

ISSN 2414-3146

Received 1 June 2016 Accepted 11 August 2016

Edited by R. J. Butcher, Howard University, USA

Keywords: crystal structure; hydrazone derivative; pyridine; dihedral angle; hydrogen bonding.

CCDC reference: 1498730

Structural data: full structural data are available from iucrdata.iucr.org

N'-[(1*E*)-4-Hydroxy-3-methoxybenzylidene]isonicotinohydrazide monohydrate

K. R. Roopashree,^a Bharathkumar Inturi,^b Gurubasavaraj V. Pujar,^b S. R. Prem Kumar^c and H. C. Devarajegowda^a*

^aDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, ^bDepartment of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS University, Mysuru 570 015, Karnataka, India, and ^cDepartment of Pharmaceutical Chemistry, Sri Adichunchanagiri College of Pharmacy, B G Nagara, Mandya District 571 448, Karnataka, India. *Correspondence e-mail: devarajegowda@yahoo.com

In the title hydrate, $C_{14}H_{13}N_3O_3\cdot H_2O$, the dihedral angle between the pyridine and benzene rings is 2.52 (9)°. Intramolecular $O-H\cdots O$ hydrogen bonds occur. In the crystal, $O-H\cdots O$, $O-H\cdots N$, $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds link the components into a three-dimensional network. $\pi-\pi$ interactions are also observed.

Structure description

Hydrazones have been reported to be antitubercular (Vavříková *et al.*, 2011; Koçyiğit Kaymakçıoğlu & Rollas, 2002), anticancer (Bhat *et al.*, 2015), antifungal, antimicrobial, antiviral and antimalarial agents (Maccari *et al.*, 2005; Mallikarjuna *et al.*, 2009; Bekhit *et al.*, 2015). The development of new classes of hydrazones may overcome antimicrobial resistance.

The asymmetric unit of the title compound is shown in Fig. 1. The dihedral angle between the pyridine ring and the benzene rings is 2.52 (9)°. Intramolecular O-H···O hydrogen bonds (Table 1) occur. In the crystal, O-H···O, O-H···N, N-H···O and C-H···O hydrogen bonds (Table 1) link the components into a three-dimensional network. In addition, π - π interactions are observed between the pyridine and benzene rings of neighbouring molecules with centroid-centroid distances of 3.8251 (11) and 3.8984 (11) Å. The crystal packing is illustrated in Fig. 2.

Figure 1

Synthesis and crystallization

Equimolar quantities of vanillin (50 mmol) and isonicotinic acid hydrazide (50 mmol) were heated to reflux in the presence of absolute ethanol (50 ml) for 6 h; the completion of the reaction was monitored by TLC. After cooling and concentration of reaction mixture, the product was added to ice-cold water. The precipitated product was collected and

Figure 2 The packing of molecules. Hydrogen bonds are shown as dashed lines.

 Table 1

 Hydrogen-bond geometry (Å, °).

		/		
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
O2−H2···O1	1.00 (3)	2.24 (3)	2.7081 (18)	107.4 (18)
$O2-H2 \cdot \cdot \cdot N5^{i}$	1.00 (3)	1.79 (3)	2.699 (2)	150 (2)
$O4-H4A\cdots O2^{ii}$	0.73 (4)	2.28 (4)	2.986 (2)	163 (4)
$O4-H4B\cdots O3$	0.92 (3)	1.93 (3)	2.832 (3)	166 (3)
N6-H6···O4 ⁱⁱⁱ	0.89 (2)	2.10(2)	2.976 (2)	169 (2)
$C8-H8A\cdots O3^{iv}$	0.95 (2)	2.51 (2)	3.390 (3)	154 (2)
$C15 - H15 \cdots O4^{iii}$	1.00 (2)	2.58 (2)	3.436 (3)	143.1 (14)
C18−H18···O4 ⁱⁱⁱ	0.977 (18)	2.316 (18)	3.272 (3)	165.9 (16)
$C20-H20\cdots O1^{v}$	0.94 (2)	2.56 (2)	3.189 (2)	124.5 (17)

Symmetry codes: (i) $x - \frac{3}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$; (ii) x + 1, y, z; (iii) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$; (iv) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$; (v) $x + \frac{3}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$.

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	$C_{14}H_{13}N_3O_3H_2O$
Mr	289.29
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	296
a, b, c (Å)	8.3687 (7), 13.0913 (10),
	12.6778 (11)
β (°)	99.086 (5)
$V(Å^3)$	1371.5 (2)
Ζ	4
Radiation type	Cu Ka
$\mu \text{ (mm}^{-1}\text{)}$	0.88
Crystal size (mm)	$0.24 \times 0.20 \times 0.12$
Data collection	
Diffractometer	Bruker SMART CCD area-
	detector
Absorption correction	Multi-scan (SADABS; Sheldrick, 2007)
T_{\min}, T_{\max}	0.770, 1.000
No. of measured, independent and	7361, 2249, 1805
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.042
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.586
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.043, 0.114, 1.04
No. of reflections	2249
No. of parameters	251
H-atom treatment	All H-atom parameters refined
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm A}^{-3})$	0.25, -0.25

Computer programs: SMART and SAINT (Bruker, 2001), SHELXT (Sheldrick, 2015a), SHELXL2014/7 (Sheldrick, 2015b) and ORTEP-3 for Windows (Farrugia, 2012).

dried. The crude product was recrystallized from 70 v/v ethanol solution, affording colourless prismatic crystals (yield 82%).

Spectroscopic data: IR (KBr disk, cm-1) 3356 (OH), 3324 (NH), 2969 (C–H), 1590 (Ar–C=C), 1265 (–OCH3); ¹H NMR (400 MHz, DMSO- d_6): 11.85 (*s*, 1H), 9.58 (*s*, 1H), 8.75 (*s*, 2H), 8.32 (*s*, 1H), 7.79 (*d*, 2H), 7.30 (*d*, 1H), 7.10 (*dd*, 1H), 6.83 (*d*, 1H). 3.81 (*s*, 3H); LC–MS *m*/*z*: 272.15 (*M* + H)⁺.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors thank the Universities Sophisticated Instrumental Centre, Karnatak University, Dharwad, for the CCD X-ray facilities and X-ray data collection.

References

- Bekhit, A. A., Hassan, A. M. M., Abd El Razik, H. A., El-Miligy, M. M. M., El-Agroudy, E. J. & Bekhit, A. E. A. (2015). *Eur. J. Med. Chem.* 94, 30–44.
- Bhat, M. A., Iqbal, M., Al-Dhfyan, A. & Shakeel, F. (2015). J. Mol. Liq. 203, 111–119.
- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Koçyiğit Kaymakçıoğlu, B. & Rollas, S. (2002). Farmaco, 57, 595– 599.
- Maccari, R., Ottanà, R. & Vigorita, M. G. (2005). *Bioorg. Med. Chem. Lett.* **15**, 2509–2513.
- Mallikarjuna, B. P., Sastry, B. S., Suresh Kumar, G. V., Rajendraprasad, Y., Chandrashekar, S. M. & Sathisha, K. (2009). Eur. J. Med. Chem. 44, 4739–4746.
- Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Vavříková, E., Polanc, S., Kočevar, M., Košmrlj, J., Horváti, K., Bősze, S., Stolaříková, J., Imramovský, A. & Vinšová, J. (2011). Eur. J. Med. Chem. 46, 5902–5909.

full crystallographic data

IUCrData (2016). 1, x161300 [doi:10.1107/S2414314616013006]

N'-[(1E)-4-Hydroxy-3-methoxybenzylidene]isonicotinohydrazide monohydrate

K. R. Roopashree, Bharathkumar Inturi, Gurubasavaraj V. Pujar, S. R. Prem Kumar and H. C. Devarajegowda

N'-[(1E)-4-Hydroxy-3-methoxybenzylidene]isonicotinohydrazide monohydrate

Crystal data

C₁₄H₁₃N₃O₃·H₂O $M_r = 289.29$ Monoclinic, $P2_1/n$ a = 8.3687 (7) Å b = 13.0913 (10) Å c = 12.6778 (11) Å $\beta = 99.086$ (5)° V = 1371.5 (2) Å³ Z = 4F(000) = 576

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scans Absorption correction: multi-scan (SADABS; Sheldrick, 2007) $T_{\min} = 0.770, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.114$ S = 1.042249 reflections 251 parameters 0 restraints Hydrogen site location: difference Fourier map All H-atom parameters refined $D_x = 1.401 \text{ Mg m}^{-3}$ Melting point: 298 K Cu *Ka* radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 2249 reflections $\theta = 4.9-64.5^{\circ}$ $\mu = 0.88 \text{ mm}^{-1}$ T = 296 KPrism, colourless $0.24 \times 0.20 \times 0.12 \text{ mm}$

7361 measured reflections 2249 independent reflections 1805 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ $\theta_{max} = 64.5^{\circ}, \ \theta_{min} = 4.9^{\circ}$ $h = -7 \rightarrow 9$ $k = -14 \rightarrow 15$ $l = -14 \rightarrow 12$

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.059P)^2 + 0.2398P] \\ &where P = (F_o^2 + 2F_c^2)/3 \\ &(\Delta/\sigma)_{max} = 0.001 \\ &\Delta\rho_{max} = 0.25 \text{ e } \text{\AA}^{-3} \\ &\Delta\rho_{min} = -0.25 \text{ e } \text{\AA}^{-3} \\ &\text{Extinction correction: SHELXL-2014/7} \\ &(\text{Sheldrick 2015b}), \\ &\text{Fc}^* = \text{kFc}[1 + 0.001 \text{xFc}^2 \lambda^3 / \sin(2\theta)]^{-1/4} \\ &\text{Extinction coefficient: } 0.0065 (7) \end{split}$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.01283 (15)	0.81847 (9)	0.90314 (11)	0.0528 (4)	
O2	-0.04008 (15)	0.61830 (10)	0.93903 (12)	0.0539 (4)	
03	0.81796 (17)	0.55219 (9)	0.64551 (13)	0.0627 (4)	
O4	0.7956 (2)	0.43537 (13)	0.83061 (19)	0.0730 (5)	
N5	1.22351 (17)	0.77082 (12)	0.50647 (12)	0.0476 (4)	
N6	0.72171 (17)	0.70837 (12)	0.67777 (13)	0.0439 (4)	
N7	0.59405 (17)	0.66654 (11)	0.72119 (12)	0.0469 (4)	
C8	0.0359 (3)	0.92178 (15)	0.8789 (2)	0.0645 (7)	
C9	0.12124 (18)	0.74987 (12)	0.87380 (13)	0.0378 (4)	
C10	0.25461 (19)	0.77494 (14)	0.82747 (14)	0.0404 (4)	
C11	0.35901 (19)	0.69995 (13)	0.80039 (14)	0.0413 (4)	
C12	0.3261 (2)	0.59800 (14)	0.82145 (16)	0.0478 (5)	
C13	0.1922 (2)	0.57302 (13)	0.86640 (16)	0.0468 (5)	
C14	0.0886 (2)	0.64756 (13)	0.89347 (14)	0.0400 (4)	
C15	0.4981 (2)	0.73119 (15)	0.75230 (15)	0.0452 (5)	
C16	0.8276 (2)	0.64568 (13)	0.64171 (14)	0.0411 (4)	
C17	0.96296 (18)	0.69426 (12)	0.59529 (13)	0.0361 (4)	
C18	0.9779 (2)	0.79793 (13)	0.57671 (15)	0.0423 (4)	
C19	1.1081 (2)	0.83129 (14)	0.53230 (15)	0.0446 (5)	
C20	1.2073 (2)	0.67153 (15)	0.52461 (19)	0.0570 (6)	
C21	1.0808 (2)	0.63071 (14)	0.56764 (17)	0.0499 (5)	
H2	-0.106 (3)	0.678 (2)	0.955 (2)	0.107 (9)*	
H6	0.731 (3)	0.7757 (18)	0.6774 (16)	0.058 (6)*	
H10	0.283 (2)	0.8450 (16)	0.8173 (16)	0.058 (6)*	
H13	0.168 (2)	0.5017 (16)	0.8816 (16)	0.064 (6)*	
H18	0.900(2)	0.8477 (15)	0.5953 (15)	0.055 (5)*	
H12	0.402 (3)	0.5455 (15)	0.8037 (16)	0.063 (6)*	
H19	1.118 (2)	0.9016 (16)	0.5182 (16)	0.058 (6)*	
H15	0.519 (2)	0.8058 (17)	0.7452 (15)	0.057 (6)*	
H21	1.075 (3)	0.5576 (17)	0.5790 (17)	0.068 (6)*	
H20	1.289 (3)	0.6279 (17)	0.5081 (17)	0.070 (7)*	
H8A	-0.051 (3)	0.9615 (18)	0.8970 (19)	0.080 (7)*	
H8B	0.143 (3)	0.9463 (18)	0.918 (2)	0.089 (8)*	
H8C	0.031 (3)	0.930 (2)	0.792 (2)	0.102 (9)*	
H4B	0.785 (4)	0.475 (2)	0.770 (2)	0.103 (10)*	
H4A	0.841 (4)	0.472 (3)	0.867 (3)	0.132 (15)*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0479 (7)	0.0351 (7)	0.0847 (10)	0.0084 (5)	0.0386 (7)	0.0072 (6)
O2	0.0455 (8)	0.0385 (7)	0.0868 (11)	0.0000 (5)	0.0386 (7)	0.0034 (6)
O3	0.0569 (8)	0.0407 (7)	0.1011 (12)	-0.0071 (6)	0.0452 (8)	-0.0036 (7)
O4	0.0819 (12)	0.0538 (9)	0.0861 (13)	-0.0240 (8)	0.0218 (10)	0.0032 (9)
N5	0.0380 (8)	0.0474 (8)	0.0618 (10)	-0.0014 (6)	0.0216 (7)	0.0035 (7)

N6	0.0354 (8)	0.0421 (9)	0.0599 (10)	-0.0036 (6)	0.0250 (7)	-0.0039 (7)
N7	0.0346 (8)	0.0539 (9)	0.0576 (10)	-0.0046 (7)	0.0237 (7)	-0.0048 (7)
C8	0.0622 (14)	0.0354 (10)	0.105 (2)	0.0109 (9)	0.0420 (14)	0.0106 (11)
C9	0.0327 (8)	0.0353 (9)	0.0485 (10)	0.0047 (7)	0.0156 (7)	0.0002 (7)
C10	0.0348 (9)	0.0390 (9)	0.0504 (11)	0.0001 (7)	0.0160 (7)	0.0013 (8)
C11	0.0335 (9)	0.0479 (10)	0.0457 (10)	0.0003 (7)	0.0161 (7)	-0.0029 (8)
C12	0.0411 (10)	0.0431 (10)	0.0642 (12)	0.0057 (8)	0.0240 (9)	-0.0066 (9)
C13	0.0429 (10)	0.0358 (9)	0.0667 (13)	0.0015 (7)	0.0235 (9)	-0.0030 (9)
C14	0.0351 (9)	0.0388 (9)	0.0498 (10)	-0.0018 (7)	0.0183 (7)	0.0005 (7)
C15	0.0377 (10)	0.0501 (11)	0.0516 (11)	0.0004 (8)	0.0185 (8)	-0.0023 (8)
C16	0.0327 (9)	0.0404 (9)	0.0535 (11)	-0.0031 (7)	0.0170 (7)	-0.0030 (8)
C17	0.0283 (8)	0.0389 (8)	0.0429 (10)	-0.0011 (6)	0.0116 (7)	-0.0035 (7)
C18	0.0356 (9)	0.0384 (9)	0.0557 (11)	0.0010 (7)	0.0155 (8)	-0.0042 (8)
C19	0.0394 (10)	0.0378 (10)	0.0596 (12)	-0.0038 (7)	0.0170 (8)	0.0012 (8)
C20	0.0459 (11)	0.0466 (11)	0.0870 (16)	0.0072 (9)	0.0371 (10)	0.0075 (10)
C21	0.0434 (10)	0.0378 (10)	0.0744 (14)	0.0033 (8)	0.0280 (9)	0.0049 (9)

Geometric parameters (Å, °)

01—C9	1.3691 (19)	C10—C11	1.393 (2)
O1—C8	1.407 (2)	C10—H10	0.96 (2)
O2—C14	1.355 (2)	C11—C12	1.397 (3)
O2—H2	0.99 (3)	C11—C15	1.455 (2)
O3—C16	1.228 (2)	C12—C13	1.374 (3)
O4—H4B	0.92 (3)	C12—H12	0.99 (2)
O4—H4A	0.73 (3)	C13—C14	1.384 (2)
N5-C19	1.329 (2)	C13—H13	0.98 (2)
N5-C20	1.331 (2)	C15—H15	1.00 (2)
N6-C16	1.340 (2)	C16—C17	1.498 (2)
N6—N7	1.389 (2)	C17—C21	1.377 (2)
N6—H6	0.88 (2)	C17—C18	1.386 (2)
N7—C15	1.272 (2)	C18—C19	1.375 (3)
C8—H8A	0.95 (3)	C18—H18	0.97 (2)
C8—H8B	1.01 (3)	C19—H19	0.94 (2)
C8—H8C	1.10 (3)	C20—C21	1.373 (3)
C9—C10	1.380 (2)	C20—H20	0.94 (2)
C9—C14	1.397 (2)	C21—H21	0.97 (2)
C9—O1—C8	116.83 (14)	C12—C13—H13	120.9 (12)
C14—O2—H2	111.8 (16)	C14—C13—H13	117.9 (13)
H4B—O4—H4A	97 (3)	O2—C14—C13	118.52 (15)
C19—N5—C20	116.19 (16)	O2—C14—C9	122.53 (15)
C16—N6—N7	119.02 (15)	C13—C14—C9	118.95 (16)
C16—N6—H6	123.2 (15)	N7—C15—C11	121.94 (18)
N7—N6—H6	117.8 (15)	N7—C15—H15	119.6 (12)
C15—N7—N6	115.06 (15)	C11—C15—H15	118.4 (12)
O1—C8—H8A	109.6 (15)	O3—C16—N6	123.10 (16)
O1—C8—H8B	109.9 (14)	O3—C16—C17	119.78 (15)

H8A—C8—H8B	111 (2)	N6-C16-C17	117.12 (15)
O1—C8—H8C	109.3 (14)	C21—C17—C18	117.44 (16)
H8A—C8—H8C	106 (2)	C21—C17—C16	117.37 (15)
H8B—C8—H8C	111 (2)	C18—C17—C16	125.18 (15)
O1—C9—C10	125.07 (15)	C19—C18—C17	118.63 (16)
O1—C9—C14	115.08 (14)	C19—C18—H18	119.2 (12)
C10—C9—C14	119.85 (15)	C17—C18—H18	122.1 (12)
C9—C10—C11	121.21 (16)	N5-C19-C18	124.45 (17)
С9—С10—Н10	120.9 (13)	N5—C19—H19	116.3 (13)
C11—C10—H10	117.7 (13)	C18—C19—H19	119.3 (13)
C10—C11—C12	118.41 (16)	N5-C20-C21	123.69 (18)
C10—C11—C15	118.65 (16)	N5-C20-H20	117.2 (14)
C12—C11—C15	122.94 (16)	С21—С20—Н20	119.1 (14)
C13—C12—C11	120.34 (16)	C20—C21—C17	119.60 (17)
C13—C12—H12	121.8 (12)	C20—C21—H21	120.1 (14)
C11—C12—H12	117.8 (12)	C17—C21—H21	120.3 (14)
C12—C13—C14	121.23 (17)		
C16—N6—N7—C15	-179.18 (16)	C10-C11-C15-N7	-176.74 (17)
C8—O1—C9—C10	3.4 (3)	C12-C11-C15-N7	3.8 (3)
C8—O1—C9—C14	-176.32 (19)	N7—N6—C16—O3	-0.3 (3)
O1—C9—C10—C11	179.83 (16)	N7—N6—C16—C17	179.83 (14)
C14 $C0$ $C10$ $C11$			
C14-C9-C10-C11	-0.5 (3)	O3—C16—C17—C21	-6.0 (3)
C9-C10-C11-C12	-0.5 (3) -0.2 (3)	O3—C16—C17—C21 N6—C16—C17—C21	-6.0 (3) 173.86 (17)
C9-C10-C11-C12 C9-C10-C11-C12 C9-C10-C11-C15	-0.5 (3) -0.2 (3) -179.66 (16)	O3—C16—C17—C21 N6—C16—C17—C21 O3—C16—C17—C18	-6.0 (3) 173.86 (17) 173.15 (18)
C9-C10-C11-C12 C9-C10-C11-C12 C9-C10-C11-C15 C10-C11-C12-C13	-0.5 (3) -0.2 (3) -179.66 (16) 0.9 (3)	O3—C16—C17—C21 N6—C16—C17—C21 O3—C16—C17—C18 N6—C16—C17—C18	-6.0 (3) 173.86 (17) 173.15 (18) -7.0 (3)
C14-C9-C10-C11 C9-C10-C11-C12 C9-C10-C11-C15 C10-C11-C12-C13 C15-C11-C12-C13	-0.5 (3) -0.2 (3) -179.66 (16) 0.9 (3) -179.58 (18)	O3-C16-C17-C21 N6-C16-C17-C21 O3-C16-C17-C18 N6-C16-C17-C18 C21-C17-C18-C19	-6.0 (3) 173.86 (17) 173.15 (18) -7.0 (3) -0.1 (3)
C14-C9-C10-C11 C9-C10-C11-C12 C9-C10-C11-C15 C10-C11-C12-C13 C15-C11-C12-C13 C11-C12-C13-C14	-0.5 (3) -0.2 (3) -179.66 (16) 0.9 (3) -179.58 (18) -1.1 (3)	O3—C16—C17—C21 N6—C16—C17—C21 O3—C16—C17—C18 N6—C16—C17—C18 C21—C17—C18—C19 C16—C17—C18—C19	-6.0 (3) 173.86 (17) 173.15 (18) -7.0 (3) -0.1 (3) -179.19 (17)
$\begin{array}{c} C14-C9-C10-C11-C12\\ C9-C10-C11-C12\\ C9-C10-C11-C15\\ C10-C11-C12-C13\\ C15-C11-C12-C13\\ C11-C12-C13-C14\\ C12-C13-C14-O2\\ \end{array}$	-0.5 (3) -0.2 (3) -179.66 (16) 0.9 (3) -179.58 (18) -1.1 (3) -179.03 (18)	O3—C16—C17—C21 N6—C16—C17—C21 O3—C16—C17—C18 N6—C16—C17—C18 C21—C17—C18—C19 C16—C17—C18—C19 C20—N5—C19—C18	-6.0 (3) 173.86 (17) 173.15 (18) -7.0 (3) -0.1 (3) -179.19 (17) 0.9 (3)
C14-C9-C10-C11 C9-C10-C11-C12 C9-C10-C11-C15 C10-C11-C12-C13 C15-C11-C12-C13 C11-C12-C13-C14 C12-C13-C14-O2 C12-C13-C14-C9	-0.5 (3) -0.2 (3) -179.66 (16) 0.9 (3) -179.58 (18) -1.1 (3) -179.03 (18) 0.4 (3)	O3—C16—C17—C21 N6—C16—C17—C21 O3—C16—C17—C18 N6—C16—C17—C18 C21—C17—C18—C19 C16—C17—C18—C19 C20—N5—C19—C18 C17—C18—C19—N5	-6.0 (3) 173.86 (17) 173.15 (18) -7.0 (3) -0.1 (3) -179.19 (17) 0.9 (3) -0.8 (3)
$\begin{array}{c} C14-C9-C10-C11-C12\\ C9-C10-C11-C12\\ C9-C10-C11-C15\\ C10-C11-C12-C13\\ C15-C11-C12-C13\\ C11-C12-C13-C14\\ C12-C13-C14-O2\\ C12-C13-C14-C9\\ O1-C9-C14-O2\\ \end{array}$	-0.5 (3) -0.2 (3) -179.66 (16) 0.9 (3) -179.58 (18) -1.1 (3) -179.03 (18) 0.4 (3) -0.5 (3)	O3-C16-C17-C21 N6-C16-C17-C21 O3-C16-C17-C18 N6-C16-C17-C18 C21-C17-C18-C19 C16-C17-C18-C19 C20-N5-C19-C18 C17-C18-C19-N5 C19-N5-C20-C21	-6.0 (3) 173.86 (17) 173.15 (18) -7.0 (3) -0.1 (3) -179.19 (17) 0.9 (3) -0.8 (3) -0.2 (3)
$\begin{array}{c} C14-C9-C10-C11-C12\\ C9-C10-C11-C12\\ C9-C10-C11-C12\\ C15-C11-C12-C13\\ C15-C11-C12-C13\\ C11-C12-C13-C14\\ C12-C13-C14-O2\\ C12-C13-C14-O2\\ C12-C13-C14-O2\\ C10-C9-C14-O2\\ C10-C9-C14-O2\\ \end{array}$	-0.5 (3) -0.2 (3) -179.66 (16) 0.9 (3) -179.58 (18) -1.1 (3) -179.03 (18) 0.4 (3) -0.5 (3) 179.79 (17)	O3-C16-C17-C21 N6-C16-C17-C21 O3-C16-C17-C18 N6-C16-C17-C18 C21-C17-C18-C19 C16-C17-C18-C19 C20-N5-C19-C18 C17-C18-C19-N5 C19-N5-C20-C21 N5-C20-C21-C17	$\begin{array}{c} -6.0 (3) \\ 173.86 (17) \\ 173.15 (18) \\ -7.0 (3) \\ -0.1 (3) \\ -179.19 (17) \\ 0.9 (3) \\ -0.8 (3) \\ -0.2 (3) \\ -0.6 (4) \end{array}$
$\begin{array}{c} C14-C9-C10-C11-C12\\ C9-C10-C11-C12\\ C9-C10-C11-C15\\ C10-C11-C12-C13\\ C15-C11-C12-C13\\ C11-C12-C13-C14\\ C12-C13-C14-O2\\ C12-C13-C14-O2\\ C12-C13-C14-O2\\ C10-C9-C14-O2\\ C10-C9-C14-O2\\ O1-C9-C14-C13\\ \end{array}$	-0.5 (3) -0.2 (3) -179.66 (16) 0.9 (3) -179.58 (18) -1.1 (3) -179.03 (18) 0.4 (3) -0.5 (3) 179.79 (17) -179.92 (16)	O3-C16-C17-C21 N6-C16-C17-C21 O3-C16-C17-C18 N6-C16-C17-C18 C21-C17-C18-C19 C16-C17-C18-C19 C20-N5-C19-C18 C17-C18-C19-N5 C19-N5-C20-C21 N5-C20-C21-C17 C18-C17-C21-C20	$\begin{array}{c} -6.0 (3) \\ 173.86 (17) \\ 173.15 (18) \\ -7.0 (3) \\ -0.1 (3) \\ -179.19 (17) \\ 0.9 (3) \\ -0.8 (3) \\ -0.2 (3) \\ -0.6 (4) \\ 0.7 (3) \end{array}$
$\begin{array}{c} C14-C9-C10-C11-C12\\ C9-C10-C11-C12\\ C9-C10-C11-C12\\ C15-C11-C12-C13\\ C15-C11-C12-C13\\ C11-C12-C13-C14\\ C12-C13-C14-O2\\ C12-C13-C14-O2\\ C12-C13-C14-O2\\ C10-C9-C14-O2\\ C10-C9-C14-O2\\ O1-C9-C14-C13\\ C10-C9-C14-C13\\ C10-C9-C14-C13\\ \end{array}$	$\begin{array}{c} -0.5 (3) \\ -0.2 (3) \\ -179.66 (16) \\ 0.9 (3) \\ -179.58 (18) \\ -1.1 (3) \\ -179.03 (18) \\ 0.4 (3) \\ -0.5 (3) \\ 179.79 (17) \\ -179.92 (16) \\ 0.4 (3) \end{array}$	$\begin{array}{c} \text{O3}\text{C16}\text{C17}\text{C21}\\ \text{N6}\text{C16}\text{C17}\text{C21}\\ \text{O3}\text{C16}\text{C17}\text{C18}\\ \text{N6}\text{C16}\text{C17}\text{C18}\\ \text{C21}\text{C17}\text{C18}\text{C19}\\ \text{C16}\text{C17}\text{C18}\text{C19}\\ \text{C20}\text{N5}\text{C19}\text{C18}\\ \text{C17}\text{C18}\text{C19}\text{N5}\\ \text{C19}\text{N5}\text{C20}\text{C21}\\ \text{N5}\text{C20}\text{C21}\text{C20}\\ \text{C16}\text{C17}\text{C21}\text{C20}\\ \text{C16}\text{C17}\text{C21}\text{C20}\\ \end{array}$	$\begin{array}{c} -6.0 (3) \\ 173.86 (17) \\ 173.15 (18) \\ -7.0 (3) \\ -0.1 (3) \\ -179.19 (17) \\ 0.9 (3) \\ -0.8 (3) \\ -0.2 (3) \\ -0.6 (4) \\ 0.7 (3) \\ 179.90 (19) \end{array}$

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D···A	<i>D</i> —H··· <i>A</i>
02—H2…O1	1.00 (3)	2.24 (3)	2.7081 (18)	107.4 (18)
O2—H2····N5 ⁱ	1.00 (3)	1.79 (3)	2.699 (2)	150 (2)
O4—H4A···O2 ⁱⁱ	0.73 (4)	2.28 (4)	2.986 (2)	163 (4)
O4—H4 <i>B</i> ···O3	0.92 (3)	1.93 (3)	2.832 (3)	166 (3)
N6—H6····O4 ⁱⁱⁱ	0.89 (2)	2.10 (2)	2.976 (2)	169 (2)
C8—H8A···O3 ^{iv}	0.95 (2)	2.51 (2)	3.390 (3)	154 (2)
C15—H15…O4 ⁱⁱⁱ	1.00 (2)	2.58 (2)	3.436 (3)	143.1 (14)

				data reports
C18—H18…O4 ⁱⁱⁱ	0.977 (18)	2.316 (18)	3.272 (3)	165.9 (16)
C20—H20…O1 ^v	0.94 (2)	2.56 (2)	3.189 (2)	124.5 (17)

Symmetry codes: (i) x-3/2, -y+3/2, z+1/2; (ii) x+1, y, z; (iii) -x+3/2, y+1/2, -z+3/2; (iv) -x+1/2, y+1/2, -z+3/2; (v) x+3/2, -y+3/2, z-1/2.