ISSN 2414-3146

Received 25 May 2016 Accepted 26 May 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; indoline; hydrogen bonding; π – π stacking.

CCDC reference: 1482161

Structural data: full structural data are available from iucrdata.iucr.org

1-Benzyl-5-chloroindoline-2,3-dione

Zineb Tribak,^a Youssef Kandri Rodi,^a Amal Haoudi,^a* El Mokhtar Essassi,^b Frédéric Capet^c and Hafid Zouihri^d

^aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Iimmouzzer, BP 2202, Fez, Morocco, ^bLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, BP 1014, Avenue Ibn Batouta, Rabat, Morocco, ^cUnité de Catalyse et de Chimie du Solide (UCCS), UMR 8181, Ecole Nationale Supérieure de Chimie de Lille, France, and ^dDépartement de chimie, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, 80000 Agadir, Morocco. *Correspondence e-mail: haoudi_amal@yahoo.fr

The title compound, $C_{15}H_{10}CINO_2$, crystallizes with two molecules (*A* and *B*) in the asymmetric unit, which have almost identical conformations (r.m.s. overlay fit = 0.057 Å). In molecule *A*, the dihedral angle between the indole ring system (r.m.s. deviation = 0.025 Å) and the phenyl group is 71.39 (8)°. Equivalent data for molecule *B* are 0.023 Å and 71.43 (9)°. In the crystal, the *A* and *B* molecules are linked by a C–H···O hydrogen bond and aromatic π – π stacking is also observed [shortest centroid–centroid separation = 3.5810 (11) Å].

Structure description

5-Chloro-indoline-2,3-dione has been used as a starting material for a variety of chemical reactions such as 1,3-dipolar cycloaddition (Ranjith Kumar *et al.*, 2009) and in the synthesis of several heterocyclic systems (Kharbach *et al.*, 2016). As part of our studies in this area, the synthesis and structure of the title compound, $C_{15}H_{10}CINO_2$, are now described.

The title compound crystallizes with two molecules (A and B) in the asymmetric unit (Fig. 1). In each molecule, the indoline ring system is almost planar, with the largest deviation from the mean plane being 0.0230 (17) Å in molecule A and 0.0418 (18) Å in molecule B. The conformation of the two molecules are almost identical, as indicated by the angles of inclination of the indole moiety with respect to the benzyl ring system, the dihedral angles being 71.43 (9) and 71.39 (8)° in molecules A and B, respectively.

In the crystal, the A and B molecules are linked by a C-H···O hydrogen bond (Table 1) and aromatic π - π stacking is also observed [shortest centroid-centroid separation = 3.5810 (11) Å].

Figure 1

The molecular structure of the title molecule, showing displacement ellipsoids drawn at the 30% probability level.

Synthesis and crystallization

To a solution of 5-chloro-1*H*-indole-2,3-dione (0.4 g, 2,20 mmol) in *N*,*N*-dimethylformamide (25 ml), were added (0.5 g, 3,3 mmol) K_2CO_3 , tetra-*n*-butylammonium fluoride (0.1 g, 0.3 mmol), and benzyl chloride (0.27 ml, 2,42 mmol). The reaction mixture was stirred for 48 h at room temperature. After filtration the solution was evaporated under reduced pressure. The residue obtained was recrystallized from ethanol solution to afford the title compound as red crystals in a yield of 72% (m.p. 413 K)

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

References

- Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA
- Kharbach, Y., Kandri Rodi, Y., Capet, F., Essassi, E. M. & El Ammari, L. (2016). *IUCrData*, **1**, x160371.

Table 1 Hydrogen-bond geometry (Å, °).						
$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$		
С3−Н3…О3	0.93	2.32	3.198 (3)	157		

Tab	e 2	2	
Evn	arin	nental	details

Crystal data	
Chemical formula	$C_{15}H_{10}CINO_2$
M _r	271.69
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	296
<i>a</i> , <i>b</i> , <i>c</i> (Å)	4.4576 (2), 27.6646 (11), 20.9530 (8)
β (°)	93.870 (2)
$V(Å^3)$	2577.98 (18)
Z	8
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.29
Crystal size (mm)	$0.32 \times 0.26 \times 0.19$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2009)
T_{\min}, T_{\max}	0.694, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	44717, 6252, 4206
R _{int}	0.034
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.667
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.043, 0.118, 1.02
No. of reflections	6252
No. of parameters	343
H-atom treatment	H-atom parameters constrained
$\Delta ho_{ m max}, \Delta ho_{ m min} \ ({ m e} \ { m \AA}^{-3})$	0.22, -0.29

Computer programs: *APEX2* and *SAINT* (Bruker, 2009), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2014* (Sheldrick, 2015*b*), *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

Ranjith Kumar, R., Perumal, S., Senthilkumar, P., Yogeeswari, P. & Sriram, D. (2009). *Eur. J. Med. Chem.* 44, 3821–3829.
Sheldrick, G. M. (2015*a*). *Acta Cryst.* A71, 3–8.
Sheldrick, G. M. (2015*b*). *Acta Cryst.* C71, 3–8.
Spek, A. L. (2009). *Acta Cryst.* D65, 148–155.
Westrip, S. P. (2010). *J. Appl. Cryst.* 43, 920–925.

full crystallographic data

IUCrData (2016). **1**, x160854 [doi:10.1107/S2414314616008543]

1-Benzyl-5-chloroindoline-2,3-dione

Zineb Tribak, Youssef Kandri Rodi, Amal Haoudi, El Mokhtar Essassi, Frédéric Capet and Hafid Zouihri

1-Benzyl-5-chloroindoline-2,3-dione

Crystal data

C₁₅H₁₀ClNO₂ $M_r = 271.69$ Monoclinic, $P2_1/n$ a = 4.4576 (2) Å b = 27.6646 (11) Å c = 20.9530 (8) Å $\beta = 93.870$ (2)° V = 2577.98 (18) Å³ Z = 8

Data collection

Bruker APEXII CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\min} = 0.694, \ T_{\max} = 0.746$
44717 measured reflections
44717 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.118$ S = 1.026252 reflections 343 parameters 0 restraints F(000) = 1120 $D_x = 1.400 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9947 reflections $\theta = 2.4-25.1^{\circ}$ $\mu = 0.29 \text{ mm}^{-1}$ T = 296 KBlock, red $0.32 \times 0.26 \times 0.19 \text{ mm}$

6252 independent reflections 4206 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$ $\theta_{max} = 28.3^\circ, \ \theta_{min} = 2.4^\circ$ $h = -5 \rightarrow 5$ $k = -36 \rightarrow 36$ $l = -27 \rightarrow 27$

Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0466P)^2 + 0.6966P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.22$ e Å⁻³ $\Delta\rho_{min} = -0.29$ e Å⁻³

Special details

Experimental. SADABS-2014/5 (Bruker,2014/5) was used for absorption correction. wR2(int) was 0.0610 before and 0.0474 after correction. The Ratio of minimum to maximum transmission is 0.9304. The $\lambda/2$ correction factor is Not present.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.89958 (12)	0.43330 (2)	0.48461 (2)	0.06747 (16)	
C12	1.48632 (14)	0.11968 (2)	0.42404 (3)	0.08210 (19)	
N1	0.0180 (3)	0.46593 (5)	0.26720 (7)	0.0491 (3)	
01	0.1339 (4)	0.57466 (5)	0.34834 (7)	0.0820 (5)	
O2	-0.2505 (4)	0.53491 (6)	0.24114 (7)	0.0808 (4)	
N2	0.6629 (4)	0.22139 (6)	0.23884 (7)	0.0589 (4)	
C1	0.2383 (4)	0.45266 (5)	0.31566 (8)	0.0418 (4)	
C6	0.3177 (4)	0.49196 (5)	0.35516 (8)	0.0436 (4)	
C16	0.8647 (4)	0.19261 (6)	0.27710 (8)	0.0464 (4)	
C10	0.0785 (4)	0.43138 (6)	0.16009 (8)	0.0480 (4)	
C25	0.7006 (4)	0.21277 (6)	0.12230 (8)	0.0489 (4)	
C5	0.5237 (4)	0.48727 (6)	0.40690 (8)	0.0468 (4)	
Н5	0.5764	0.5135	0.4330	0.056*	
C4	0.6490 (4)	0.44222 (6)	0.41863 (8)	0.0465 (4)	
C3	0.5724 (4)	0.40332 (6)	0.37927 (8)	0.0505 (4)	
Н3	0.6612	0.3734	0.3881	0.061*	
C2	0.3667 (4)	0.40793 (6)	0.32713 (8)	0.0486 (4)	
H2	0.3168	0.3817	0.3007	0.058*	
O4	0.4619 (6)	0.29741 (7)	0.24693 (8)	0.1259 (8)	
C21	0.9722 (5)	0.21743 (6)	0.33183 (8)	0.0556 (5)	
C20	1.1657 (5)	0.19600 (7)	0.37758 (9)	0.0599 (5)	
H20	1.2362	0.2126	0.4141	0.072*	
C17	0.9515 (4)	0.14584 (6)	0.26680 (9)	0.0520 (4)	
H17	0.8824	0.1291	0.2303	0.062*	
C11	0.2055 (4)	0.38866 (7)	0.14143 (10)	0.0600 (5)	
H11	0.1789	0.3606	0.1648	0.072*	
C9	-0.1098 (4)	0.43402 (7)	0.21675 (9)	0.0561 (5)	
H9A	-0.3091	0.4455	0.2027	0.067*	
H9B	-0.1308	0.4018	0.2342	0.067*	
C19	1.2502 (4)	0.14898 (7)	0.36694 (8)	0.0534 (4)	
C7	0.1390 (5)	0.53319 (6)	0.33089 (9)	0.0551 (4)	
C30	0.7950 (5)	0.25819 (7)	0.10518 (9)	0.0608 (5)	
H30	0.7444	0.2849	0.1291	0.073*	
C8	-0.0624 (4)	0.51317 (7)	0.27356 (9)	0.0567 (5)	
C18	1.1458 (4)	0.12459 (6)	0.31285 (9)	0.0565 (5)	
H18	1.2075	0.0929	0.3070	0.068*	
C15	0.1231 (5)	0.47248 (7)	0.12408 (9)	0.0637 (5)	
H15	0.0395	0.5017	0.1357	0.076*	
O3	0.8623 (7)	0.29835 (6)	0.36596 (9)	0.1378 (10)	
C12	0.3732 (5)	0.38726 (9)	0.08782 (11)	0.0717 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H12	0.4579	0.3583	0.0756	0.086*
C24	0.5105 (4)	0.20621 (8)	0.17810 (9)	0.0644 (5)
H24A	0.3268	0.2248	0.1706	0.077*
H24B	0.4553	0.1724	0.1811	0.077*
C26	0.7800 (5)	0.17377 (8)	0.08660 (11)	0.0725 (6)
H26	0.7196	0.1429	0.0976	0.087*
C29	0.9621 (5)	0.26426 (9)	0.05342 (10)	0.0757 (6)
H29	1.0230	0.2951	0.0421	0.091*
C13	0.4138 (5)	0.42790 (10)	0.05335 (11)	0.0769 (6)
H13	0.5260	0.4268	0.0175	0.092*
C23	0.6255 (6)	0.26494 (8)	0.26680 (10)	0.0837 (7)
C14	0.2892 (6)	0.47045 (9)	0.07147 (11)	0.0806 (7)
H14	0.3175	0.4983	0.0478	0.097*
C28	1.0399 (6)	0.22532 (12)	0.01830 (11)	0.0878 (8)
H28	1.1549	0.2294	-0.0167	0.105*
C22	0.8338 (7)	0.26512 (8)	0.32918 (10)	0.0838 (7)
C27	0.9474 (7)	0.18010 (11)	0.03494 (12)	0.0937 (8)
H27	0.9990	0.1535	0.0109	0.112*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0701 (3)	0.0689 (3)	0.0622 (3)	0.0014 (2)	-0.0044 (2)	0.0077 (2)
Cl2	0.0794 (4)	0.0920 (4)	0.0726 (3)	0.0125 (3)	-0.0121 (3)	0.0205 (3)
N1	0.0558 (9)	0.0433 (8)	0.0488 (8)	-0.0013 (6)	0.0066 (7)	0.0031 (6)
O1	0.1337 (14)	0.0374 (7)	0.0748 (10)	0.0197 (8)	0.0069 (9)	-0.0047 (6)
O2	0.0923 (11)	0.0728 (10)	0.0758 (10)	0.0292 (9)	-0.0041 (8)	0.0133 (8)
N2	0.0693 (10)	0.0558 (9)	0.0523 (9)	0.0217 (8)	0.0098 (8)	0.0083 (7)
C1	0.0463 (9)	0.0358 (8)	0.0447 (8)	-0.0021 (7)	0.0129 (7)	0.0010 (6)
C6	0.0553 (10)	0.0308 (8)	0.0465 (9)	0.0000 (7)	0.0166 (7)	0.0006 (6)
C16	0.0516 (10)	0.0430 (9)	0.0457 (9)	0.0047 (7)	0.0105 (7)	0.0037 (7)
C10	0.0464 (9)	0.0504 (10)	0.0459 (9)	-0.0078 (8)	-0.0066 (7)	-0.0006 (7)
C25	0.0444 (9)	0.0526 (10)	0.0481 (9)	0.0034 (7)	-0.0097 (7)	0.0061 (7)
C5	0.0578 (10)	0.0369 (8)	0.0468 (9)	-0.0062 (7)	0.0119 (8)	-0.0029 (7)
C4	0.0488 (9)	0.0451 (9)	0.0469 (9)	-0.0004 (7)	0.0118 (7)	0.0031 (7)
C3	0.0595 (11)	0.0357 (9)	0.0577 (10)	0.0078 (8)	0.0152 (8)	0.0035 (7)
C2	0.0618 (11)	0.0334 (8)	0.0518 (9)	-0.0009 (7)	0.0117 (8)	-0.0048 (7)
O4	0.197 (2)	0.0971 (13)	0.0846 (12)	0.0978 (15)	0.0187 (13)	0.0159 (10)
C21	0.0792 (13)	0.0421 (9)	0.0467 (9)	0.0079 (9)	0.0128 (9)	-0.0020(7)
C20	0.0810 (14)	0.0544 (11)	0.0443 (9)	-0.0040 (10)	0.0030 (9)	-0.0040 (8)
C17	0.0619 (11)	0.0399 (9)	0.0538 (10)	0.0006 (8)	0.0006 (8)	-0.0041 (7)
C11	0.0643 (12)	0.0506 (11)	0.0629 (12)	-0.0039 (9)	-0.0119 (10)	-0.0024 (9)
C9	0.0557 (11)	0.0571 (11)	0.0549 (10)	-0.0132 (9)	0.0003 (8)	0.0017 (8)
C19	0.0537 (10)	0.0527 (11)	0.0538 (10)	0.0008 (8)	0.0036 (8)	0.0092 (8)
C7	0.0757 (12)	0.0393 (9)	0.0521 (10)	0.0073 (9)	0.0182 (9)	0.0036 (8)
C30	0.0744 (13)	0.0535 (11)	0.0532 (11)	0.0010 (9)	-0.0055 (10)	0.0050 (8)
C8	0.0664 (12)	0.0484 (10)	0.0567 (10)	0.0107 (9)	0.0136 (9)	0.0080 (8)
C18	0.0651 (12)	0.0414 (9)	0.0628 (11)	0.0081 (8)	0.0020 (9)	-0.0004 (8)

C15	0.0784 (14)	0.0528 (11)	0.0606 (12)	-0.0021 (10)	0.0098 (10)	0.0044 (9)
O3	0.262 (3)	0.0681 (11)	0.0817 (12)	0.0613 (14)	0.0030 (15)	-0.0282 (9)
C12	0.0679 (13)	0.0734 (15)	0.0726 (14)	0.0055 (11)	-0.0049 (11)	-0.0232 (12)
C24	0.0523 (11)	0.0772 (14)	0.0630 (12)	0.0059 (10)	-0.0022 (9)	0.0143 (10)
C26	0.0907 (16)	0.0543 (12)	0.0715 (14)	0.0025 (11)	-0.0026 (12)	-0.0034 (10)
C29	0.0802 (15)	0.0833 (16)	0.0622 (13)	-0.0167 (12)	-0.0043 (11)	0.0214 (12)
C13	0.0771 (15)	0.0949 (18)	0.0600 (12)	-0.0107 (13)	0.0141 (11)	-0.0138 (12)
C23	0.125 (2)	0.0678 (14)	0.0607 (12)	0.0473 (14)	0.0264 (13)	0.0102 (11)
C14	0.1027 (18)	0.0774 (16)	0.0638 (13)	-0.0130 (13)	0.0205 (13)	0.0109 (11)
C28	0.0759 (16)	0.137 (3)	0.0511 (12)	0.0076 (16)	0.0073 (11)	0.0098 (14)
C22	0.144 (2)	0.0541 (12)	0.0549 (12)	0.0337 (13)	0.0206 (13)	-0.0019 (10)
C27	0.117 (2)	0.0932 (19)	0.0712 (16)	0.0253 (17)	0.0095 (15)	-0.0180 (14)

Geometric parameters (Å, °)

Cl1—C4	1.7355 (18)	С20—Н20	0.9300
Cl2—C19	1.7399 (18)	C20—C19	1.376 (3)
N1-C1	1.413 (2)	C17—H17	0.9300
N1—C9	1.463 (2)	C17—C18	1.384 (2)
N1—C8	1.364 (2)	C11—H11	0.9300
O1—C7	1.205 (2)	C11—C12	1.391 (3)
O2—C8	1.204 (2)	С9—Н9А	0.9700
N2-C16	1.410 (2)	С9—Н9В	0.9700
N2-C24	1.463 (2)	C19—C18	1.373 (3)
N2—C23	1.355 (3)	С7—С8	1.553 (3)
C1—C6	1.397 (2)	С30—Н30	0.9300
C1—C2	1.377 (2)	C30—C29	1.367 (3)
C6—C5	1.379 (2)	C18—H18	0.9300
C6—C7	1.463 (2)	C15—H15	0.9300
C16—C21	1.394 (2)	C15—C14	1.370 (3)
C16—C17	1.372 (2)	O3—C22	1.201 (3)
C10—C11	1.378 (3)	C12—H12	0.9300
С10—С9	1.501 (3)	C12—C13	1.355 (3)
C10—C15	1.386 (2)	C24—H24A	0.9700
C25—C30	1.380 (3)	C24—H24B	0.9700
C25—C24	1.501 (3)	C26—H26	0.9300
C25—C26	1.373 (3)	C26—C27	1.367 (3)
С5—Н5	0.9300	C29—H29	0.9300
C5—C4	1.381 (2)	C29—C28	1.362 (4)
C4—C3	1.385 (2)	C13—H13	0.9300
С3—Н3	0.9300	C13—C14	1.366 (3)
C3—C2	1.384 (3)	C23—C22	1.551 (4)
C2—H2	0.9300	C14—H14	0.9300
O4—C23	1.213 (3)	C28—H28	0.9300
C21—C20	1.379 (3)	C28—C27	1.370 (4)
C21—C22	1.456 (3)	C27—H27	0.9300
C1—N1—C9	125.50 (14)	C20—C19—Cl2	119.23 (14)

C8—N1—C1	110.68 (14)	C18—C19—Cl2	119.61 (14)
C8—N1—C9	123.82 (16)	C18—C19—C20	121.14 (17)
C16—N2—C24	124.99 (15)	O1—C7—C6	131.16 (19)
C23—N2—C16	110.41 (16)	O1—C7—C8	123.55 (17)
C23—N2—C24	124.59 (17)	C6—C7—C8	105.29 (14)
C6-C1-N1	111.08 (14)	С25—С30—Н30	119.7
C2—C1—N1	128.26 (15)	C29—C30—C25	120.7 (2)
C2-C1-C6	120.66 (16)	С29—С30—Н30	119.7
C1—C6—C7	106.90 (15)	N1—C8—C7	105.98 (15)
C5-C6-C1	12140(15)	$\Omega^2 - C^8 - N^1$	126 95 (19)
$C_{5} - C_{6} - C_{7}$	131.67 (15)	02 - C8 - C7	127.06(17)
$C_{21} = C_{16} = N_{2}$	111 13 (15)	$C_{17} - C_{18} - H_{18}$	119.1
C_{17} C_{16} N_2	128 25 (16)	C_{10} C_{18} C_{17}	121.86 (17)
C17 - C16 - C21	120.23(10) 120.60(16)	$C_{10} = C_{18} = C_{17}$	121.80 (17)
$C_{11} = C_{10} = C_{21}$	120.00(10) 121.99(17)	$C_{10} = C_{10} = H_{10}$	119.1
C11 - C10 - C9	121.00(17)	С14 С15 С10	119.7
	118.18 (18)	C14 - C15 - C10	120.6 (2)
C15—C10—C9	119.93 (17)	C14—C15—H15	119.7
C30—C25—C24	120.71 (18)	СП—С12—Н12	119.8
C26—C25—C30	118.66 (19)	C13—C12—C11	120.4 (2)
C26—C25—C24	120.63 (18)	C13—C12—H12	119.8
C6—C5—H5	121.1	N2—C24—C25	112.91 (16)
C6—C5—C4	117.70 (15)	N2—C24—H24A	109.0
C4—C5—H5	121.1	N2—C24—H24B	109.0
C5—C4—Cl1	120.08 (13)	C25—C24—H24A	109.0
C5—C4—C3	121.00 (16)	C25—C24—H24B	109.0
C3—C4—C11	118.91 (13)	H24A—C24—H24B	107.8
С4—С3—Н3	119.3	С25—С26—Н26	119.8
C2—C3—C4	121.47 (16)	C27—C26—C25	120.4 (2)
С2—С3—Н3	119.3	С27—С26—Н26	119.8
C1—C2—C3	117.76 (15)	С30—С29—Н29	119.9
C1—C2—H2	121.1	C28—C29—C30	120.2 (2)
C3—C2—H2	121.1	С28—С29—Н29	119.9
$C_{16} - C_{21} - C_{22}$	107.07 (17)	С12—С13—Н13	120.2
C_{20} C_{21} C_{16}	121 61 (16)	C12-C13-C14	1197(2)
C_{20} C_{21} C_{22}	131 28 (18)	C14—C13—H13	120.2
$C_{21} = C_{20} = H_{20}$	121.20 (10)	N_{2} C_{23} C_{22}	10644(17)
C_{19} C_{20} C_{21} C_{20} C_{21}	117 31 (17)	$04-C^{23}-N^{2}$	126.8(2)
$C_{19} = C_{20} = C_{21}$	121.3	$04 C^{23} C^{22}$	126.8(2)
$C_{19} = C_{20} = H_{120}$	121.5	$C_{15} = C_{14} = H_{14}$	120.8 (2)
$C_{10} - C_{17} - C_{18}$	121.3 117.47.(16)	$C_{13} = C_{14} = 1114$	119.0 120.7(2)
C10 - C17 - C18	117.47 (10)	C12 - C14 - C13	120.7 (2)
C18—C17—H17	121.5	C13—C14—H14	119.0
	119.8	C29—C28—H28	120.2
C10 - C11 - C12	120.40 (19)	$C_{29} = C_{28} = C_{27}$	119.5 (2)
C12—C11—H11	119.8	C2/—C28—H28	120.2
NI-C9-C10	112.91 (14)	C21—C22—C23	104.91 (17)
NI-C9-H9A	109.0	O3-C22-C21	130.0 (2)
N1—C9—H9B	109.0	O3—C22—C23	125.1 (2)
С10—С9—Н9А	109.0	C26—C27—C28	120.5 (2)

data reports

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	С10—С9—Н9В	109.0	С26—С27—Н27	119.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H9A—C9—H9B	107.8	C28—C27—H27	119.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cl1—C4—C3—C2	177.96 (13)	O4—C23—C22—O3	-1.0 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cl2—C19—C18—C17	178.32 (15)	C21—C16—C17—C18	0.6 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C1—C6—C5	178.31 (14)	C21—C20—C19—Cl2	-178.39 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C1—C6—C7	-0.09 (18)	C21—C20—C19—C18	0.1 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C1—C2—C3	-177.86 (15)	C20—C21—C22—O3	2.5 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—C7—C8—N1	177.33 (18)	C20—C21—C22—C23	-176.5 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—C7—C8—O2	-2.4 (3)	C20-C19-C18-C17	-0.2 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2-C16-C21-C20	177.89 (17)	C17—C16—C21—C20	-0.7 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2-C16-C21-C22	-0.1 (2)	C17—C16—C21—C22	-178.68 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2-C16-C17-C18	-177.71 (17)	C11—C10—C9—N1	118.18 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2—C23—C22—C21	-2.0 (3)	C11—C10—C15—C14	0.0 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2—C23—C22—O3	178.9 (3)	C11—C12—C13—C14	0.0 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—N1—C9—C10	-84.7 (2)	C9—N1—C1—C6	178.35 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—N1—C8—O2	-177.55 (19)	C9—N1—C1—C2	-2.9 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—N1—C8—C7	2.67 (18)	C9—N1—C8—O2	2.4 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1C6C4	-0.2 (2)	C9—N1—C8—C7	-177.42 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1-C6-C7-O1	-178.3 (2)	C9-C10-C11-C12	178.53 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C6—C7—C8	1.63 (18)	C9-C10-C15-C14	-178.65 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C1—C2—C3	0.8 (2)	C7—C6—C5—C4	177.75 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6-C5-C4-Cl1	-177.70 (12)	C30-C25-C24-N2	-62.5 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C5—C4—C3	0.7 (2)	C30—C25—C26—C27	-0.4 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C7—C8—N1	-2.65 (19)	C30—C29—C28—C27	0.5 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C7—C8—O2	177.57 (19)	C8—N1—C1—C6	-1.75 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16—N2—C24—C25	-83.6 (2)	C8—N1—C1—C2	177.04 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16—N2—C23—O4	-178.2 (3)	C8—N1—C9—C10	95.4 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16—N2—C23—C22	1.9 (2)	C15-C10-C11-C12	0.0 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16—C21—C20—C19	0.3 (3)	C15-C10-C9-N1	-63.3 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16—C21—C22—O3	-179.7 (3)	C12—C13—C14—C15	-0.1 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16—C21—C22—C23	1.2 (2)	C24—N2—C16—C21	179.86 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16—C17—C18—C19	-0.2 (3)	C24—N2—C16—C17	-1.7 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-C11-C12-C13	0.1 (3)	C24—N2—C23—O4	0.7 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-C15-C14-C13	0.1 (3)	C24—N2—C23—C22	-179.14 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C25—C30—C29—C28	-0.6 (3)	C24—C25—C30—C29	-178.42 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C25—C26—C27—C28	0.4 (4)	C24—C25—C26—C27	178.5 (2)
C5-C6-C7-C8 $-176.54(17)$ C26-C25-C24-N2118.6(2)C5-C4-C3-C2 $-0.5(3)$ C29-C28-C27-C26 $-0.4(4)$ C4-C3-C2-C1 $-0.3(3)$ C23-N2-C16-C21 $-1.2(2)$ C2-C1-C6-C5 $-0.6(2)$ C23-N2-C16-C17177.2(2)	C5-C6-C7-O1	3.5 (3)	C26—C25—C30—C29	0.5 (3)
C5-C4-C3-C2 -0.5 (3)C29-C28-C27-C26 -0.4 (4)C4-C3-C2-C1 -0.3 (3)C23-N2-C16-C21 -1.2 (2)C2-C1-C6-C5 -0.6 (2)C23-N2-C16-C17177.2 (2)	C5—C6—C7—C8	-176.54 (17)	C26—C25—C24—N2	118.6 (2)
C4-C3-C2-C1 -0.3 (3) $C23-N2-C16-C21$ -1.2 (2) $C2-C1-C6-C5$ -0.6 (2) $C23-N2-C16-C17$ 177.2 (2)	C5—C4—C3—C2	-0.5 (3)	C29—C28—C27—C26	-0.4 (4)
C2-C1-C6-C5 -0.6 (2) C23-N2-C16-C17 177.2 (2)	C4—C3—C2—C1	-0.3 (3)	C23—N2—C16—C21	-1.2 (2)
	C2-C1-C6-C5	-0.6 (2)	C23—N2—C16—C17	177.2 (2)
C2—C1—C6—C7 –178.99 (15) C23—N2—C24—C25 97.6 (2)	C2-C1-C6-C7	-178.99 (15)	C23—N2—C24—C25	97.6 (2)
O4—C23—C22—C21 178.2 (3) C22—C21—C20—C19 177.8 (2)	O4—C23—C22—C21	178.2 (3)	C22—C21—C20—C19	177.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
С3—Н3…О3	0.93	2.32	3.198 (3)	157