IUCrData

Received 29 April 2016
Accepted 14 June 2016

4,4'-([4,4'-Bipyridine]-1,1'-diium-1,1'-diyl)dibenzoate dihydrate

Mark A. Rodriguez, ${ }^{\text {a* }}$ Dorina F. Sava Gallis, ${ }^{\text {b }}$ James S. Chavez, ${ }^{\text {b }}$ Liana M. Klivansky ${ }^{\text {c }}$ and Yi Liu ${ }^{\text {c }}$

${ }^{\text {ap }}$ PO Box 5800, MS 1411, Sandia National Laboratories, Albuquerque, NM 87185-1411, USA, ${ }^{\text {b }}$ PO Box 5800, MS 1415, Sandia National Laboratories, Albuquerque, NM 87185-1415, USA, and ${ }^{\text {c }}$ The Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA. *Correspondence e-mail: marodri@sandia.gov

We report here the synthesis of a neutral viologen derivative, $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. The non-solvent portion of the structure ($Z-\mathrm{Lig}$) is a zwitterion, consisting of two positively charged pyridinium cations and two negatively charged carboxylate anions. The carboxylate group is almost coplanar [dihedral angle $=2.04(11)^{\circ}$] with the benzene ring, whereas the dihedral angle between pyridine and benzene rings is $46.28(5)^{\circ}$. The $Z-\mathrm{Lig}$ molecule is positioned on a center of inversion (Fig. 1). The presence of the twofold axis perpendicular to the c-glide plane in space group $C 2 / \mathrm{c}$ generates a screw-axis parallel to the b axis that is shifted from the origin by $1 / 4$ in the a and c directions. This screw-axis replicates the molecule (and solvent water molecules) through space. The Z-Lig molecule links to adjacent molecules via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving solvent water molecules as well as intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions. There are also $\pi-\pi$ interactions between benzene rings on adjacent molecules.

Chemical scheme

Structure description

The title compound, $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, (Fig. 1), includes both the ligand molecule 4, 4^{\prime}-([4,4'-bipyridine]-1, 1^{\prime}-diium- $1,1^{\prime}$-diyl)dibenzoate (Z-Lig) and two solvent water molecules. The Z-Lig molecule is of great interest due to its zwitterionic properties. Zwitterions have been used for the construction of coordination polymers with built-in charged surfaces. Such polymers could be employed in gas sorption, separation, and electrochemical applications (e.g. see Aulakh et al., 2015).

The Z-Lig molecule is positioned on a center of inversion (Fig. 1). The presence of the twofold axis perpendicular to the c-glide plane in space group $C 2 / \mathrm{c}$ generates a screw-axis

Figure 1
The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids for non-H atoms. Only one of the solvent water molecules is shown. Symmetry-equivalent atoms are generated by inversion $\left(\frac{1}{2}-x, \frac{3}{2}-y, 1-z\right)$.
parallel to the b axis that is shifted from the origin by $1 / 4$ in the \mathbf{a} and \mathbf{c} directions. This screw-axis replicates the molecule (and solvent water molecules) through space. The solvent water molecules serve to link the Z-Lig molecules via hydrogen bonding to neighboring $Z-\mathrm{Lig}$ molecules. The hydrogen bonding of the Z-Lig molecules is complex (Table 1 and Fig. 2). The carboxylate group, with atoms O 2 and O 3 , forms a bond to a neighboring Z-Lig molecule via $\mathrm{O} 2 \cdots \mathrm{H} 11$ and $\mathrm{O} 3 \cdots \mathrm{H} 12$ bonds. Note that these bonds link to atoms C11 and C12 that are part of the same neighboring molecule. This is illustrated by the O 2 and O 3 atoms showing linkage to these same H 11 and H 12 atoms, respectively, along the backbone of the Z-Lig molecule [distances of 3.0641 (15) \AA for $\mathrm{O} 3 \cdots \mathrm{C} 12$ and 3.3980 (16) A for O2 . . C11, Fig. 2]. This linkage demands that some of the Z-Lig molecules link at near 90° orientations to one another. This bonding is more easily accommodated by the tilt of the inner (pyridyl) rings of the Z-Lig molecule about the N atoms above and below the plane formed by the carboxylate and the outer (benzene) rings.

Figure 2
Molecule of Z-Lig showing hydrogen bonding to nearby solvent water and neighboring molecules. Distances are given in \AA. Symmetry codes: (i) $1-x, 1+y, \frac{3}{2}-z$; (ii) $x, 1+y, z$; (iii) $\frac{3}{2}-x,-\frac{1}{2}+y, \frac{3}{2}-z$; (iv) $1-x, 3-y$, $1-z$; (v) $1-x,-1+y, \frac{3}{2}-z$; (vi) $x,-1+y, z$. Distance cutoff $=2.7 \AA$.

Figure 3
Packing diagram showing hydrogen bonding between Z-Lig molecules and water along with other intermolecular interactions. See text for details.

The carboxylate O 2 atom is hydrogen bonded to the solvent water molecule. Each O 2 atom interacts with both the $\mathrm{H} 1 A$ and $\mathrm{H} 1 B$ atoms of different solvent water molecules, as shown in Fig. 2. The simultaneous bonding of O 2 to two water molecules designates it as a bifurcated acceptor. The O3 atom of the carboxylate does not directly interact with the solvent water molecule; instead it makes linkages to atoms H8 and H4 of neighboring molecules. Note that these O3‥H8 and $\mathrm{O} 3 \cdots \mathrm{H} 4$ bonds are not to the same neighboring molecule. There is another interaction between the O 1 atom to the H 9 atom located near the midway point along the $Z-L i g$ backbone. A packing diagram of Z-Lig molecules shown in Fig. 3 highlights the linking of molecules via the solvent water molecule, as well as the bonding of the carboxylate to the neighboring molecule via the linkage with both $\mathrm{O} 2 \cdots \mathrm{H} 11$ and O3 \cdots H12. Fig. 4 illustrates an important $\pi-\pi$ stacking interaction between Z-Lig molecules related via $\left(1-x, y, \frac{3}{2}-z\right)$, in which the centroid-centroid distance is 3.514 (2) \AA.

Figure 4
Illustration of the $\pi-\pi$ interaction between adjacent Z-Lig molecules in the structure.

Table 1
Hydrogen-bond geometry $\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O}^{\mathrm{i}}$	0.95	2.35	$3.0641(15)$	132
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O}^{\mathrm{i}}$	0.95	2.47	$3.3980(16)$	165
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O}^{\text {ii }}$	0.95	2.57	$3.4735(16)$	159
$\mathrm{O} 1-\mathrm{H} 1 B \cdots \mathrm{O} 2^{\mathrm{iii}}$	$0.90(2)$	$1.95(2)$	$2.7997(15)$	$158(2)$
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2$	$0.89(2)$	$1.92(2)$	$2.7893(15)$	$165(2)$
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O} 3^{\text {iv }}$	0.95	2.26	$3.0834(16)$	145
$\mathrm{C} 9-\mathrm{H} 9 \cdots 1^{\text {iv }}$	0.95	2.66	$3.2673(17)$	122

Symmetry codes: (i) $-x+1, y-1,-z+\frac{3}{2}$; (ii) $x, y-1, z$; (iii) $-x+\frac{3}{2}, y+\frac{1}{2},-z+\frac{3}{2}$; (iv)
$-x+1,-y+3,-z+1$.

Similar structures to Z-Lig have been published by Gutov et al. (2009) for a hexahydrate as well as a protonated form of Z Lig with Cl^{-}counter-ions and solvent water. An Eu-based metal-organic framework compound synthesized with Z-Lig has been documented by Liu et al. (2015). For a related structure with similar $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular interactions, see Fun et al. (2010).

Synthesis and crystallization

The title compound, Z-Lig, was synthesized in a two-step process as detailed below.

Step one: synthesis of $\mathbf{H}_{2} \boldsymbol{L}$. A mixture of $1,1^{\prime}$-bis $(2,4$-di-nitrophenyl)-4,4'-bipyridinium dichloride ($1.00 \mathrm{~g}, 1.8 \mathrm{mmol}$)

Table 2
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{\text {r }}$	432.43
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	100
$a, b, c(\mathrm{~A})$	19.1437 (6), 7.6420 (3), 13.2619 (4)
$\beta\left({ }^{\circ}\right.$)	97.369 (1)
$V\left(\AA^{3}\right)$	1924.14 (11)
Z	4
Radiation type	$\mathrm{Cu} K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.90
Crystal size (mm)	$0.20 \times 0.15 \times 0.10$
Data collection	
Diffractometer	CMOS area detector
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
$T_{\text {min }}, T_{\text {max }}$	0.86, 0.91
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	9869, 1933, 1782
$R_{\text {int }}$	0.038
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.625
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.041, 0.139, 1.12
No. of reflections	1933
No. of parameters	153
No. of restraints	2
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.26, -0.38

[^0]and 4 -aminobenzoic acid $(0.51 \mathrm{~g}, 3.7 \mathrm{mmol})$ in 20 ml of ethanol was stirred and heated at 368 K overnight. The reaction was cooled to room temperature, followed by addition of 50 ml of dichloromethane. The intermediate product was collected by filtration, then further triturated using dichloromethane to obtain 536 mg (64%) of the final product hereafter known as $\mathrm{H}_{2} L$ (the protonated version of the title compound, with two chloride anions balancing the overall charge) as a light-brown solid.
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz},[\mathrm{D} 6] \mathrm{DMSO}\right): ~ \delta 8.09-8.11(d, J=8.0 \mathrm{~Hz}$, $\left.4 \mathrm{H} 4 \times \mathrm{CH}_{\mathrm{Ar}}\right), 8.31-8.32\left(d, J=8.0 \mathrm{~Hz}, 4 \mathrm{H} 4 \times \mathrm{CH}_{\mathrm{Ar}}\right), 9.01-$ $9.10\left(d, J=6.0 \mathrm{~Hz}, 4 \mathrm{H} 4 \times \mathrm{CH}_{\mathrm{Ar}}\right), 9.74-9.75(d, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}$ $4 \times \mathrm{CH}_{\mathrm{Ar}}$) p.p.m.

Step two: Synthesis of the title compound Z-Lig. The reaction mixture containing $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} \quad(0.0045 \mathrm{~g}$, $0.0154 \mathrm{mmol})$ and the above product $\mathrm{H}_{2} L(0.003 \mathrm{~g}$, 0.0075 mmol) in 0.75 ml DMF, $0.75 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ and 1 drop concentrated HNO_{3} was placed in a convection oven at 348 K for 24 h (heating rate $1.5 \mathrm{~K} / \mathrm{min}$ and cooling rate of $1 \mathrm{~K} \mathrm{~min}^{-1}$), yielding large orange rod-shaped single crystals (70\%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

This work was supported by the Laboratory Directed Research and Development Program at Sandia National Laboratories. Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94 A L85000. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231.

References

Accelrys (2013). Materials Studio. Accelrys Software Inc., San Diego, CA, USA.
Aulakh, D., Varghese, J. R. \& Wriedt, M. (2015). Inorg. Chem. 54, 1756-1764.
Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Fun, H.-K., Goh, J. H., Nithinchandra \& Kalluraya, B. (2010). Acta Cryst. E66, o3252.
Gutov, A. V., Rusanov, E. B., Ryabitsky, A. B., Tsymbal, I. F. \& Chernega, A. N. (2009). Zh. Obshch. Khim. 79, 1553-1561.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Liu, J.-J., Guan, Y.-F, Lin, M.-J., Huang, C.-C. \& Dai, W.-X. (2015). Cryst. Growth Des. 15, 5040-5046.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

full crystallographic data

4,4'-([4,4'-Bipyridine]-1,1'-diium-1,1'-diyl)dibenzoate dihydrate

Mark A. Rodriguez, Dorina F. Sava Gallis, James S. Chavez, Liana M. Klivansky and Yi Liu

4,4'-([4,4'-Bipyridine]-1,1'-diium-1,1'-diyl)dibenzoate dihydrate

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$

$$
M_{r}=432.43
$$

Monoclinic, $C 2 / c$
$a=19.1437$ (6) \AA
$b=7.6420$ (3) \AA
$c=13.2619(4) \AA$
$\beta=97.369(1)^{\circ}$
$V=1924.14$ (11) \AA^{3}
$Z=4$

Data collection

CMOS area detector
diffractometer
Radiation source: microfocus
ω and φ scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\text {min }}=0.86, T_{\text {max }}=0.91$
9869 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.139$
$S=1.12$
1933 reflections
153 parameters
2 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& F(000)=904 \\
& D_{\mathrm{x}}=1.493 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Cu} K \alpha \text { radiation, } \lambda=1.54178 \AA \\
& \text { Cell parameters from } 200 \text { reflections } \\
& \theta=4.7-74.4^{\circ} \\
& \mu=0.90 \mathrm{~mm}^{-1} \\
& T=100 \mathrm{~K} \\
& \text { Block, orange } \\
& 0.20 \times 0.15 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

1933 independent reflections
1782 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.038$
$\theta_{\text {max }}=74.4^{\circ}, \theta_{\text {min }}=4.7^{\circ}$
$h=-23 \rightarrow 23$
$k=-9 \rightarrow 9$
$l=-16 \rightarrow 14$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$0.78102(5)$	$1.70456(15)$	$0.67740(8)$	$0.0281(3)$
H1A	$0.7441(9)$	$1.649(3)$	$0.6973(15)$	$0.040(5)^{*}$
H1B	$0.7896(11)$	$1.788(2)$	$0.7251(14)$	$0.042(6)^{*}$
O2	$0.66644(5)$	$1.49477(13)$	$0.70827(8)$	$0.0257(3)$
O3	$0.58676(5)$	$1.70850(12)$	$0.67687(7)$	$0.0196(3)$
N1	$0.38723(5)$	$1.04952(14)$	$0.56125(8)$	$0.0137(3)$
C1	$0.60486(7)$	$1.55138(17)$	$0.67957(9)$	$0.0168(3)$
C2	$0.54808(7)$	$1.41649(17)$	$0.64604(9)$	$0.0149(3)$
C3	$0.56309(6)$	$1.23826(18)$	$0.64965(10)$	$0.0163(3)$
H3	0.6097	1.2000	0.6721	0.020^{*}
C4	$0.51070(7)$	$1.11543(17)$	$0.62088(10)$	$0.0161(3)$
H4	0.5209	0.9937	0.6233	0.019^{*}
C5	$0.44304(6)$	$1.17558(17)$	$0.58849(9)$	$0.0140(3)$
C6	$0.42649(7)$	$1.35231(17)$	$0.58328(9)$	$0.0161(3)$
H6	0.3799	1.3903	0.5604	0.019^{*}
C7	$0.47989(7)$	$1.47252(17)$	$0.61249(9)$	$0.0162(3)$
H7	0.4697	1.5942	0.6095	0.019^{*}
C8	$0.34121(7)$	$1.07409(17)$	$0.47631(9)$	$0.0164(3)$
H8	0.3465	1.1719	0.4337	0.020^{*}
C9	$0.28684(7)$	$0.95821(17)$	$0.45133(9)$	$0.0167(3)$
H9	0.2546	0.9765	0.3916	0.020^{*}
C10	$0.27881(6)$	$0.81375(16)$	$0.51321(9)$	$0.0136(3)$
C11	$0.32705(6)$	$0.79378(17)$	$0.60111(10)$	$0.0162(3)$
H11	0.3230	0.6971	0.6450	0.019^{*}
C12	$0.38017(7)$	$0.91350(17)$	$0.62417(9)$	$0.0163(3)$
H12	0.4121	0.9006	0.6847	0.020^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0223(6)$	$0.0283(6)$	$0.0353(6)$	$-0.0051(4)$	$0.0098(5)$	$-0.0033(4)$
O2	$0.0163(5)$	$0.0204(6)$	$0.0395(6)$	$-0.0046(4)$	$0.0005(4)$	$-0.0017(4)$
O3	$0.0243(5)$	$0.0157(5)$	$0.0185(5)$	$-0.0052(4)$	$0.0019(4)$	$-0.0006(3)$
N1	$0.0114(5)$	$0.0150(6)$	$0.0149(5)$	$-0.0022(4)$	$0.0027(4)$	$-0.0008(4)$
C1	$0.0170(6)$	$0.0193(7)$	$0.0146(6)$	$-0.0040(5)$	$0.0045(5)$	$-0.0007(5)$
C2	$0.0168(6)$	$0.0170(7)$	$0.0116(6)$	$-0.0040(5)$	$0.0052(5)$	$-0.0015(4)$
C3	$0.0130(6)$	$0.0194(7)$	$0.0168(6)$	$-0.0013(5)$	$0.0031(5)$	$-0.0017(5)$
C4	$0.0161(7)$	$0.0154(6)$	$0.0171(6)$	$-0.0016(5)$	$0.0028(5)$	$-0.0015(5)$
C5	$0.0132(6)$	$0.0174(7)$	$0.0118(6)$	$-0.0045(5)$	$0.0026(4)$	$-0.0008(4)$
C6	$0.0147(6)$	$0.0176(7)$	$0.0161(6)$	$-0.0006(5)$	$0.0027(5)$	$0.0001(5)$
C7	$0.0192(7)$	$0.0158(7)$	$0.0142(6)$	$-0.0016(5)$	$0.0047(5)$	$-0.0001(5)$
C8	$0.0165(6)$	$0.0166(6)$	$0.0159(6)$	$-0.0026(5)$	$0.0016(5)$	$0.0027(5)$
C9	$0.0153(6)$	$0.0189(7)$	$0.0152(6)$	$-0.0023(5)$	$-0.0012(5)$	$0.0030(5)$
C10	$0.0110(6)$	$0.0154(7)$	$0.0151(6)$	$0.0000(5)$	$0.0034(5)$	$-0.0007(5)$
C11	$0.0163(6)$	$0.0152(6)$	$0.0169(6)$	$-0.0019(5)$	$0.0010(5)$	$0.0029(5)$

C 12	$0.0151(6)$	$0.0175(7)$	$0.0156(6)$	$-0.0013(5)$	$-0.0002(5)$	$0.0016(5)$

Geometric parameters ($\mathrm{A},{ }^{\circ}$)

O1-H1A	0.892 (16)	C5-C6	1.3869 (19)
O1-H1B	0.898 (16)	C6-C7	1.3919 (18)
O2-C1	1.2674 (16)	C6-H6	0.9500
O3-C1	1.2490 (17)	C7-H7	0.9500
N1-C12	1.3506 (17)	C8-C9	1.3743 (18)
N1-C8	1.3513 (16)	C8-H8	0.9500
N1-C5	1.4495 (15)	C9-C10	1.3957 (18)
C1-C2	1.5226 (17)	C9-H9	0.9500
C2-C3	1.3916 (19)	C10-C11	1.3996 (17)
C2-C7	1.3916 (18)	$\mathrm{C} 10-\mathrm{C} 10^{\text {i }}$	1.480 (2)
C3-C4	1.3908 (17)	C11-C12	1.3730 (17)
C3-H3	0.9500	C11-H11	0.9500
C4- 55	1.3895 (18)	C12-H12	0.9500
C4-H4	0.9500		
H1A-O1-H1B	101.9 (19)	C5-C6-H6	120.9
C12-N1-C8	121.05 (11)	C7-C6-H6	120.9
C12-N1-C5	119.11 (10)	C2-C7-C6	120.75 (12)
C8-N1-C5	119.76 (11)	C2-C7-H7	119.6
$\mathrm{O} 3-\mathrm{C} 1-\mathrm{O} 2$	125.50 (12)	C6-C7-H7	119.6
$\mathrm{O} 3-\mathrm{C} 1-\mathrm{C} 2$	117.22 (11)	N1-C8-C9	120.27 (12)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	117.28 (12)	N1-C8-H8	119.9
C3-C2-C7	119.56 (12)	C9-C8-H8	119.9
C3-C2-C1	121.07 (11)	C8-C9-C10	120.33 (11)
C7-C2-C1	119.37 (11)	C8-C9-H9	119.8
C4-C3-C2	120.84 (12)	C10-C9-H9	119.8
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.6	C9-C10-C11	117.73 (11)
C2-C3-H3	119.6	C9-C10-C10	121.10 (14)
C5-C4-C3	118.19 (12)	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 10^{\text {i }}$	121.17 (14)
C5-C4-H4	120.9	C12-C11-C10	120.24 (11)
C3-C4-H4	120.9	C12-C11-H11	119.9
C6-C5-C4	122.38 (12)	C10-C11-H11	119.9
C6- $55-\mathrm{N} 1$	118.58 (11)	N1-C12-C11	120.35 (11)
C4- $55-\mathrm{N} 1$	119.03 (11)	N1-C12-H12	119.8
C5-C6-C7	118.29 (12)	C11-C12-H12	119.8

Symmetry code: (i) $-x+1 / 2,-y+3 / 2,-z+1$.
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 3^{\mathrm{ii}}$	0.95	2.35	$3.0641(15)$	132
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.95	2.47	$3.3980(16)$	165
$\mathrm{C} 4 — \mathrm{H} 4 \cdots \mathrm{O} 3^{\text {iii }}$	0.95	2.57	$3.4735(16)$	159
$\mathrm{O}_{1}-\mathrm{H} 1 B \cdots \mathrm{O}^{\mathrm{iv}}$	$0.90(2)$	$1.95(2)$	$2.7997(15)$	$158(2)$

$\mathrm{O} 1 — \mathrm{H} 1 A \cdots \mathrm{O} 2$	$0.89(2)$	$1.92(2)$	$2.7893(15)$	$165(2)$
$\mathrm{C} 8 — \mathrm{H} 8 \cdots \mathrm{O}^{\vee}$	0.95	2.26	$3.0834(16)$	145
$\mathrm{C} 9 — \mathrm{H} 9 \cdots \mathrm{O}^{\mathrm{v}}$	0.95	2.66	$3.2673(17)$	122

Symmetry codes: (ii) $-x+1, y-1,-z+3 / 2$; (iii) $x, y-1, z$; (iv) $-x+3 / 2, y+1 / 2,-z+3 / 2$; (v) $-x+1,-y+3,-z+1$.

[^0]: Computer programs: SAINT and SHELXS (Sheldrick, 2008) in APEX2 (Bruker, 2014), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2008) and Materials Studio (Accelrys, 2013).

