

ISSN 2414-3146

Received 14 July 2016 Accepted 16 August 2016

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México

Keywords: crystal structure; triazole; cobalt; hydrogen bonding.

CCDC reference: 1487833

Structural data: full structural data are available from iucrdata.iucr.org

Bis(methanol- κ O)bis{5-(pyridin-2-yl- κ N)-3-[4-(pyridin-4-yl)phenyl]-1*H*-1,2,4-triazol-1-ido- κ N¹}-cobalt(II)

Zhen Peng, Liang Xia* and Wen-Wen Dong*

College of Materials and Chemical Engineering, China Three Gorges University, YiChang 443002, People's Republic of China. *Correspondence e-mail: 18162391708@163.com, dongww1@126.com

The asymmetric unit of the title Co^{II} complex, $[\text{Co}(\text{C}_{18}\text{H}_{12}\text{N}_5)_2(\text{CH}_3\text{OH})_2]$, contains one half-molecule, and the complex is completed by application of an inversion centre. The Co^{II} cation is coordinated by two deprotonated 1,2,4-triazole-based ligands, and two methanol molecules, in an N₄O₂ octahedral coordination geometry. Four N atoms are placed in the equatorial plane, while *trans*-methanol molecules occupy the axial positions. In the crystal, neighbouring complexes are linked *via* $O-\text{H}\cdots$ N hydrogen-bonding interactions, involving the methanol as donor and non-coordinating N triazole sites as acceptor groups, forming a two-dimensional network parallel to (100).

Structure description

The single-crystal X-ray diffraction analysis of the title complex reveals that the Co^{II} atom is six-coordinate. The metal is located on an inversion centre, forming a centro-symmetric complex with coordinating methanol molecules occupying *trans* sites (Fig. 1). The isotypic complex bearing water as ligands in place of methanol has been reported (Li, 2013*a*). However, for the water-containing complex, the triazole derivative was not planar, while this ligand is almost planar in the title complex. The same triazole derivative has also been used for the synthesis of Fe^{II} and Zn^{II} mononuclear complexes (Li, 2013*b*,*c*), and polymeric species (Zhang *et al.*, 2012, 2013). Multidentate ligands containing 1,2,4-trizaole heterocycle and other *N*-donor heterocyclic groups are frequently used in the preparation of metal complexes (Gong *et al.*, 2014; Liu *et al.*, 2015; Dong *et al.*, 2016).

Figure 1

The structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

The crystal structure features intermolecular $O-H\cdots N$ hydrogen bonds (Table 1) involving the hydroxyl group of MeOH and one triazole N atom, forming a two-dimensional network parallel to (100).

Synthesis and crystallization

A mixture of 5-(pyridin-2-yl)-3-[4-(pyridin-4-yl)phenyl]-1H-1,2,4-triazole (0.15 mmol, 0.0448 g), cobalt(II) nitrate hexahydrate (0.10 mmol, 0.0234 g) and CH₃OH (12 ml) were placed in a Teflon-lined stainless steel vessel, heated to 437 K for 3 d, followed by slow cooling to room temperature. Yellow prismatic crystals were obtained. Analysis calculated for C₃₈H₃₂CoN₁₀O₂: C 63.36, H 4.44, N 19.45%; found: C 63.52, H 4.48, N 19.45%

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (No. 21301106) and the Project of Hubei Provincial Education Office (No. Q20141201).

References

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Table 1 Hydrogen-bond geometry (Å, °).						
$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$		
$O1\!-\!H1\!\cdots\!N4^i$	0.85 (1)	1.92 (2)	2.760 (5)	168 (5)		
Symmetry code: (i)	$-x+1, y+\frac{1}{2}, -x$	$z + \frac{1}{2}$.				
Table 2						

Experimental details.

Crystal data Chemical formula [Co(C₁₈H₁₂N₅)₂(CH₄O)₂] 719.67 М. Crystal system, space group Monoclinic, $P2_1/c$ Temperature (K) 296 a, b, c (Å) 13.414 (4), 12.654 (3), 9.964 (1) 101.43 (2) β (°) $V(Å^3)$ 1657.8 (7) Z 2 Radiation type Μο Κα μ (mm⁻¹) 0.57 $0.23 \times 0.21 \times 0.18$ Crystal size (mm) Data collection Diffractometer Bruker SMART 1000 CCD Absorption correction Multi-scan (SADABS; Bruker, 2001) 0.880, 0.904 T_{\min}, T_{\max} 17371, 3842, 2915 No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections $R_{\rm int}$ 0.112 $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$ 0.653 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.074, 0.193, 1.00 No. of reflections 3842 No. of parameters 235 No. of restraints H-atom treatment H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ 0.43, -0.55

Computer programs: *SMART* and *SAINT* (Bruker, 2007), *SHELXS97*, *SHELXL97* and *SHELXTL* (Sheldrick, 2008) and *publCIF* (Westrip, 2010).

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Dong, W.-W., Xia, L., Peng, Z., Zhao, J., Wu, Y.-P., Zhang, J. & Li, D.-S. (2016). J. Solid State Chem. 238, 170–174.
- Gong, Y., Shi, H.-F., Jiang, P.-G., Hua, W. & Lin, J.-H. (2014). Cryst. Growth Des. 14, 649–657.
- Li, B. (2013a). Acta Cryst. E69, m141.
- Li, B. (2013b). Acta Cryst. E69, m168.
- Li, B. (2013c). Acta Cryst. E69, m214.
- Liu, Y.-L., Wu, Y.-P., Li, D.-S., Dong, W.-W. & Zhou, C.-S. (2015). J. Solid State Chem. 223, 38–43.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zhang, X., Fan, L., Sun, Z., Zhang, W., Li, D., Dou, J. & Han, L. (2013). Cryst. Growth Des. 13, 792–803.
- Zhang, X.-T., Sun, D., Li, B., Fan, L.-M., Li, B. & Wei, P.-H. (2012). *Cryst. Growth Des.* **12**, 3845–3848.

full crystallographic data

IUCrData (2016). 1, x161316 [doi:10.1107/S241431461601316X]

Bis(methanol- κO)bis{5-(pyridin-2-yl- κN)-3-[4-(pyridin-4-yl)phenyl]-1*H*-1,2,4-triazol-1-ido- κN^{1} }cobalt(II)

Zhen Peng, Liang Xia and Wen-Wen Dong

 $Bis(methanol - \kappa O)bis\{5 - (pyridin - 2 - yl - \kappa N) - 3 - [4 - (pyridin - 4 - yl)phenyl] - 1H - 1, 2, 4 - triazol - 1 - ido - \kappa N^1\} cobalt(II)$

Crystal data

 $\begin{bmatrix} \text{Co}(\text{C}_{18}\text{H}_{12}\text{N}_{5})_2(\text{CH}_4\text{O})_2 \end{bmatrix}$ $M_r = 719.67$ Monoclinic, $P2_1/c$ a = 13.414 (4) Å b = 12.654 (3) Å c = 9.964 (1) Å $\beta = 101.43$ (2)° V = 1657.8 (7) Å³ Z = 2

Data collection

Bruker SMART 1000 CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\min} = 0.880, \ T_{\max} = 0.904$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.074$ $wR(F^2) = 0.193$ S = 1.003842 reflections 235 parameters 1 restraint Primary atom site location: structure-invariant direct methods F(000) = 746 $D_x = 1.442 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3457 reflections $\theta = 2.2-27.5^{\circ}$ $\mu = 0.57 \text{ mm}^{-1}$ T = 296 KPrism, yellow $0.23 \times 0.21 \times 0.18 \text{ mm}$

17371 measured reflections 3842 independent reflections 2915 reflections with $I > 2\sigma(I)$ $R_{int} = 0.112$ $\theta_{max} = 27.7^{\circ}, \ \theta_{min} = 2.6^{\circ}$ $h = -17 \rightarrow 17$ $k = -16 \rightarrow 16$ $l = -12 \rightarrow 12$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0867P)^2 + 2.491P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.43$ e Å⁻³ $\Delta\rho_{min} = -0.55$ e Å⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Co1	0.5000	0.5000	0.0000	0.0276 (2)

01	0.4016 (2)	0.5716 (2)	0.1228 (3)	0.0366 (6)
H1	0.398 (4)	0.6381 (10)	0.132 (5)	0.055*
N1	0.4240 (2)	0.3508 (2)	-0.0040 (3)	0.0279 (7)
N2	0.5827 (2)	0.4245 (2)	0.1702 (3)	0.0310 (7)
N3	0.6646 (2)	0.4464 (2)	0.2708 (3)	0.0315 (7)
N4	0.6079 (2)	0.2819 (2)	0.3071 (3)	0.0282 (7)
N5	1.1509 (3)	0.3720 (4)	1.0761 (4)	0.0662 (13)
C1	0.3465 (3)	0.3180 (3)	-0.1010 (4)	0.0334 (8)
H1A	0.3178	0.3651	-0.1694	0.040*
C2	0.3072 (3)	0.2164 (3)	-0.1036 (4)	0.0387 (9)
H2A	0.2534	0.1953	-0.1725	0.046*
C3	0.3500 (3)	0.1477 (3)	-0.0015 (4)	0.0399 (10)
H3B	0.3256	0.0789	-0.0018	0.048*
C4	0.4283 (3)	0.1795 (3)	0.1010 (4)	0.0337 (8)
H4B	0.4561	0.1336	0.1714	0.040*
C5	0.4649 (3)	0.2818 (3)	0.0968 (4)	0.0255 (7)
C6	0.5516 (3)	0.3269 (3)	0.1939 (3)	0.0264 (7)
C7	0.6775 (3)	0.3599 (3)	0.3507 (4)	0.0277 (7)
C8	0.7604 (3)	0.3551 (3)	0.4717 (4)	0.0299 (8)
С9	0.8303 (3)	0.4378 (3)	0.4960 (4)	0.0364 (9)
H9A	0.8252	0.4930	0.4335	0.044*
C10	0.9068 (3)	0.4394 (3)	0.6113 (4)	0.0412 (10)
H10A	0.9520	0.4958	0.6250	0.049*
C11	0.9178 (3)	0.3579 (3)	0.7077 (4)	0.0353 (9)
C12	0.8490 (3)	0.2738 (4)	0.6814 (4)	0.0412 (10)
H12A	0.8553	0.2175	0.7426	0.049*
C13	0.7711 (3)	0.2723 (3)	0.5654 (4)	0.0358 (9)
H13A	0.7261	0.2156	0.5507	0.043*
C14	0.9990 (3)	0.3617 (4)	0.8330 (4)	0.0404 (10)
C15	1.0129 (4)	0.2820 (5)	0.9295 (5)	0.0670 (17)
H15A	0.9722	0.2220	0.9157	0.080*
C16	1.0886 (4)	0.2912 (6)	1.0489 (6)	0.076 (2)
H16A	1.0949	0.2367	1.1125	0.091*
C17	1.1400 (5)	0.4469 (5)	0.9823 (6)	0.080(2)
H17A	1.1837	0.5046	0.9979	0.096*
C18	1.0668 (5)	0.4453 (5)	0.8609 (6)	0.0734 (18)
H18A	1.0636	0.5005	0.7986	0.088*
C19	0.3625 (4)	0.5204 (3)	0.2296 (5)	0.0445 (10)
H19A	0.3210	0.5691	0.2682	0.067*
H19B	0.4180	0.4971	0.2996	0.067*
H19C	0.3222	0.4605	0.1927	0.067*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.0360 (4)	0.0185 (3)	0.0245 (4)	-0.0016 (3)	-0.0034 (3)	0.0023 (3)
01	0.0509 (17)	0.0258 (14)	0.0336 (14)	0.0025 (12)	0.0100 (13)	-0.0025 (11)
N1	0.0338 (16)	0.0222 (15)	0.0246 (15)	-0.0017 (12)	-0.0020 (13)	0.0029 (11)

N2	0.0351 (17)	0.0245 (15)	0.0294 (16)	-0.0022 (12)	-0.0036 (14)	0.0007 (12)
N3	0.0360 (17)	0.0251 (16)	0.0290 (16)	-0.0004 (13)	-0.0043 (14)	-0.0003 (12)
N4	0.0335 (16)	0.0230 (15)	0.0265 (15)	0.0001 (12)	0.0021 (13)	0.0039 (11)
N5	0.052 (3)	0.092 (4)	0.044 (2)	-0.005 (2)	-0.015 (2)	0.002 (2)
C1	0.034 (2)	0.031 (2)	0.0311 (19)	-0.0014 (15)	-0.0019 (16)	0.0038 (15)
C2	0.039 (2)	0.037 (2)	0.034 (2)	-0.0082 (17)	-0.0060 (18)	-0.0045 (17)
C3	0.048 (2)	0.028 (2)	0.042 (2)	-0.0094 (17)	0.005 (2)	-0.0016 (16)
C4	0.041 (2)	0.0261 (19)	0.0324 (19)	-0.0020 (15)	0.0035 (17)	0.0044 (15)
C5	0.0308 (18)	0.0193 (16)	0.0257 (17)	0.0013 (13)	0.0041 (14)	0.0037 (13)
C6	0.0312 (18)	0.0228 (17)	0.0239 (17)	0.0016 (14)	0.0027 (14)	0.0030 (13)
C7	0.0321 (19)	0.0249 (17)	0.0250 (17)	0.0039 (14)	0.0031 (15)	-0.0001 (13)
C8	0.0286 (18)	0.0310 (19)	0.0281 (18)	0.0020 (14)	0.0010 (15)	-0.0012 (14)
C9	0.041 (2)	0.030 (2)	0.035 (2)	-0.0015 (16)	-0.0002 (17)	0.0049 (15)
C10	0.041 (2)	0.039 (2)	0.038 (2)	-0.0078 (18)	-0.0053 (19)	0.0011 (17)
C11	0.0308 (19)	0.045 (2)	0.0284 (19)	-0.0004 (16)	0.0015 (16)	0.0031 (16)
C12	0.042 (2)	0.046 (2)	0.031 (2)	-0.0021 (18)	-0.0049 (18)	0.0109 (18)
C13	0.037 (2)	0.039 (2)	0.0290 (19)	-0.0073 (16)	0.0007 (17)	0.0056 (16)
C14	0.036 (2)	0.049 (2)	0.034 (2)	0.0000 (18)	0.0024 (18)	0.0002 (18)
C15	0.055 (3)	0.084 (4)	0.051 (3)	-0.028 (3)	-0.015 (3)	0.023 (3)
C16	0.055 (3)	0.111 (5)	0.053 (3)	-0.022 (3)	-0.012 (3)	0.037 (3)
C17	0.083 (4)	0.073 (4)	0.062 (4)	-0.020 (3)	-0.036 (3)	0.007 (3)
C18	0.076 (4)	0.061 (4)	0.066 (4)	-0.023 (3)	-0.028 (3)	0.014 (3)
C19	0.054 (3)	0.038 (2)	0.045 (2)	-0.0061 (19)	0.017 (2)	-0.0009 (18)

Geometric parameters (Å, °)

Co1—N2	2.067 (3)	С5—С6	1.473 (5)
Co1—N2 ⁱ	2.067 (3)	C7—C8	1.471 (5)
Co1—N1 ⁱ	2.142 (3)	C8—C13	1.392 (5)
Co1—N1	2.142 (3)	C8—C9	1.394 (5)
Co1-O1 ⁱ	2.168 (3)	C9—C10	1.381 (6)
Co1—O1	2.168 (3)	С9—Н9А	0.9300
O1-C19	1.432 (5)	C10—C11	1.396 (6)
01—H1	0.849 (10)	C10—H10A	0.9300
N1-C1	1.338 (5)	C11—C12	1.400 (6)
N1-C5	1.362 (4)	C11—C14	1.486 (6)
N2—C6	1.339 (5)	C12—C13	1.396 (5)
N2—N3	1.361 (4)	C12—H12A	0.9300
N3—C7	1.344 (5)	C13—H13A	0.9300
N4—C6	1.353 (4)	C14—C15	1.380 (7)
N4—C7	1.369 (5)	C14—C18	1.387 (7)
N5-C16	1.314 (8)	C15—C16	1.407 (7)
N5-C17	1.320 (8)	C15—H15A	0.9300
C1—C2	1.388 (6)	C16—H16A	0.9300
C1—H1A	0.9300	C17—C18	1.399 (7)
C2—C3	1.374 (6)	C17—H17A	0.9300
C2—H2A	0.9300	C18—H18A	0.9300
C3—C4	1.372 (6)	C19—H19A	0.9600

data reports

С3—Н3В	0.9300	C19—H19B	0.9600
C4—C5	1.388 (5)	C19—H19C	0.9600
C4—H4B	0.9300		
N2—Co1—N2 ⁱ	180.0	N4—C6—C5	128.5 (3)
$N2-Co1-N1^{i}$	102.48 (12)	N3—C7—N4	113.6 (3)
$N2^{i}$ —Co1—N1 ⁱ	77 52 (12)	N3-C7-C8	120.5(3)
N_2 —Co1—N1	77 52 (12)	N4-C7-C8	125.9(3)
$N2^{i}$ —Co1—N1	102.48 (12)	C13—C8—C9	118.2 (4)
$N1^{i}$ —Co1—N1	180.00 (16)	C13 - C8 - C7	122.8(3)
N_{2} Co1 -01^{i}	88 97 (14)	C9-C8-C7	1190(3)
$N2^{i}$ —Co1—O1 ⁱ	91.03 (14)	C10-C9-C8	121.3 (4)
$N1^{i}$ —Co1—O1 ⁱ	92.20 (13)	C10—C9—H9A	119.4
$N1-Co1-O1^{i}$	87.80 (13)	C8—C9—H9A	119.4
N2-Co1-O1	91.03 (14)	C9-C10-C11	121.4 (4)
$N2^{i}$ —Co1—O1	88.97 (14)	C9—C10—H10A	119.3
N1 ⁱ —Co1—O1	87.80 (13)	C11—C10—H10A	119.3
N1-Co1-O1	92.20 (13)	C10-C11-C12	117.2 (4)
$O1^{i}$ —Co1—O1	180.00 (11)	C10-C11-C14	121.0(4)
C19 - C01 - C01	125.7 (3)	C12-C11-C14	121.8 (4)
C19—O1—H1	109 (3)	C13—C12—C11	121.5 (4)
Co1—O1—H1	122 (3)	C13—C12—H12A	119.2
C1-N1-C5	118.4 (3)	C11—C12—H12A	119.2
C1—N1—Co1	125.9 (2)	C12—C13—C8	120.4 (4)
C5—N1—Co1	115.5 (2)	С12—С13—Н13А	119.8
C6—N2—N3	107.0 (3)	C8-C13-H13A	119.8
C6—N2—Co1	115.8 (2)	C15-C14-C18	115.1 (4)
$N_3 - N_2 - C_0 I$	137.2 (2)	C15-C14-C11	122.6 (4)
C7—N3—N2	105.1 (3)	C18—C14—C11	122.3 (4)
C6—N4—C7	101.2 (3)	C14—C15—C16	120.3 (5)
C16—N5—C17	115.8 (5)	C14—C15—H15A	119.8
N1—C1—C2	122.6 (3)	C16—C15—H15A	119.8
N1—C1—H1A	118.7	N5—C16—C15	124.2 (5)
C2—C1—H1A	118.7	N5—C16—H16A	117.9
C3—C2—C1	118.0 (4)	C15—C16—H16A	117.9
C3—C2—H2A	121.0	N5—C17—C18	124.2 (6)
C1—C2—H2A	121.0	N5—C17—H17A	117.9
C4—C3—C2	120.8 (4)	С18—С17—Н17А	117.9
C4—C3—H3B	119.6	C14—C18—C17	120.3 (5)
С2—С3—Н3В	119.6	C14—C18—H18A	119.8
C3—C4—C5	118.3 (4)	C17—C18—H18A	119.8
C3—C4—H4B	120.8	O1—C19—H19A	109.5
C5—C4—H4B	120.8	O1—C19—H19B	109.5
N1—C5—C4	121.8 (3)	H19A—C19—H19B	109.5
N1—C5—C6	112.7 (3)	O1—C19—H19C	109.5
C4—C5—C6	125.5 (3)	H19A—C19—H19C	109.5
N2—C6—N4	113.2 (3)	H19B—C19—H19C	109.5
N2—C6—C5	118.3 (3)		

N2-Co1-O1-C19	-40.9 (3)	C7—N4—C6—N2	-0.7 (4)
N2 ⁱ Co1C19	139.1 (3)	C7—N4—C6—C5	178.2 (4)
N1 ⁱ Co1C19	-143.3 (3)	N1C5	-3.0 (5)
N1-Co1-O1-C19	36.7 (3)	C4C5	175.0 (4)
N2—Co1—N1—C1	-176.5 (3)	N1C5	178.2 (4)
N2 ⁱ —Co1—N1—C1	3.5 (3)	C4C5	-3.8 (6)
Ol ⁱ —Col—Nl—Cl	-87.1 (3)	N2—N3—C7—N4	0.2 (4)
O1—Co1—N1—C1	92.9 (3)	N2—N3—C7—C8	180.0 (3)
N2—Co1—N1—C5	-1.8 (3)	C6—N4—C7—N3	0.3 (4)
N2 ⁱ —Co1—N1—C5	178.2 (3)	C6—N4—C7—C8	-179.5 (4)
Ol ⁱ —Col—Nl—C5	87.7 (3)	N3—C7—C8—C13	173.3 (4)
O1—Co1—N1—C5	-92.3 (3)	N4—C7—C8—C13	-6.9 (6)
N1 ⁱ —Co1—N2—C6	-179.9 (3)	N3—C7—C8—C9	-5.1 (6)
N1—Co1—N2—C6	0.1 (3)	N4—C7—C8—C9	174.7 (4)
O1 ⁱ —Co1—N2—C6	-87.9 (3)	C13—C8—C9—C10	-1.4 (6)
O1—Co1—N2—C6	92.1 (3)	C7—C8—C9—C10	177.1 (4)
N1 ⁱ —Co1—N2—N3	-0.3 (4)	C8—C9—C10—C11	0.4 (7)
N1—Co1—N2—N3	179.7 (4)	C9-C10-C11-C12	1.1 (7)
O1 ⁱ —Co1—N2—N3	91.7 (4)	C9-C10-C11-C14	-178.5 (4)
O1—Co1—N2—N3	-88.3 (4)	C10-C11-C12-C13	-1.5 (7)
C6—N2—N3—C7	-0.6 (4)	C14—C11—C12—C13	178.1 (4)
Co1—N2—N3—C7	179.8 (3)	C11—C12—C13—C8	0.5 (7)
C5—N1—C1—C2	-0.8 (6)	C9—C8—C13—C12	0.9 (6)
Co1—N1—C1—C2	173.8 (3)	C7—C8—C13—C12	-177.4 (4)
N1-C1-C2-C3	0.3 (7)	C10-C11-C14-C15	-179.1 (5)
C1—C2—C3—C4	0.9 (7)	C12-C11-C14-C15	1.3 (7)
C2—C3—C4—C5	-1.7 (6)	C10-C11-C14-C18	0.4 (7)
C1—N1—C5—C4	0.0 (5)	C12-C11-C14-C18	-179.2 (5)
Co1—N1—C5—C4	-175.2 (3)	C18—C14—C15—C16	2.8 (9)
C1—N1—C5—C6	178.1 (3)	C11—C14—C15—C16	-177.7 (5)
Co1—N1—C5—C6	3.0 (4)	C17—N5—C16—C15	-0.7 (10)
C3—C4—C5—N1	1.3 (6)	C14—C15—C16—N5	-1.3 (11)
C3—C4—C5—C6	-176.6 (4)	C16—N5—C17—C18	1.1 (11)
N3—N2—C6—N4	0.8 (4)	C15—C14—C18—C17	-2.5 (9)
Co1—N2—C6—N4	-179.5 (2)	C11—C14—C18—C17	178.0 (6)
N3—N2—C6—C5	-178.2 (3)	N5-C17-C18-C14	0.6 (12)
Co1—N2—C6—C5	1.5 (4)		

Symmetry code: (i) -x+1, -y+1, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
O1—H1···N4 ⁱⁱ	0.85 (1)	1.92 (2)	2.760 (5)	168 (5)

Symmetry code: (ii) –*x*+1, *y*+1/2, –*z*+1/2.