

ISSN 2414-3146

Received 2 August 2016 Accepted 4 August 2016

Edited by M. Bolte, Goethe-Universität Frankfurt Germany

Keywords: crystal structure; adamantane; antiviral activity.

CCDC reference: 1497616

Structural data: full structural data are available from iucrdata.iucr.org

N-(Pyrazin-2-yl)adamantane-1-carboxamide

Błażej Dziuk,^a Borys Ośmiałowski,^b Krzysztof Ejsmont^a and Bartosz Zarychta^a*

^aFaculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland, and ^bFaculty of Chemical Technology and Engineering, University of Technology and Life Sciences, Seminaryjna 3, 85-326 Bydgoszcz, Poland. *Correspondence e-mail: bartosz.zarychta@uni.opole.pl

Molecules of the title compound, $C_{15}H_{19}N_3O$, are composed of an adamantine unit and a pyrazine ring connected to each other through an amide bond. The H-N-C=O moiety is close to planar [C-N-C-O and C-N-C-C torsion angles of 4.7 (2) and -173.8 (1)°, respectively]. The N3-C5 bond has partial double-bond character [1.370 (1) Å]. The geometries of the pyrazine ring and the adamantane substituent are normal and in good agreement with closely related structures. In the crystal, molecules are connected by N-H···O hydrogen bonds, forming zigzag chains in the [001] direction and are arranged in a herringbone fashion.

Structure description

Adamantane compounds have garnered considerable interest from the pharmacological community owning to their antiviral activity (*e.g.* Shchelkanov *et al.*, 2014). In the molecular structure presented herein, the adamantane component and its meaningful steric hindrance represents a geometric restriction for $N-H\cdots O=C$ hydrogen-bond formation. These interactions are the most interesting hydrogen bonding in biochemistry, as they stabilize the secondary structure of peptides (Pauling *et al.*, 1951). From the structural chemistry point of view, the strength and geometry of the interaction can be easily modified by use of bulky substituents (like adamantane) of the carboxyamide unit (Ośmiałowski *et al.*, 2010, 2013).

In the asymmetric unit of the title compound (Fig. 1), there is one independent molecule. The molecule is composed of an adamantane unit and a pyrazine ring connected to each other through the amide bond. The H-N-C=0 bond is close to planar, with C1-N3-C5-O1 and C1-N3-C5-C6 torsion angles of 4.7 (2) and -173.8 (1)°, respectively. The N3-C5 [1.370 (1) Å] bond has partial double-bond character and pyramidalization of N3 is not observed. The geometries of the pyrazine ring and the adamantane

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$N3-H3A\cdotsO1^{i}$	0.86	2.22	3.0732 (13)	174
C3−H3···N1 ⁱⁱ	0.93	2.64	3.5179 (16)	157
$C4-H4\cdots O1$	0.93	2.27	2.8612 (14)	121

Symmetry codes: (i) $x, -y, z - \frac{1}{2}$; (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

substituent are typical and the C–C and C–N bond lengths are normal and in good agreement with the average literature values (Allen, 2002) and with those of closely related structures (*e.g.* Cati & Stoeckli-Evans, 2014; Wang & Stoeckli-Evans, 2016; SiMa, 2009; Zheng & Wang, 2009). In the crystal, molecules of the title compound form zigzag chains in the [001] direction through an N3–H3A···O1ⁱ hydrogen bond [symmetry code: (i) $x, -y, z - \frac{1}{2}$] (Table 1). Chains are linked to each other by C3–H3···N1ⁱⁱ interactions [symmetry code: (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$], arranging the molecules in a herringbone packing arrangement (Fig. 2).

Synthesis and crystallization

N-(Pyrazin-2-yl)adamantane-1-carboxamide was obtained by reaction of aminopyrazine with 1-adamantanecarbonyl chloride (equimolar amounts added dropwise) in dichloromethane as a solvent containing triethylamine (1.2 molar equivalent). The reaction was performed at room temperature for 24 h. The solvent was then removed under reduced pressure and the residual was treated with saturated Na₂CO₃ solution. The water layer was extracted with chloroform and the organic phase was evaporated to dryness. The residual solid was recrystallized from ethanol solution.

Refinement

All H atoms were found in a difference map but set to idealized positions and treated as riding, with C-H = 0.93 Å and $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$ for aromatic H atoms, C-H = 0.97 Å and $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$ for Csp³ H atoms, and N-H = 0.86 Å and $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm N})$. Crystal data, data collection and structure refinement details are summarized in Table 2.

Table	2	
Experi	mental	details

Crystal data	
Chemical formula	$C_{15}H_{19}N_{3}O$
M _r	257.34
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	100
a, b, c (Å)	27.3649 (9), 9.4960 (3), 10.0932 (3)
β (°)	97.371 (3)
$V(Å^3)$	2601.11 (14)
Z	8
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.09
Crystal size (mm)	$0.35 \times 0.20 \times 0.15$
Data collection	
Diffractometer	Oxford Diffraction Xcalibur
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	7922, 2288, 1872
$R_{\rm c}$	0.017
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.595
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.032, 0.082, 1.06
No. of reflections	2288
No. of parameters	172
H-atom treatment	H-atom parameters not refined
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.23, -0.20

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), and XP in SHELXTL (Sheldrick, 2008).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Cati, D. S. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, 18-22.

Ośmiałowski, B., Kolehmainen, E., Dobosz, R., Gawinecki, R., Kauppinen, R., Valkonen, A., Koivukorpi, J. & Rissanen, K. (2010). *J. Phys. Chem. A*, **114**, 10421–10426.

Figure 2 The crystal packing of the title compound, viewed along the *c* axis.

- Ośmiałowski, B., Kolehmainen, E., Ejsmont, K., Ikonen, S., Valkonen, A., Rissanen, K. & Nonappa (2013). J. Mol. Struct. 1054–1055, 157– 163.
- Oxford Diffraction (2008). *CrysAlis CCD* and *CrysAlis RED*. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Pauling, L., Corey, R. B. & Branson, H. R. (1951). Proc. Natl Acad. Sci. USA, 37, 205–211.
- Shchelkanov, M. Yu., Shibnev, V. A., Finogenova, I. T., Fediakina, T. M., Garaev, T. M., Markova, N. V. & Kirillov, I. M. (2014). Vopr. Virusol. 59(2), 37–40.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- SiMa, W. (2009). Acta Cryst. E65, o2452.
- Wang, Y. & Stoeckli-Evans, H. (2016). IUCrData, 1, x152174.
- Zheng, W.-N. & Wang, B. (2009). Acta Cryst. E65, 02769.

full crystallographic data

IUCrData (2016). 1, x161258 [doi:10.1107/S241431461601258X]

N-(Pyrazin-2-yl)adamantane-1-carboxamide

Błażej Dziuk, Borys Ośmiałowski, Krzysztof Ejsmont and Bartosz Zarychta

F(000) = 1104

 $\theta = 3.0-25.2^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$

T = 100 K

 $D_{\rm x} = 1.314 {\rm Mg m^{-3}}$

Irregular, colourless

 $0.35 \times 0.20 \times 0.15 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 7922 reflections

N-(Pyrazin-2-yl)adamantane-1-carboxamide

Crystal data

C15H19N3O $M_r = 257.34$ Monoclinic, C2/ca = 27.3649 (9) Åb = 9.4960(3) Å c = 10.0932 (3) Å $\beta = 97.371 (3)^{\circ}$ $V = 2601.11 (14) \text{ Å}^3$ Z = 8

Data collection

Oxford Diffraction Xcalibur diffractometer	2288 independent reflections 1872 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.017$
Graphite monochromator	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
Detector resolution: 7.07 pixels mm ⁻¹	$h = -32 \rightarrow 32$
ωscan	$k = -11 \rightarrow 11$
7922 measured reflections	$l = -7 \rightarrow 12$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: inferred from
$wR(F^2) = 0.082$	neighbouring sites
S = 1.06	H-atom parameters not refined
2288 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0502P)^2 + 0.2928P]$
172 parameters	where $P = (F_0^2 + 2F_c^2)/3$

0 restraints

Special details

direct methods

Primary atom site location: structure-invariant

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.20 \text{ e} \text{ Å}^{-3}$

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.35335 (3)	0.04607 (8)	0.64164 (8)	0.0171 (2)
N1	0.29623 (4)	0.23922 (11)	0.28328 (9)	0.0166 (2)
N2	0.28733 (4)	0.41834 (11)	0.49820 (10)	0.0192 (3)
N3	0.33971 (4)	0.07518 (10)	0.41681 (9)	0.0148 (2)
H3A	0.3433	0.0354	0.3421	0.018*
C1	0.31491 (4)	0.20496 (12)	0.40801 (11)	0.0134 (3)
C2	0.27321 (4)	0.36365 (13)	0.26772 (12)	0.0183 (3)
H2	0.2599	0.3915	0.1823	0.022*
C3	0.26850 (4)	0.45175 (13)	0.37355 (12)	0.0189 (3)
Н3	0.2518	0.5366	0.3579	0.023*
C4	0.31065 (4)	0.29484 (12)	0.51542 (12)	0.0162 (3)
H4	0.3243	0.2681	0.6008	0.019*
C5	0.35891 (4)	0.00418 (12)	0.52975 (11)	0.0127 (3)
C6	0.38861 (4)	-0.12766 (12)	0.50667 (11)	0.0125 (3)
C7	0.40850 (4)	-0.19418 (12)	0.64151 (11)	0.0144 (3)
H7A	0.4286	-0.1261	0.6955	0.017*
H7B	0.3812	-0.2204	0.6889	0.017*
C8	0.43941 (4)	-0.32477 (12)	0.62024 (12)	0.0159 (3)
H8	0.4516	-0.3661	0.7071	0.019*
C9	0.40736 (5)	-0.43301 (13)	0.53643 (12)	0.0185 (3)
H9A	0.4266	-0.5166	0.5237	0.022*
H9B	0.3798	-0.4603	0.5824	0.022*
C10	0.38834 (4)	-0.36779 (13)	0.40072 (12)	0.0172 (3)
H10	0.3682	-0.4370	0.3463	0.021*
C11	0.35678 (4)	-0.23827 (12)	0.42266 (11)	0.0151 (3)
H11A	0.3293	-0.2659	0.4687	0.018*
H11B	0.3437	-0.1980	0.3371	0.018*
C12	0.43293 (4)	-0.08611 (12)	0.43399 (12)	0.0142 (3)
H12A	0.4211	-0.0445	0.3480	0.017*
H12B	0.4530	-0.0167	0.4865	0.017*
C13	0.46409 (4)	-0.21676 (13)	0.41374 (12)	0.0167 (3)
H13	0.4921	-0.1897	0.3676	0.020*
C14	0.48310 (4)	-0.28214 (13)	0.54869 (12)	0.0173 (3)
H14A	0.5035	-0.2147	0.6027	0.021*
H14B	0.5030	-0.3642	0.5356	0.021*
C15	0.43197 (4)	-0.32405 (13)	0.32845 (12)	0.0186 (3)
H15A	0.4199	-0.2827	0.2426	0.022*
H15B	0.4515	-0.4063	0.3129	0.022*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U ²³
01	0.0218 (5)	0.0182 (5)	0.0112 (4)	0.0040 (4)	0.0026 (3)	-0.0009 (3)
N1	0.0157 (5)	0.0181 (6)	0.0158 (5)	0.0006 (4)	0.0013 (4)	0.0036 (4)
N2	0.0182 (6)	0.0149 (6)	0.0245 (6)	0.0007 (4)	0.0031 (5)	-0.0003 (4)

N3	0.0198 (5)	0.0142 (5)	0.0104 (5)	0.0040 (4)	0.0018 (4)	-0.0011 (4)
C1	0.0113 (6)	0.0131 (6)	0.0161 (6)	-0.0008 (5)	0.0025 (5)	0.0019 (5)
C2	0.0158 (6)	0.0186 (7)	0.0200 (7)	0.0018 (5)	0.0000 (5)	0.0063 (5)
C3	0.0149 (6)	0.0142 (6)	0.0273 (7)	0.0009 (5)	0.0019 (5)	0.0035 (5)
C4	0.0158 (6)	0.0155 (6)	0.0170 (6)	0.0002 (5)	0.0008 (5)	0.0008 (5)
C5	0.0118 (6)	0.0132 (6)	0.0131 (6)	-0.0026 (5)	0.0009 (5)	-0.0001 (5)
C6	0.0135 (6)	0.0123 (6)	0.0118 (6)	0.0012 (5)	0.0021 (5)	0.0000 (5)
C7	0.0170 (6)	0.0139 (6)	0.0122 (6)	0.0006 (5)	0.0018 (5)	0.0004 (5)
C8	0.0182 (6)	0.0145 (7)	0.0146 (6)	0.0022 (5)	0.0003 (5)	0.0024 (5)
C9	0.0193 (6)	0.0127 (6)	0.0238 (7)	0.0021 (5)	0.0042 (5)	0.0001 (5)
C10	0.0185 (7)	0.0131 (7)	0.0193 (6)	-0.0021 (5)	0.0002 (5)	-0.0040(5)
C11	0.0153 (6)	0.0152 (6)	0.0144 (6)	-0.0013 (5)	0.0007 (5)	0.0003 (5)
C12	0.0152 (6)	0.0136 (6)	0.0140 (6)	-0.0013 (5)	0.0024 (5)	0.0013 (5)
C13	0.0149 (6)	0.0183 (7)	0.0177 (6)	0.0002 (5)	0.0058 (5)	-0.0005 (5)
C14	0.0160 (6)	0.0146 (6)	0.0211 (6)	0.0022 (5)	0.0012 (5)	-0.0020 (5)
C15	0.0227 (7)	0.0169 (6)	0.0164 (6)	0.0041 (5)	0.0031 (5)	-0.0038 (5)

Geometric parameters (Å, °)

01—C5	1.2252 (14)	С8—С9	1.5332 (16)	
N1—C1	1.3368 (14)	C8—H8	0.9800	
N1-C2	1.3387 (16)	C9—C10	1.5322 (16)	
N2—C3	1.3353 (16)	С9—Н9А	0.9700	
N2C4	1.3358 (15)	С9—Н9В	0.9700	
N3—C5	1.3698 (14)	C10—C15	1.5340 (17)	
N3—C1	1.4042 (15)	C10—C11	1.5351 (17)	
N3—H3A	0.8600	C10—H10	0.9800	
C1—C4	1.3963 (16)	C11—H11A	0.9700	
С2—С3	1.3758 (18)	C11—H11B	0.9700	
С2—Н2	0.9300	C12—C13	1.5339 (16)	
С3—Н3	0.9300	C12—H12A	0.9700	
C4—H4	0.9300	C12—H12B	0.9700	
С5—С6	1.5267 (16)	C13—C14	1.5263 (16)	
С6—С7	1.5354 (15)	C13—C15	1.5354 (16)	
C6—C11	1.5464 (16)	C13—H13	0.9800	
C6—C12	1.5468 (16)	C14—H14A	0.9700	
С7—С8	1.5316 (16)	C14—H14B	0.9700	
C7—H7A	0.9700	C15—H15A	0.9700	
С7—Н7В	0.9700	C15—H15B	0.9700	
C8—C14	1.5286 (17)			
C1—N1—C2	116.27 (10)	С8—С9—Н9А	109.9	
C3—N2—C4	116.83 (11)	C10—C9—H9B	109.9	
C5—N3—C1	127.97 (10)	С8—С9—Н9В	109.9	
C5—N3—H3A	116.0	H9A—C9—H9B	108.3	
C1—N3—H3A	116.0	C9—C10—C15	109.80 (9)	
N1-C1-C4	121.50 (11)	C9—C10—C11	109.13 (10)	
N1-C1-N3	113.36 (10)	C15—C10—C11	109.76 (10)	

C4—C1—N3	125.11 (11)	С9—С10—Н10	109.4
N1—C2—C3	122.36 (11)	C15—C10—H10	109.4
N1—C2—H2	118.8	C11—C10—H10	109.4
С3—С2—Н2	118.8	C10—C11—C6	109.61 (9)
N2—C3—C2	121.59 (12)	C10—C11—H11A	109.7
N2—C3—H3	119.2	С6—С11—Н11А	109.7
С2—С3—Н3	119.2	C10—C11—H11B	109.7
N2—C4—C1	121.45 (11)	С6—С11—Н11В	109.7
N2—C4—H4	119.3	H11A—C11—H11B	108.2
C1—C4—H4	119.3	C13—C12—C6	109.87 (9)
01—C5—N3	121.84 (11)	C13—C12—H12A	109.7
01	122.58 (10)	C6-C12-H12A	109.7
N3-C5-C6	115.57 (10)	C13—C12—H12B	109.7
C5—C6—C7	109.71 (9)	C6-C12-H12B	109.7
C5—C6—C11	111.55 (9)	H12A—C12—H12B	108.2
C7—C6—C11	108.50 (9)	C14—C13—C12	109.99 (10)
C5—C6—C12	109.16 (9)	C14—C13—C15	109.60 (10)
C7-C6-C12	108 36 (9)	C12-C13-C15	108 87 (9)
$C_{11} - C_{6} - C_{12}$	109.50 (9)	C14—C13—H13	109.5
C8-C7-C6	110 38 (10)	C12—C13—H13	109.5
C8—C7—H7A	109.6	C15—C13—H13	109.5
C6-C7-H7A	109.6	C13 - C14 - C8	109 36 (9)
C8—C7—H7B	109.6	C13—C14—H14A	109.8
C6—C7—H7B	109.6	C8-C14-H14A	109.8
H7A—C7—H7B	108.1	C13—C14—H14B	109.8
C14 - C8 - C7	109.35 (10)	C8-C14-H14B	109.8
C14—C8—C9	110.09 (10)	H14A—C14—H14B	108.3
C7—C8—C9	109.46 (10)	C10—C15—C13	109.73 (9)
C14—C8—H8	109.3	C10—C15—H15A	109.7
C7—C8—H8	109.3	C13—C15—H15A	109.7
C9—C8—H8	109.3	C10—C15—H15B	109.7
C10-C9-C8	109.08 (10)	C13—C15—H15B	109.7
C10-C9-H9A	109.9	H15A—C15—H15B	108.2
	10,00		100.2
C2—N1—C1—C4	-0.24(16)	C14—C8—C9—C10	-59.90(12)
C_2 N1- C_1 -N3	-178.33(10)	C7-C8-C9-C10	60.32 (12)
C_{5} N3 C_{1} N1	-173.52(10)	C8-C9-C10-C15	59.24 (13)
C5-N3-C1-C4	8.47 (19)	C8-C9-C10-C11	-61.11(12)
C1-N1-C2-C3	-0.46(17)	C9-C10-C11-C6	61.22(12)
C4-N2-C3-C2	-0.49(17)	C_{15} C_{10} C_{11} C_{6}	-59.15(12)
N1-C2-C3-N2	0.86 (19)	C_{5} C_{6} C_{11} C_{10}	179 30 (9)
$C_3 - N_2 - C_4 - C_1$	-0.20(17)	C7-C6-C11-C10	-59.73(12)
$N_1 - C_1 - C_4 - N_2$	0.59 (18)	C_{12} C_{6} C_{11} C_{10}	58.36 (12)
N3-C1-C4-N2	178 45 (11)	C_{5} C_{6} C_{12} C_{13}	178 29 (9)
C1 - N3 - C5 - O1	4 70 (18)	C7 - C6 - C12 - C13	58 86 (12)
C1 - N3 - C5 - C6	-173 80 (10)	$C_{11} - C_{6} - C_{12} - C_{13}$	-59 32 (12)
01 - C5 - C6 - C7	0.46 (15)	C6-C12-C13-C14	-59 77 (12)
$N_{3} C_{5} C_{6} C_{7}$	178 06 (0)	$C_{0} = C_{12} = C_{13} = C_{14}$	59.77(12)
	1/0.20 (2)	0-012-013-013	00.55 (12)

$\begin{array}{c} 01 & - C5 & - C6 & - C11 \\ N3 & - C5 & - C6 & - C11 \\ 01 & - C5 & - C6 & - C12 \\ N3 & - C5 & - C6 & - C12 \\ C5 & - C6 & - C7 & - C8 \\ C11 & - C6 & - C7 & - C8 \\ C12 & - C6 & - C7 & - C8 \\ C6 & - C7 & - C8 & - C14 \end{array}$	120.72 (12) -60.79 (13) -118.14 (12) 60.36 (12) -178.69 (9) 59.21 (12) -59.60 (12) 60.67 (12)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59.94 (12) -59.71 (12) -59.99 (12) 60.31 (12) -59.34 (13) 60.63 (12) 59.45 (12) -60.89 (12)
C6-C7-C8-C14 C6-C7-C8-C9	60.67 (12) -60.01 (12)	C12—C13—C15—C10	-60.89 (12)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	$D \cdots A$	D—H···A	
N3—H3A····O1 ⁱ	0.86	2.22	3.0732 (13)	174	
C3—H3····N1 ⁱⁱ	0.93	2.64	3.5179 (16)	157	
C4—H4…O1	0.93	2.27	2.8612 (14)	121	

Symmetry codes: (i) *x*, –*y*, *z*–1/2; (ii) –*x*+1/2, *y*+1/2, –*z*+1/2.