

ISSN 2414-3146

Received 8 August 2016 Accepted 11 August 2016

Edited by M. Bolte, Goethe-Universität Frankfurt Germany

Keywords: crystal structure; phenothiazine; π - π interactions.

CCDC reference: 1497137

Structural data: full structural data are available from iucrdata.iucr.org

10-Methyl-10H-phenothiazine

Parvathi Malikireddy,^a Gouthaman Siddan,^b Sugunalakshmi Madurai,^b Suvasini Chandramouleeswaran^a and Lakshmi Srinivasakannan^a*

^aResearch Department of Physics, S.D.N.B. Vaishnav College for Women, Chromepet, Chennai 600 044, India, and ^bIndustrial Chemistry Polymer Division, CSIR Central Leather Research Institute, Chennai 600 020, India. *Correspondence e-mail: lakssdnbvc@gmail.com

In the title compound $C_{13}H_{11}NS$, the phenothiazine unit has a non-planar butterfly structure, and the central six-membered ring adopts a boat conformation. The dihedral angle between the two outer aromatic rings of the phenothiazine unit is 39.53 (10)°. In the crystal, a π - π interaction with a centroid–centroid distance of 3.6871 (12) Å is observed between the aromatic rings of neighbouring molecules.

Structure description

Phenothiazine derivatives possess anti-tumor, anti-bacterial, anti-plasmid and antituberculosis activities (He *et al.*, 2015). Trifluoperazine, a phenothiazine derivative, is used for treating schizophrenia by minimizing hallucinations, delusions and disorganized thought and speech (Stanković *et al.*, 2015). The photodegradation of tricyclic cytosine, another phenothiazine derivative, finds application as a switching mechanism in DNAbased nanodevices (Preus *et al.*, 2013). Other phenothiazine derivatives are used in electrochromic devices (Grätzel, 2001) and act as donors in dye-sensitized solar cell fabrication (Marszalek *et al.*, 2012).

In the title compound, the phenothiazine moiety has a non-planar butterfly structure (Fig. 1). The central six-membered ring adopts a boat conformation $[Q_T = 0.5994 (16) \text{ Å}, \theta = 96.86 (18), \varphi = 180.7 (2)^\circ]$. The dihedral angle between the two outer aromatic rings of the phenothiazine unit is 39.53 (10)°. The crystal packing exhibits a $\pi - \pi$ interaction with a centroid-centroid distance of 3.6871 (12) Å between the benzene rings (C1–C6) of neighbouring molecules. The crystal packing is shown in Fig. 2.

Figure 1

The molecular structure of the title compound, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small sphere of arbitrary radius.

Synthesis and crystallization

Phenothiazine (0.400 g, 0.002 mmol, 1 equiv.) was dissolved in DMF (5 ml). Sodium hydride (0.0964 g, 0.002 mmol, 2 equiv.) was added to the reaction mixture at 273 K within 15 min and stirred for 30 min at 273 K. Iodomethane (0.250 ml, 0.002 mmol, 2 equiv) was added slowly at 273 K and stirred for 2–3 h at room temperature. The completion of the reaction

Table 1

Experimental details.

Crystal data	
Chemical formula	$C_{13}H_{11}NS$
$M_{\rm r}$	213.29
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	296
<i>a</i> , <i>b</i> , <i>c</i> (Å)	11.6245 (7), 6.9130 (4), 13.7792 (10)
β (°)	106.591 (2)
$V(\dot{A}^3)$	1061.20 (12)
Z	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.27
Crystal size (mm)	$0.30 \times 0.25 \times 0.20$
•	
Data collection	
Diffractometer	Bruker Kappa APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker,
•	2004)
T_{\min}, T_{\max}	0.691, 0.746
No. of measured, independent and	10676, 1868, 1567
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.018
$(\sin \theta/\lambda)_{\rm max} ({\rm \AA}^{-1})$	0.595
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.035, 0.097, 1.05
No. of reflections	1868
No. of parameters	137
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.16, -0.21

Computer programs: APEX2 and SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

The packing of the title compound, viewed down the b axis.

was monitored by TLC. The reaction mass was poured in ice and stirred, filtered and dried. The product was purified by column chromatography using silica gel 100–200 mesh and ethyl acetate: hexane (3:97) as eluent system. The crude product was recrystallized from a mixed solvent of DMF and DCM, yielding green block-shaped crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

Acknowledgements

The authors thank the single-crystal XRD facility, SAIF IIT Madras, Chennai, for the data collection.

References

- Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Grätzel, M. (2001). Nature, 409, 575–576.
- He, C. X., Meng, H., Zhang, X., Cui, H. Q. & Yin, D. L. (2015). Chin. Chem. Lett. 26, 951–954.
- Marszalek, M., Nagane, S., Ichake, A., Humphry-Baker, R., Paul, V., Zakeeruddin, S. M. & Grätzel, M. (2012). *J. Mater. Chem.* **22**, 889– 894.
- Preus, S., Jønck, S., Pittelkow, M., Dierckx, A., Karpkird, T., Albinsson, B. & Wilhelmsson, L. M. (2013). *Photochem. Photobiol. Sci.* **12**, 1416–1422.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stanković, D., Dimitrijević, T., Kuzmanović, D., Krstić, M. P. & Petković, B. B. (2015). *RSC Adv.* 5, 107058–107063.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2016). 1, x161299 [doi:10.1107/S2414314616012992]

10-Methyl-10H-phenothiazine

Parvathi Malikireddy, Gouthaman Siddan, Sugunalakshmi Madurai, Suvasini Chandramouleeswaran and Lakshmi Srinivasakannan

F(000) = 448

 $\theta = 3.1 - 29.4^{\circ}$

 $\mu = 0.27 \text{ mm}^{-1}$

Block, green

 $0.30 \times 0.25 \times 0.20$ mm

T = 296 K

 $D_{\rm x} = 1.335 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1567 reflections

10-Methyl-10H-phenothiazine

Crystal data

C₁₃H₁₁NS $M_r = 213.29$ Monoclinic, $P2_1/c$ a = 11.6245 (7) Å b = 6.9130 (4) Å c = 13.7792 (10) Å $\beta = 106.591$ (2)° V = 1061.20 (12) Å³ Z = 4

Data collection

Bruker Kappa APEXII CCD	1868 independent reflections
diffractometer	1567 reflections with $I > 2\sigma(I)$
Bruker axs kappa axes2 CCD Diffractometer	$R_{\rm int} = 0.018$
scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
Absorption correction: multi-scan	$h = -13 \rightarrow 13$
(SADABS; Bruker, 2004)	$k = -8 \rightarrow 8$
$T_{\min} = 0.691, \ T_{\max} = 0.746$	$l = -14 \rightarrow 16$
10676 measured reflections	

Refinement

Refinement on F^2 Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.035$	H-atom parameters constrained
$wR(F^2) = 0.097$	$w = 1/[\sigma^2(F_o^2) + (0.0378P)^2 + 0.6758P]$
<i>S</i> = 1.05	where $P = (F_o^2 + 2F_c^2)/3$
1868 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
137 parameters	$\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.86050 (5)	0.40501 (9)	0.04641 (4)	0.0510 (2)
N1	0.73700 (14)	0.7457 (2)	0.09898 (12)	0.0424 (4)
C6	0.71525 (17)	0.4834 (3)	-0.02138 (14)	0.0386 (4)
C7	0.85448 (15)	0.4638 (3)	0.16918 (14)	0.0377 (4)
C2	0.55714 (17)	0.7158 (3)	-0.04584 (15)	0.0435 (5)
H2	0.525007	0.826949	-0.025824	0.052*
C12	0.79493 (15)	0.6314 (3)	0.18380 (14)	0.0375 (4)
C1	0.66956 (16)	0.6503 (3)	0.01080 (14)	0.0363 (4)
C5	0.64954 (19)	0.3852 (3)	-0.10654 (15)	0.0482 (5)
Н5	0.680226	0.272801	-0.126692	0.058*
C3	0.49300 (19)	0.6178 (3)	-0.13119 (15)	0.0487 (5)
H3	0.418167	0.663806	-0.168228	0.058*
C11	0.79623 (18)	0.6807 (3)	0.28215 (15)	0.0495 (5)
H11	0.754341	0.788976	0.293389	0.059*
C4	0.5380 (2)	0.4536 (4)	-0.16213 (15)	0.0523 (5)
H4	0.494181	0.388443	-0.219924	0.063*
C8	0.91483 (17)	0.3503 (3)	0.25088 (16)	0.0480 (5)
H8	0.952563	0.236993	0.240176	0.058*
C9	0.9189 (2)	0.4055 (4)	0.34792 (17)	0.0581 (6)
H9	0.961780	0.331961	0.402883	0.070*
C10	0.8596 (2)	0.5690 (4)	0.36327 (17)	0.0596 (6)
H10	0.862047	0.605223	0.428820	0.072*
C13	0.7003 (2)	0.9396 (3)	0.1182 (2)	0.0638 (7)
H13A	0.683800	1.014474	0.057068	0.096*
H13B	0.763616	1.000018	0.169713	0.096*
H13C	0.629368	0.932321	0.140436	0.096*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0417 (3)	0.0638 (4)	0.0492 (3)	0.0133 (2)	0.0158 (2)	-0.0065 (3)
N1	0.0440 (9)	0.0328 (8)	0.0465 (10)	0.0017 (7)	0.0065 (7)	-0.0023 (7)
C6	0.0394 (10)	0.0458 (11)	0.0346 (10)	0.0009 (8)	0.0171 (8)	0.0021 (8)
C7	0.0278 (9)	0.0429 (11)	0.0414 (10)	-0.0012 (8)	0.0085 (8)	-0.0006 (8)
C2	0.0444 (11)	0.0406 (11)	0.0446 (11)	0.0053 (9)	0.0113 (9)	0.0091 (9)
C12	0.0288 (9)	0.0412 (10)	0.0403 (10)	-0.0038 (8)	0.0067 (8)	-0.0030 (8)
C1	0.0396 (10)	0.0358 (10)	0.0356 (10)	-0.0015 (8)	0.0142 (8)	0.0051 (8)
C5	0.0557 (13)	0.0537 (13)	0.0388 (11)	-0.0004 (10)	0.0193 (9)	-0.0086 (9)
C3	0.0438 (11)	0.0613 (14)	0.0380 (11)	-0.0014 (10)	0.0070 (9)	0.0113 (10)
C11	0.0401 (11)	0.0613 (13)	0.0452 (12)	0.0002 (10)	0.0095 (9)	-0.0126 (10)
C4	0.0534 (13)	0.0681 (15)	0.0334 (11)	-0.0090 (11)	0.0094 (9)	-0.0032(10)
C8	0.0348 (10)	0.0490 (12)	0.0552 (13)	0.0011 (9)	0.0048 (9)	0.0060 (10)
C9	0.0428 (12)	0.0780 (17)	0.0464 (13)	-0.0064 (11)	0.0015 (10)	0.0167 (12)
C10	0.0467 (12)	0.0927 (19)	0.0372 (11)	-0.0097 (13)	0.0086 (9)	-0.0066 (12)
C13	0.0721 (16)	0.0369 (12)	0.0734 (16)	0.0045 (11)	0.0061 (13)	-0.0066 (11)

Geometric parameters (Å, °)

S1—C7	1.760 (2)	С5—Н5	0.9300
S1—C6	1.7652 (19)	C3—C4	1.368 (3)
N1—C1	1.408 (2)	С3—Н3	0.9300
N1—C12	1.412 (2)	C11—C10	1.385 (3)
N1—C13	1.454 (3)	C11—H11	0.9300
C6—C5	1.382 (3)	C4—H4	0.9300
C6—C1	1.395 (3)	C8—C9	1.378 (3)
C7—C8	1.387 (3)	C8—H8	0.9300
C7—C12	1.394 (3)	C9—C10	1.371 (4)
C2—C3	1.377 (3)	С9—Н9	0.9300
C2—C1	1.393 (3)	C10—H10	0.9300
C2—H2	0.9300	C13—H13A	0.9600
C12—C11	1.393 (3)	C13—H13B	0.9600
C5-C4	1 387 (3)	C_{13} —H13C	0.9600
	1.507 (5)		0.9000
C7—S1—C6	98.23 (8)	С4—С3—Н3	119.6
C1—N1—C12	117.96 (15)	С2—С3—Н3	119.6
C1—N1—C13	117.97 (17)	C10-C11-C12	120.3 (2)
C12—N1—C13	117.42 (17)	C10-C11-H11	119.9
C5—C6—C1	120.53 (18)	C12—C11—H11	119.9
C5—C6—S1	120.80 (16)	C3—C4—C5	119.4 (2)
C1—C6—S1	118.64 (14)	C3—C4—H4	120.3
C8—C7—C12	120.65 (19)	C5—C4—H4	120.3
C8—C7—S1	119.99 (16)	C9—C8—C7	120.0 (2)
C12—C7—S1	119.23 (14)	С9—С8—Н8	120.0
C3—C2—C1	120.74 (19)	С7—С8—Н8	120.0
С3—С2—Н2	119.6	C10—C9—C8	119.9 (2)
C1—C2—H2	119.6	С10—С9—Н9	120.1
C11—C12—C7	118.41 (18)	С8—С9—Н9	120.1
C11—C12—N1	122.60 (18)	C9—C10—C11	120.7 (2)
C7—C12—N1	118.99 (17)	C9—C10—H10	119.7
C2—C1—C6	118.19 (18)	C11—C10—H10	119.7
C2-C1-N1	122.26 (17)	N1—C13—H13A	109.5
C6-C1-N1	119.55 (16)	N1—C13—H13B	109.5
C6—C5—C4	120.3 (2)	H13A—C13—H13B	109.5
С6—С5—Н5	119.9	N1—C13—H13C	109.5
C4—C5—H5	119.9	H13A—C13—H13C	109.5
C4—C3—C2	120.8 (2)	H13B—C13—H13C	109.5
C7—S1—C6—C5	-144.50 (17)	S1—C6—C1—N1	-3.4 (2)
C7—S1—C6—C1	37.60 (17)	C12—N1—C1—C2	136.84 (18)
C6—S1—C7—C8	146.79 (16)	C13—N1—C1—C2	-13.9 (3)
C6—S1—C7—C12	-37.18 (16)	C12—N1—C1—C6	-42.6 (2)
C8—C7—C12—C11	-0.8 (3)	C13—N1—C1—C6	166.72 (19)
S1—C7—C12—C11	-176.84 (14)	C1—C6—C5—C4	1.1 (3)
C8—C7—C12—N1	178.45 (17)	S1—C6—C5—C4	-176.76 (16)

S1—C7—C12—N1	2.4 (2)	C1—C2—C3—C4	0.2 (3)
C1—N1—C12—C11	-137.67 (19)	C7—C12—C11—C10	2.6 (3)
C13—N1—C12—C11	13.2 (3)	N1-C12-C11-C10	-176.63 (19)
C1—N1—C12—C7	43.1 (2)	C2—C3—C4—C5	0.1 (3)
C13—N1—C12—C7	-166.04 (18)	C6—C5—C4—C3	-0.8 (3)
C3-C2-C1-C6	0.1 (3)	C12—C7—C8—C9	-1.6 (3)
C3—C2—C1—N1	-179.31 (18)	S1—C7—C8—C9	174.34 (16)
C5—C6—C1—C2	-0.8 (3)	C7—C8—C9—C10	2.3 (3)
S1—C6—C1—C2	177.16 (14)	C8—C9—C10—C11	-0.5 (3)
C5—C6—C1—N1	178.68 (18)	C12—C11—C10—C9	-2.0 (3)