.0239 (12)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H25A	1.0208	0.4980	0.0633	0.029*
H25B	0.9485	0.6125	0.0481	0.029*
C26	1.0396 (4)	0.7150 (8)	0.1260 (3)	0.0321 (14)
H26A	1.0111	0.7857	0.1480	0.048*
H26B	1.0548	0.7833	0.0919	0.048*
H26C	1.0832	0.6710	0.1637	0.048*
C27	0.8930 (3)	0.3033 (7)	0.0872 (3)	0.0252 (13)
H27A	0.8484	0.3715	0.0631	0.030*
H27B	0.9111	0.2565	0.0496	0.030*
C28	0.8738 (4)	0.1596 (9)	0.1285 (4)	0.0356 (15)
H28A	0.9175	0.0893	0.1505	0.053*
H28B	0.8348	0.0903	0.0954	0.053*
H28C	0.8567	0.2060	0.1662	0.053*
C29	1.0927 (3)	0.5749 (7)	0.3692 (3)	0.0246 (12)
H29A	1.0747	0.6306	0.4052	0.030*
H29B	1.1356	0.5036	0.3953	0.030*
C30	1.1156 (4)	0.7083 (8)	0.3256 (4)	0.0370 (16)
H30A	1.1325	0.6527	0.2895	0.055*
H30B	1.1555	0.7770	0.3577	0.055*
H30C	1.0734	0.7814	0.3013	0.055*
C31	0.9904 (3)	0.3146 (8)	0.3714 (3)	0.0266 (13)
H31A	1.0338	0.2640	0.4084	0.032*
H31B	0.9642	0.3865	0.3960	0.032*
C32	0.9399 (4)	0.1756 (9)	0.3296 (4)	0.0429 (18)
H32A	0.8964	0.2264	0.2940	0.064*
H32B	0.9247	0.1045	0.3628	0.064*
H32C	0.9660	0.1059	0.3047	0.064*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Pt1	0.02093 (11)	0.01524 (10)	0.02032 (11)	0.00053 (8)	0.00548 (8)	0.00055 (8)
Pt2	0.02191 (11)	0.01607 (10)	0.02061 (11)	0.00074 (8)	0.00635 (8)	0.00018 (8)
S 1	0.0227 (7)	0.0160 (7)	0.0206 (7)	0.0007 (5)	0.0059 (6)	0.0004 (5)
S2	0.0231 (7)	0.0184 (7)	0.0206 (7)	0.0011 (5)	0.0066 (6)	0.0007 (5)
C1	0.025 (3)	0.016 (3)	0.021 (3)	-0.002 (2)	0.007 (2)	0.002 (2)
C2	0.021 (3)	0.018 (3)	0.020 (3)	-0.003 (2)	0.006 (2)	0.001 (2)
C3	0.026 (3)	0.016 (3)	0.022 (3)	-0.004 (2)	0.007 (2)	-0.001 (2)
C4	0.023 (3)	0.016 (3)	0.024 (3)	-0.001 (2)	0.008 (2)	0.002 (2)
C5	0.028 (3)	0.015 (3)	0.025 (3)	0.002 (2)	0.008 (2)	0.002 (2)
C6	0.030 (3)	0.017 (3)	0.023 (3)	-0.002 (2)	0.009 (2)	0.000(2)
C7	0.031 (3)	0.019 (3)	0.029 (3)	-0.001 (2)	0.014 (3)	-0.003 (2)
C8	0.026 (3)	0.018 (3)	0.030 (3)	0.004 (2)	0.010 (3)	0.001 (2)
C9	0.023 (3)	0.013 (3)	0.026 (3)	-0.003 (2)	0.009 (2)	-0.001 (2)
C10	0.030 (3)	0.013 (3)	0.021 (3)	-0.005 (2)	0.010(2)	0.000(2)
C11	0.023 (3)	0.017 (3)	0.033 (3)	0.002 (2)	0.009 (3)	0.002 (2)
C12	0.027 (3)	0.018 (3)	0.029 (3)	0.003 (2)	0.003 (3)	0.006 (2)
C13	0.033 (3)	0.018 (3)	0.024 (3)	-0.002 (2)	0.005 (3)	0.001 (2)

C14	0.026 (3)	0.018 (3)	0.030 (3)	-0.001 (2)	0.009 (3)	0.000 (2)
C15	0.027 (3)	0.016 (3)	0.026 (3)	0.000(2)	0.009 (2)	0.001 (2)
C16	0.026 (3)	0.020 (3)	0.024 (3)	-0.003 (2)	0.006 (2)	0.000 (2)
C17	0.023 (3)	0.020 (3)	0.031 (3)	0.003 (2)	0.004 (3)	0.003 (2)
C18	0.027 (3)	0.021 (3)	0.028 (3)	0.005 (2)	0.007 (3)	-0.002 (2)
C19	0.022 (3)	0.015 (3)	0.028 (3)	-0.002 (2)	0.006 (2)	-0.003 (2)
C20	0.024 (3)	0.017 (3)	0.029 (3)	0.000 (2)	0.011 (2)	0.000 (2)
C21	0.024 (3)	0.021 (3)	0.035 (3)	0.003 (2)	0.013 (3)	0.001 (3)
C22	0.034 (3)	0.025 (3)	0.029 (3)	-0.002 (3)	0.016 (3)	-0.004 (3)
C23	0.040 (4)	0.022 (3)	0.024 (3)	-0.001 (3)	0.012 (3)	0.001 (2)
C24	0.030 (3)	0.020 (3)	0.026 (3)	0.005 (2)	0.009 (3)	0.001 (2)
C25	0.033 (3)	0.018 (3)	0.023 (3)	-0.001 (2)	0.012 (3)	0.000 (2)
C26	0.040 (4)	0.027 (3)	0.031 (3)	-0.011 (3)	0.014 (3)	0.000 (3)
C27	0.025 (3)	0.020 (3)	0.027 (3)	-0.005 (2)	0.005 (2)	-0.005 (2)
C28	0.037 (4)	0.033 (4)	0.034 (4)	-0.010 (3)	0.009 (3)	0.000 (3)
C29	0.024 (3)	0.022 (3)	0.021 (3)	-0.001 (2)	-0.001 (2)	-0.005 (2)
C30	0.039 (4)	0.028 (3)	0.037 (4)	-0.006 (3)	0.003 (3)	0.004 (3)
C31	0.028 (3)	0.027 (3)	0.026 (3)	0.002 (2)	0.010 (3)	0.004 (2)
C32	0.060 (5)	0.029 (4)	0.045 (4)	-0.013 (3)	0.026 (4)	-0.006 (3)

Geometric parameters (Å, °)

Pt1—S1	2.3742 (14)	C16—H16	0.9500
Pt1—S2	2.3837 (14)	C16—C17	1.383 (8)
Pt1—C1	2.028 (6)	C17—H17	0.9500
Pt1—C2	2.016 (5)	C17—C18	1.400 (8)
Pt2—S1	2.3759 (14)	C18—H18	0.9500
Pt2—S2	2.3816 (14)	C18—C19	1.390 (8)
Pt2—C3	2.021 (6)	C19—C20	1.482 (8)
Pt2—C4	2.027 (6)	C20—C21	1.378 (8)
S1—C25	1.812 (6)	C21—H21	0.9500
S1—C27	1.823 (6)	C21—C22	1.394 (8)
S2—C29	1.823 (6)	C22—H22	0.9500
S2—C31	1.816 (6)	C22—C23	1.374 (9)
C1—C5	1.396 (8)	С23—Н23	0.9500
C1—C9	1.407 (8)	C23—C24	1.387 (8)
C2-C10	1.419 (8)	C24—H24	0.9500
C2—C14	1.386 (8)	C25—H25A	0.9900
C3—C15	1.394 (8)	C25—H25B	0.9900
C3—C19	1.425 (8)	C25—C26	1.517 (8)
C4—C20	1.403 (8)	C26—H26A	0.9800
C4—C24	1.401 (8)	C26—H26B	0.9800
С5—Н5	0.9500	C26—H26C	0.9800
C5—C6	1.397 (8)	C27—H27A	0.9900
С6—Н6	0.9500	C27—H27B	0.9900
C6—C7	1.381 (8)	C27—C28	1.510 (8)
С7—Н7	0.9500	C28—H28A	0.9800
С7—С8	1.390 (8)	C28—H28B	0.9800

С8—Н8	0.9500	C28—H28C	0.9800
C8—C9	1.386 (8)	C29—H29A	0.9900
C9—C10	1.478 (7)	C29—H29B	0.9900
C10—C11	1.381 (8)	C29—C30	1.514 (8)
C11—H11	0.9500	C30—H30A	0.9800
C11—C12	1 393 (8)	C30—H30B	0.9800
C12—H12	0.9500	C30 - H30C	0.9800
C12 - C13	1 376 (8)	C31—H31A	0.9900
C13—H13	0.9500	C31—H31B	0.9900
C13 - C14	1 392 (8)	C_{31} C_{32}	1 512 (9)
C14 $H14$	0.9500	C_{32} H32	0.9800
C15—H15	0.9500	C32_H32R	0.9800
C_{15} C_{16}	1 396 (8)	C32_H32D	0.9800
015-010	1.590 (6)	052-11520	0.9000
S1—Pt1—S2	78.08 (5)	С16—С17—Н17	120.4
C1-Pt1-S1	100.76 (16)	C16—C17—C18	119.2 (5)
C1—Pt1—S2	176.78 (16)	C18—C17—H17	120.4
C2—Pt1—S1	177.46 (16)	C17—C18—H18	119.8
C2—Pt1—S2	100.11 (16)	C19—C18—C17	120.4 (5)
C2—Pt1—C1	80.9 (2)	C19—C18—H18	119.8
S1—Pt2—S2	78.09 (5)	C3—C19—C20	113.7 (5)
C3—Pt2—S1	100.21 (16)	C18—C19—C3	121.2 (5)
C3—Pt2—S2	176.99 (16)	C18—C19—C20	125.1 (5)
C3—Pt2—C4	81.2 (2)	C4—C20—C19	114.4 (5)
C4—Pt2—S1	177.17 (16)	C21—C20—C4	121.1 (6)
C4—Pt2—S2	100.35 (16)	C21—C20—C19	124.4 (5)
Pt1—S1—Pt2	102.14 (5)	C20—C21—H21	119.6
C25—S1—Pt1	112.0 (2)	C20—C21—C22	120.8 (6)
C25—S1—Pt2	113.82 (19)	C22—C21—H21	119.6
C25—S1—C27	102.7 (3)	C21—C22—H22	120.6
C27—S1—Pt1	113.5 (2)	C23—C22—C21	118.8 (6)
C27—S1—Pt2	113.1 (2)	C23—C22—H22	120.6
Pt2—S2—Pt1	101.69 (5)	С22—С23—Н23	119.6
C29 = S2 = Pt1	111.5 (2)	C22—C23—C24	120.9 (6)
C29—S2—Pt2	114.43 (19)	C24—C23—H23	119.6
$C_{31} = S_{2} = P_{11}$	114.6 (2)	C4—C24—H24	119.4
C31 - S2 - Pt2	111.6 (2)	C23—C24—C4	121.1 (6)
$C_{31} = S_{2} = C_{29}$	103.5 (3)	C23—C24—H24	119.4
C5-C1-Pt1	127.2 (4)	S1—C25—H25A	109.5
C5-C1-C9	117.4 (5)	S1—C25—H25B	109.5
C9-C1-Pt1	115 3 (4)	H25A—C25—H25B	108.1
C10-C2-Pt1	115.4 (4)	$C_{26} = C_{25} = S_{1}$	110.7 (4)
$C_{14} - C_{2} - Pt_{1}$	127 8 (4)	$C_{26} = C_{25} = H_{25A}$	109.5
$C_{14} - C_{2} - C_{10}$	1167(5)	C26—C25—H25B	109.5
$C_{15} - C_{3} - Pt_{2}$	128.2 (4)	C25—C26—H26A	109.5
C15—C3—C19	116.7 (5)	C25—C26—H26B	109.5
C19—C3—Pt2	115.0 (4)	C25—C26—H26C	109.5
$C_{20} - C_{4} - P_{12}$	115 3 (4)	H26A_C26_H26B	109.5
020 07 112	113.3 (7)	112011 020 11200	107.5

C24—C4—Pt2	127.5 (4)	H26A—C26—H26C	109.5
C24—C4—C20	117.2 (5)	H26B—C26—H26C	109.5
C1—C5—H5	119.1	S1—C27—H27A	109.6
C1—C5—C6	121.8 (5)	S1—C27—H27B	109.6
С6—С5—Н5	119.1	H27A—C27—H27B	108.1
С5—С6—Н6	120.2	C28—C27—S1	110.4 (4)
C7—C6—C5	119.5 (5)	С28—С27—Н27А	109.6
С7—С6—Н6	120.2	C28—C27—H27B	109.6
С6—С7—Н7	120.1	C27—C28—H28A	109.5
C6—C7—C8	119.8 (5)	C27—C28—H28B	109.5
С8—С7—Н7	120.1	C27—C28—H28C	109.5
С7—С8—Н8	119.7	H28A—C28—H28B	109.5
C9—C8—C7	120.7 (5)	H28A—C28—H28C	109.5
С9—С8—Н8	119.7	H28B—C28—H28C	109.5
C1—C9—C10	114.2 (5)	S2—C29—H29A	109.7
C8—C9—C1	120.7 (5)	S2—C29—H29B	109.7
C8—C9—C10	125.1 (5)	H29A—C29—H29B	108.2
C2—C10—C9	113.7 (5)	C30—C29—S2	109.8 (4)
C11—C10—C2	121.1 (5)	С30—С29—Н29А	109.7
C11—C10—C9	125.1 (5)	С30—С29—Н29В	109.7
C10—C11—H11	119.7	С29—С30—Н30А	109.5
C10-C11-C12	120.6 (5)	С29—С30—Н30В	109.5
C12—C11—H11	119.7	С29—С30—Н30С	109.5
C11—C12—H12	120.5	H30A-C30-H30B	109.5
C13—C12—C11	119.0 (5)	H30A-C30-H30C	109.5
C13—C12—H12	120.5	H30B—C30—H30C	109.5
C12—C13—H13	119.7	S2—C31—H31A	109.9
C12—C13—C14	120.5 (6)	S2—C31—H31B	109.9
C14—C13—H13	119.7	H31A-C31-H31B	108.3
C2—C14—C13	121.9 (6)	C32—C31—S2	109.1 (4)
C2—C14—H14	119.0	С32—С31—Н31А	109.9
C13—C14—H14	119.0	C32—C31—H31B	109.9
C3—C15—H15	119.0	C31—C32—H32A	109.5
C3—C15—C16	122.1 (5)	C31—C32—H32B	109.5
C16—C15—H15	119.0	C31—C32—H32C	109.5
C15—C16—H16	119.8	H32A—C32—H32B	109.5
C17—C16—C15	120.4 (5)	H32A—C32—H32C	109.5
C17—C16—H16	119.8	H32B—C32—H32C	109.5