

ISSN 2414-3146

Received 16 August 2016 Accepted 19 August 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: Molecular salt; crystal structure; hydrogen bonding.

CCDC reference: 1499947

Structural data: full structural data are available from iucrdata.iucr.org

2-Amino-3-methylpyridinium 3,4-dimethoxybenzoate

P. Sivakumar,^{a,b} R. Niranjana Devi,^c S. Israel^{c*} and G. Chakkaravarthi^{b*}

^aResearch and Development Centre, Bharathiar University, Coimbatore 641 046, India, ^bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, and ^cPost Graduate and Research Department of Physics, The American College, Madurai 625 002, India. *Correspondence e-mail: israel.samuel@gmail.com, chakkaravarthi_2005@yahoo.com

In the title molecular salt, $C_6H_9N_2^+ \cdot C_9H_9O_4^-$, the cation is protonated at the pyridine N atom. In the crystal, $N-H \cdot \cdot \cdot O$ hydrogen bonds link the components into [010] chains, which feature $R_2^2(8)$ loops. The chains are linked by $C-H \cdot \cdot \cdot O$ hydrogen bonds, forming a three-dimensional network.

Structure description

We herewith report the synthesis and the crystal structure of the title molecular salt (Fig. 1). The bond lengths are comparable with related structures we have reported recently (Sivakumar *et al.*, 2016*a*,*b*). The cation is protonated at the pyridine N1 atom and the anion is deprotonated at hydroxyl O1 atom. In the anion, the dihedral angle between the carboxylate group and its attached benzene ring is 9.81 (9)° and both methoxy C atoms lie close to the plane of the ring [deviations for C13 and C14 = 0.172 (2) and 0.181 (2) Å, respectively].

In the crystal, $N-H\cdots O$ hydrogen bonds connect the anions and cations into infinite chains along [010] and these chains are further consolidated by $C-H\cdots O$ hydrogen bonds (Table 1 and Fig. 2), forming a three-dimensional network. As part of the chain motif, a pair of $N-H\cdots O$ ($N1-H1A\cdots O1^{i}$ and $N2-H2A\cdots O2^{i}$) hydrogen bonds generate $R_{2}^{2}(8)$ loops.

Synthesis and crystallization

The title compound was synthesized in acetone by mixing 2-amino-3-methylpyridine (0.27 g) and 3,4-dimethoxy benzoic acid (0.45 g) in an equimolar ratio. The solution was

Table 1	
Hydrogen-bond geom	netry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N1-H1 A ···O1 ⁱ	0.88 (2)	1.73 (2)	2.6071 (19)	173 (2)
$N2-H2A\cdots O2^{i}$	0.86	2.02	2.8816 (19)	177
$N2-H2B\cdots O2^{ii}$	0.86	2.12	2.9051 (19)	152
$C14-H14B\cdots O4^{iii}$	0.96	2.54	3.281 (3)	134

Symmetry codes: (i) x, y + 1, z; (ii) $-x, y + \frac{1}{2}, -z + \frac{5}{2}$; (iii) -x + 1, -y - 1, -z + 2.

Figure 1

The molecular structure of the title molecular salt, with 30% probability displacement ellipsoids.

Figure 2

The crystal packing of the title molecular salt viewed along the b axis. Hydrogen bonds are shown as dashed lines. H atoms not involving in hydrogen bonding have been omitted for clarity.

Experimental details.	
Crystal data	
Chemical formula	$C_6H_9N_2^+ \cdot C_9H_9O_4^-$
$M_{ m r}$	290.31
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	295
a, b, c (Å)	11.6972 (8), 6.6637 (5), 19.2325 (17)
β (°)	103.000 (2)
$V(\text{\AA}^3)$	1460.7 (2)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.10
Crystal size (mm)	$0.28\times0.24\times0.20$
Data collection	
Diffractometer	Bruker Kappa APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2004)
T_{\min}, T_{\max}	0.973, 0.981
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	17370, 3587, 2388
R _{int}	0.030
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.665
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.048, 0.128, 1.03
No. of reflections	3587
No. of parameters	197
No. of restraints	1
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e} { m \AA}^{-3})$	0.23, -0.23

Computer programs: *APEX2* and *SAINT* (Bruker, 2004), *SHELXS97* and *SHELXL97* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

allowed to evaporate slowly at room temperature. After a period of 25 days, colourless blocks were grown, which were suitable for X-ray diffraction.

Refinement

Table 2

Even a sim antal dataila

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras for the data collection.

References

Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Sivakumar, P., Sudhahar, S., Gunasekaran, B., Israel, S. & Chakkaravarthi, G. (2016b). *IUCrData*, **1**, x160817.
- Sivakumar, P., Sudhahar, S., Israel, S. & Chakkaravarthi, G. (2016*a*). *IUCrData*, **1**, x160747.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

full crystallographic data

IUCrData (2016). **1**, x161332 [doi:10.1107/S2414314616013328]

2-Amino-3-methylpyridinium 3,4-dimethoxybenzoate

P. Sivakumar, R. Niranjana Devi, S. Israel and G. Chakkaravarthi

2-Amino-3-methylpyridinium 3,4-dimethoxybenzoate

Crystal data $C_6H_9N_2^+ \cdot C_9H_9O_4^ M_r = 290.31$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 11.6972 (8) Å b = 6.6637 (5) Å c = 19.2325 (17) Å $\beta = 103.000$ (2)° V = 1460.7 (2) Å³ Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scan Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{\min} = 0.973, T_{\max} = 0.981$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.128$ S = 1.033587 reflections 197 parameters 1 restraint Primary atom site location: structure-invariant direct methods F(000) = 616 $D_x = 1.320 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 Å Cell parameters from 4375 reflections $\theta = 2.5-26.4^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 295 KBlock, colourless $0.28 \times 0.24 \times 0.20 \text{ mm}$

17370 measured reflections 3587 independent reflections 2388 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 28.2^\circ, \ \theta_{min} = 2.2^\circ$ $h = -15 \rightarrow 15$ $k = -8 \rightarrow 8$ $l = -25 \rightarrow 24$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0509P)^2 + 0.5181P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.23$ e Å⁻³ $\Delta\rho_{min} = -0.23$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.41591 (14)	-0.5512 (3)	1.29093 (10)	0.0411 (4)
H1	0.4753	-0.4995	1.2711	0.049*
C2	0.43583 (16)	-0.7179 (3)	1.33117 (11)	0.0469 (5)
H2	0.5086	-0.7810	1.3404	0.056*
C3	0.34363 (16)	-0.7937 (3)	1.35878 (11)	0.0463 (5)
Н3	0.3562	-0.9089	1.3868	0.056*
C4	0.23615 (15)	-0.7048 (3)	1.34609 (9)	0.0372 (4)
C5	0.22031 (13)	-0.5260 (2)	1.30491 (9)	0.0320 (4)
C6	0.13643 (17)	-0.7891 (3)	1.37408 (11)	0.0519 (5)
H6A	0.0757	-0.8340	1.3349	0.078*
H6B	0.1058	-0.6871	1.4001	0.078*
H6C	0.1639	-0.9002	1.4051	0.078*
C7	0.21553 (13)	-0.8319 (2)	1.14744 (9)	0.0308 (4)
C8	0.12877 (14)	-0.6888 (3)	1.13558 (10)	0.0384 (4)
H8	0.0636	-0.7047	1.1552	0.046*
С9	0.13749 (15)	-0.5203 (3)	1.09443 (10)	0.0437 (4)
H9	0.0783	-0.4242	1.0870	0.052*
C10	0.23282 (15)	-0.4946 (2)	1.06465 (9)	0.0382 (4)
C11	0.32175 (14)	-0.6394 (2)	1.07619 (9)	0.0357 (4)
C12	0.31268 (14)	-0.8051 (2)	1.11728 (9)	0.0335 (4)
H12	0.3721	-0.9008	1.1251	0.040*
C13	0.1576 (2)	-0.1972 (3)	1.00187 (13)	0.0630 (6)
H13A	0.0883	-0.2660	0.9770	0.094*
H13B	0.1795	-0.0982	0.9710	0.094*
H13C	0.1421	-0.1326	1.0434	0.094*
C14	0.49645 (19)	-0.7559 (3)	1.04719 (14)	0.0650 (7)
H14A	0.5383	-0.7744	1.0957	0.098*
H14B	0.5505	-0.7192	1.0185	0.098*
H14C	0.4577	-0.8787	1.0295	0.098*
C15	0.20866 (13)	-1.0170 (2)	1.19126 (9)	0.0334 (4)
N1	0.31064 (12)	-0.4576 (2)	1.27889 (8)	0.0357 (3)
N2	0.12124 (12)	-0.4201 (2)	1.29070 (8)	0.0437 (4)
H2A	0.1166	-0.3122	1.2657	0.052*
H2B	0.0619	-0.4597	1.3065	0.052*
01	0.29953 (10)	-1.12424 (18)	1.20672 (7)	0.0466 (3)
O2	0.11498 (10)	-1.05519 (19)	1.20953 (7)	0.0475 (4)
O3	0.24997 (13)	-0.3368 (2)	1.02274 (8)	0.0570 (4)
O4	0.41272 (11)	-0.60306 (19)	1.04403 (8)	0.0512 (4)
H1A	0.3010 (17)	-0.345 (2)	1.2541 (10)	0.057 (6)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

data reports

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0280 (8)	0.0509 (11)	0.0454 (11)	-0.0045 (8)	0.0102 (7)	-0.0035 (9)
C2	0.0340 (9)	0.0511 (11)	0.0534 (12)	0.0080 (8)	0.0050 (8)	-0.0004 (9)
C3	0.0473 (11)	0.0395 (10)	0.0488 (12)	0.0028 (8)	0.0035 (9)	0.0073 (9)
C4	0.0365 (9)	0.0390 (9)	0.0353 (10)	-0.0058 (8)	0.0065 (7)	0.0013 (8)
C5	0.0276 (8)	0.0360 (9)	0.0322 (9)	-0.0042 (7)	0.0064 (6)	-0.0019 (7)
C6	0.0494 (11)	0.0530 (12)	0.0548 (13)	-0.0096 (9)	0.0147 (9)	0.0137 (10)
C7	0.0287 (8)	0.0297 (8)	0.0343 (9)	-0.0034 (6)	0.0079 (7)	-0.0018 (7)
C8	0.0317 (8)	0.0390 (9)	0.0467 (11)	0.0011 (7)	0.0133 (7)	0.0009 (8)
C9	0.0388 (10)	0.0395 (10)	0.0530 (12)	0.0106 (8)	0.0106 (8)	0.0041 (8)
C10	0.0448 (10)	0.0300 (8)	0.0393 (10)	-0.0002 (7)	0.0084 (8)	0.0043 (7)
C11	0.0362 (9)	0.0336 (9)	0.0400 (10)	-0.0027 (7)	0.0144 (7)	0.0007 (7)
C12	0.0301 (8)	0.0314 (8)	0.0397 (10)	0.0013 (7)	0.0096 (7)	0.0010 (7)
C13	0.0771 (15)	0.0417 (11)	0.0633 (15)	0.0094 (11)	0.0014 (12)	0.0126 (10)
C14	0.0635 (13)	0.0511 (12)	0.0974 (19)	0.0143 (10)	0.0537 (13)	0.0221 (12)
C15	0.0288 (8)	0.0325 (9)	0.0401 (10)	-0.0036 (7)	0.0101 (7)	-0.0029 (7)
N1	0.0296 (7)	0.0374 (8)	0.0405 (9)	-0.0047 (6)	0.0084 (6)	0.0028 (7)
N2	0.0319 (8)	0.0446 (9)	0.0580 (10)	0.0007 (6)	0.0171 (7)	0.0125 (7)
O1	0.0320 (6)	0.0419 (7)	0.0707 (10)	0.0059 (5)	0.0220 (6)	0.0186 (6)
O2	0.0307 (6)	0.0470 (7)	0.0699 (9)	0.0008 (5)	0.0222 (6)	0.0142 (7)
O3	0.0632 (9)	0.0441 (8)	0.0661 (10)	0.0082 (7)	0.0199 (7)	0.0215 (7)
O4	0.0521 (8)	0.0425 (7)	0.0687 (10)	0.0046 (6)	0.0342 (7)	0.0172 (7)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

C1—C2	1.344 (3)	С9—Н9	0.9300
C1—N1	1.353 (2)	C10—O3	1.367 (2)
С1—Н1	0.9300	C10—C11	1.399 (2)
C2—C3	1.399 (3)	C11—O4	1.367 (2)
С2—Н2	0.9300	C11—C12	1.376 (2)
C3—C4	1.361 (2)	C12—H12	0.9300
С3—Н3	0.9300	C13—O3	1.414 (2)
C4—C5	1.420 (2)	C13—H13A	0.9600
C4—C6	1.499 (2)	C13—H13B	0.9600
C5—N2	1.331 (2)	C13—H13C	0.9600
C5—N1	1.346 (2)	C14—O4	1.405 (2)
С6—Н6А	0.9600	C14—H14A	0.9600
С6—Н6В	0.9600	C14—H14B	0.9600
С6—Н6С	0.9600	C14—H14C	0.9600
С7—С8	1.374 (2)	C15—O2	1.2499 (18)
C7—C12	1.399 (2)	C15—O1	1.2597 (19)
C7—C15	1.506 (2)	N1—H1A	0.881 (9)
C8—C9	1.390 (3)	N2—H2A	0.8600
С8—Н8	0.9300	N2—H2B	0.8600
C9—C10	1.374 (2)		

C2-C1-N1	120.86 (17)	O3—C10—C11	114.93 (15)
C2-C1-H1	119.6	C9—C10—C11	119.47 (16)
N1-C1-H1	119.6	O4—C11—C12	124.78 (15)
C1—C2—C3	117.92 (17)	O4—C11—C10	115.62 (15)
С1—С2—Н2	121.0	C12—C11—C10	119.59 (15)
С3—С2—Н2	121.0	C11—C12—C7	121.02 (15)
C4—C3—C2	122.30 (18)	C11—C12—H12	119.5
С4—С3—Н3	118.8	C7—C12—H12	119.5
С2—С3—Н3	118.8	O3—C13—H13A	109.5
$C_{3}-C_{4}-C_{5}$	117.70 (16)	03—C13—H13B	109.5
$C_3 - C_4 - C_6$	122 29 (17)	H13A-C13-H13B	109.5
C_{5} C_{4} C_{6}	122.29(17) 120.01(16)	03-C13-H13C	109.5
N2_C5_N1	117.63 (15)	$H_{13} = C_{13} = H_{13} C_{13}$	109.5
$N_2 = C_5 = C_4$	123 80 (15)	H13R C13 H13C	109.5
N1 C5 C4	123.09(13) 119.49(15)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
N1 - C3 - C4	110.46 (13)	O4 - C14 - H14A	109.5
C4 = C6 = HCB	109.5		109.5
	109.5	H14A—C14—H14B	109.5
Н6А—С6—Н6В	109.5	04—C14—H14C	109.5
С4—С6—Н6С	109.5	H14A—C14—H14C	109.5
Н6А—С6—Н6С	109.5	H14B—C14—H14C	109.5
H6B—C6—H6C	109.5	O2—C15—O1	124.38 (16)
C8—C7—C12	118.78 (15)	O2—C15—C7	118.98 (14)
C8—C7—C15	122.07 (14)	O1—C15—C7	116.63 (14)
C12—C7—C15	119.15 (14)	C5—N1—C1	122.70 (16)
C7—C8—C9	120.60 (16)	C5—N1—H1A	118.3 (14)
С7—С8—Н8	119.7	C1—N1—H1A	119.0 (14)
С9—С8—Н8	119.7	C5—N2—H2A	120.0
C10—C9—C8	120.54 (16)	C5—N2—H2B	120.0
С10—С9—Н9	119.7	H2A—N2—H2B	120.0
С8—С9—Н9	119.7	C10—O3—C13	117.98 (16)
O3-C10-C9	125.60 (16)	C11—O4—C14	117.25 (14)
	120100 (10)		(1)
N1 - C1 - C2 - C3	14(3)	C9-C10-C11-C12	-0.1(3)
C1 - C2 - C3 - C4	0.1(3)	04-C11-C12-C7	-179.09(16)
$C_1 = C_2 = C_3 = C_4$	-18(3)	C_{10} C_{11} C_{12} C_{7}	0.4(3)
$C_2 = C_3 = C_4 = C_5$	1.0(5) 178 35 (10)	$C_{10} = C_{11} = C_{12} = C_{11}$	-0.2(3)
$C_2 = C_3 = C_4 = C_0$	-177.50(17)	$C_{0} - C_{12} - C_{11}$	-0.2(3)
C_{3} C_{4} C_{5} N_{2}	-1/7.30(17)	$C_{13} - C_{12} - C_{12} - C_{11}$	1/9.22(13)
C_{6} C_{4} C_{5} N_{2}	2.4 (3)	$C_8 - C_7 - C_{15} - O_2$	9.6 (3)
C3-C4-C5-N1	2.0 (2)	C12 - C7 - C15 - O2	-169.85 (16)
C6—C4—C5—N1	-178.12 (16)	C8—C7—C15—O1	-170.75 (16)
C12—C7—C8—C9	-0.1 (3)	C12—C7—C15—O1	9.8 (2)
C15—C7—C8—C9	-179.54 (16)	N2—C5—N1—C1	178.94 (16)
C7—C8—C9—C10	0.3 (3)	C4—C5—N1—C1	-0.6(2)
C8—C9—C10—O3	179.19 (17)	C2-C1-N1-C5	-1.1 (3)
C8—C9—C10—C11	-0.2 (3)	C9—C10—O3—C13	-6.7 (3)
O3—C10—C11—O4	-0.1 (2)	C11—C10—O3—C13	172.67 (17)
C9—C10—C11—O4	179.35 (16)	C12-C11-O4-C14	6.9 (3)
O3—C10—C11—C12	-179.59 (16)	C10-C11-O4-C14	-172.55 (18)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1A····O1 ⁱ	0.88 (2)	1.73 (2)	2.6071 (19)	173 (2)
$N2-H2A\cdots O2^{i}$	0.86	2.02	2.8816 (19)	177
N2—H2 B ···O2 ⁱⁱ	0.86	2.12	2.9051 (19)	152
C14—H14 <i>B</i> ····O4 ⁱⁱⁱ	0.96	2.54	3.281 (3)	134

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) –*x*, *y*+1/2, –*z*+5/2; (iii) –*x*+1, –*y*−1, –*z*+2.