

ISSN 2414-3146

Received 29 July 2016 Accepted 10 August 2016

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; chalcone; [2 + 2] cycloaddition reactions; C—H···F hydrogen bonds; inversion dimers.

CCDC reference: 1498634

Structural data: full structural data are available from iucrdata.iucr.org

(*E*)-3-(2,5-Difluorophenyl)-1-phenylprop-2-en-1-one

Leonardo Santos de Barros,^a Maria Clara Ramalho Freitas,^b Vinícius Rangel Campos,^c Francisco Assis da Silva,^a José Carlos Netto-Ferreira^d and Darí Cesarin-Sobrinho^a*

^aDepartamento de Química, Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, 23851-970 Seropédica, RJ, Brazil, ^bUniversidade Federal Fluminense, Instituto de Física, Lab LDRX-UFF, 24210-346 Niterói, RJ, Brazil, ^cUniversidade Federal Fluminense, Departamento de Química Orgânica, Programa de Pós-Graduação em Química, 24020-141 Niterói, RJ, Brazil, and ^dDivisão de Metrologia Química, LAMOC, Instituto Nacional de Metrologia, Qualidade e Tecnologia, INMETRO, Av. N. Sra. das Graças, 50, 25250-020 Duque de Caxias, RJ, Brazil. *Correspondence e-mail: cesarinsobrinho@gmail.com

The title chalcone derivative, $C_{15}H_{10}F_2O$, is almost planar, with the benzene ring being inclined to the phenyl ring by 7.45 (9)°. The conformation about the C—C bond is *E*. In the crystal, molecules are linked by two pairs of C—H···F hydrogen bonds, forming inversion dimers enclosing $R_2^2(8)$ and $R_2^1(10)$ ring motifs. The dimers stack along the *a* axis with the separation of the C—C bonds being 4.2926 (4) Å.

Structure description

Chalcone is a generic term given to compounds having the 1,3-diphenylprop-2-en-1-one moiety. They were the first isolatable compounds from flavonoid biosynthesis in plants (Bohm, 1998; Yazdan *et al.*, 2015) and are widely distributed in fruits, vegetables, spices, tea and soy-based foodstuffs. They have interesting pharmacological properties (Di Carlos *et al.*, 1999; Das & Manna, 2016), including analgesic, antioxidant, antifungal, antibacterial, antiprotozoal, gastric 'protectant', antimutagenic, antitumorogenic, anti-inflammatory (Yadav *et al.*, 2011) and antineurodegeneration properties (Sahu *et al.*, 2012; Singh *et al.*, 2014). The title chalcone derivative was obtained by a Claisen–Schimdt condensation in a basic solution of ethanol and water between 2,5-difluorobenzaldehyde and acetophenone.

The molecular structure of the title compound is illustrated in Fig. 1. The structure is almost planar, with the dihedral angle between the benzene (C1-C6) and phenyl (C10-C6)

data reports

Table 1		
Hydrogen-b	ond geometry	(Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C1-H1\cdots F1^i$	0.95	2.49	3.440 (2)	174
$C11-H11\cdots F1^i$	0.95	2.46	3.379 (2)	163

Symmetry code: (i) -x + 2, -y + 1, -z + 1.

Figure 1

The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

C15) rings being 7.45 (9)°. The conformation of the keto group (C9=O1) with respect to the olefinic double bond (C7=C8) is *cis*. The conformation about the C7=C8 bond itself is *E*, with the 2,5-difluorobenzene ring opposite to the phenyl ring.

In the crystal, molecules are linked by two pairs of C– H···F hydrogen bonds, forming inversion dimers enclosing $R_2^2(8)$ and $R_2^1(10)$ rings (Table 1 and Fig. 2). The separation distances of bonds C7=C8···C7ⁱ=C8ⁱ [symmetry code: (i) 1 + x, y, z] of adjacent molecules stacked along the *a* axis is 4.2926 (4) Å, with an angle of 52.0 (1)° (Fig. 3). This distance is in the range for relevant distances enrolled in photochemical [2 + 2] cycloaddition reactions between olefins (Sonoda, 2011).

Figure 2

A view of the inversion dimers formed by two pairs of $C-H\cdots F$ hydrogen bonds (see Table 1).

Table 2	
Experimental	details.

Crystal data	
Chemical formula	$C_{15}H_{10}F_2O$
M _r	244.23
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	150
<i>a</i> , <i>b</i> , <i>c</i> (Å)	4.2926 (4), 17.7983 (13), 14.8522 (13)
β (°)	94.757 (4)
$V(Å^3)$	1130.81 (17)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.11
Crystal size (mm)	$0.31 \times 0.23 \times 0.16$
Data collection	
Diffractometer	Bruker D8 Venture
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	5621, 2322, 1740
R _{int}	0.052
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.626
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.048, 0.136, 1.07
No. of reflections	2322
No. of parameters	163
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.32, -0.24

Computer programs: SAINT and APEX3 (Bruker, 2015), SHELXS97 and SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2008), WinGX (Farrugia, 2012), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Synthesis and crystallization

Potassium hydroxide in 10% molar $(0.0026 \text{ g ml}^{-1})$ concentration relative to the ketone was added to an ethanol-water (6:1) mixture. To this solution, the total amount of 2,5-di-fluorobenzaldehyde (582 mg, 4.1 mmol) and half of the acetophenone (288 mg, 2.4 mmol) were added at room temperature. After approximately 1–2 h, the reminder of the acetophenone was added under constant stirring at 298 K, and

Figure 3

A view along the *a* axis of the crystal packing of the title compound. The $C-H\cdots F$ hydrogen bonds are shown as dashed lines (see Table 1) and the olefin C atoms (C7 and C8) as grey balls.

the reaction was continued until the appearance of a yellow precipitate. The reaction mixture was filtered and the solid residue obtained was washed with cold water until a neutral pH was attained and was then recrystallized a number of times from a mixture of ethanol and water (yield 65%, m.p. 361-363 K). Yellow single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution of the title compound (m.p. 363 K). Spectroscopic data: IR (KBr) ν (cm⁻¹): 1674.3 (C=O s-cis); 1655.0 (C=O s-trans); 1610.9 (C=C s-cis). ¹H NMR (500 MHz, CDCl₃): δ 7.90–6.50 (m, 8H, aromatic); 7.83 (d, H₇); 7.59 (d, H₈). ¹³C NMR (125 MHz, CDCl₃): δ 198.8 (C=O); 160.5 (dd, C₂); 155.0 (dd, C₅); 137.6 $(C_{10}); 135.9 (C_7); 133.0 (C_{13}); 128.6 (C_{14}=C_{12}); 128.5$ $(C_{15}=C_{11})$; 125.3 (C_8) ; 118.5 (d, C_3) ; 117.9 (d, C_4) ; 117.2 $(d, C_$ C₁). (MS m/z (%): 244 (M^{+} , 100); 243 (29); 225 (36); 215 (18); 214 (5); 201 (7); 196 (11); 195 (6); 167 (42); 139 (29); 119 (36); 105 (67): 77 (82).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors gratefully acknowledge the financial support and fellowships awarded by the Brazilian funding agencies

FAPERJ, CAPES and CNPq. We would also like to thank the LDRX/UFF for the use of X-ray facilities.

References

- Bohm, B. A. (1998). In *Introduction to Flavonoids*. UK: Harwood Academic Publishers.
- Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Das, M. & Manna, K. (2016). J. Toxicol. Article ID7651047.
- Di Carlos, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). *Life Sci.* **65**, 337–353.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Sahu, N. K., Balbhadra, S. S., Choudhary, J. & Kohli, D. V. (2012). *Curr. Med. Chem.* **19**, 209–225.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Singh, P., Anand, A. & Kumar, V. (2014). *Eur. J. Med. Chem.* **85**, 758–777.
- Sonoda, Y. (2011). Molecules, 16, 119-148.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Yadav, V. R., Prasad, S., Sung, B. & Aggarwal, B. B. (2011). Int. Immunopharmacol. 11, 295–309.
- Yazdan, S. K., Sagar, D. V. & Shaik, A. B. (2015). Org. Med. Chem. Int. J. 1, 1–9.

full crystallographic data

IUCrData (2016). **1**, x161295 [doi:10.1107/S2414314616012955]

(E)-3-(2,5-Difluorophenyl)-1-phenylprop-2-en-1-one

Leonardo Santos de Barros, Maria Clara Ramalho Freitas, Vinícius Rangel Campos, Francisco Assis da Silva, José Carlos Netto-Ferreira and Darí Cesarin-Sobrinho

F(000) = 504

 $\theta = 2.7 - 26.4^{\circ}$

 $\mu = 0.11 \text{ mm}^{-1}$ T = 150 K

 $R_{\rm int} = 0.052$

 $h = -5 \rightarrow 5$

 $k = -21 \rightarrow 22$

 $l = -18 \rightarrow 18$

 $D_{\rm x} = 1.435 {\rm Mg} {\rm m}^{-3}$

Orthombic, colorless

 $0.31 \times 0.23 \times 0.16 \text{ mm}$

 $\theta_{\rm max} = 26.4^{\circ}, \ \theta_{\rm min} = 2.3^{\circ}$

2322 independent reflections

1740 reflections with $I > 2\sigma(I)$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3798 reflections

(E)-3-(2,5-Difluorophenyl)-1-phenylprop-2-en-1-one

Crystal data

C₁₅H₁₀F₂O $M_r = 244.23$ Monoclinic, P2₁/c Hall symbol: -P 2ybc a = 4.2926 (4) Å b = 17.7983 (13) Å c = 14.8522 (13) Å $\beta = 94.757$ (4)° V = 1130.81 (17) Å³ Z = 4

Data collection

Bruker D8 Venture diffractometer Radiation source: Microfocus sealed tube, Incoatec I μ s Quazar multilayer mirror monochromator φ and ω scans 5621 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.048$	H-atom parameters constrained
$wR(F^2) = 0.136$	$w = 1/[\sigma^2(F_o^2) + (0.0443P)^2 + 0.290P]$
S = 1.07	where $P = (F_0^2 + 2F_c^2)/3$
2322 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
163 parameters	$\Delta \rho_{\rm max} = 0.32 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\min} = -0.24 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	<i>x</i>	У	Ζ	$U_{ m iso}*/U_{ m eq}$
F2	0.0822 (3)	0.50588 (6)	0.19482 (7)	0.0330 (3)
F1	0.9771 (3)	0.60432 (6)	0.44588 (7)	0.0351 (3)
O1	0.0788 (4)	0.25342 (7)	0.32124 (9)	0.0367 (4)
C1	0.6528 (4)	0.50652 (10)	0.38831 (11)	0.0229 (4)
H1	0.739	0.4748	0.4354	0.027*
C5	0.3075 (4)	0.52985 (10)	0.25802 (11)	0.0234 (4)
C6	0.4238 (4)	0.47913 (10)	0.32404 (11)	0.0215 (4)
C10	0.3791 (4)	0.21865 (10)	0.45575 (11)	0.0230 (4)
C2	0.7518 (4)	0.57955 (10)	0.38272 (12)	0.0244 (4)
C9	0.2765 (5)	0.27205 (10)	0.38094 (12)	0.0254 (4)
C3	0.6369 (5)	0.62892 (10)	0.31648 (12)	0.0267 (4)
Н3	0.7128	0.679	0.3146	0.032*
C7	0.3066 (4)	0.40188 (10)	0.32591 (11)	0.0241 (4)
H7	0.1368	0.3892	0.2835	0.029*
C4	0.4083 (4)	0.60333 (10)	0.25306 (12)	0.0269 (4)
H4	0.3216	0.6357	0.2067	0.032*
C8	0.4166 (5)	0.34818 (10)	0.38147 (12)	0.0269 (4)
H8	0.5912	0.3588	0.4231	0.032*
C15	0.2643 (5)	0.14540 (11)	0.45084 (13)	0.0309 (5)
H15	0.1283	0.1304	0.4003	0.037*
C13	0.5437 (5)	0.11552 (11)	0.59271 (13)	0.0330 (5)
H13	0.601	0.0802	0.6392	0.04*
C11	0.5791 (5)	0.23899 (11)	0.53030 (12)	0.0300 (5)
H11	0.6629	0.2884	0.5342	0.036*
C14	0.3461 (5)	0.09438 (11)	0.51866 (14)	0.0360 (5)
H14	0.2666	0.0446	0.5145	0.043*
C12	0.6573 (5)	0.18811 (12)	0.59882 (13)	0.0362 (5)
H12	0.7893	0.2031	0.6502	0.043*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F2	0.0354 (7)	0.0304 (6)	0.0309 (6)	0.0010 (5)	-0.0107 (5)	0.0019 (4)
F1	0.0362 (7)	0.0324 (6)	0.0351 (6)	-0.0080(5)	-0.0070 (5)	0.0000 (5)
01	0.0482 (10)	0.0251 (7)	0.0343 (7)	-0.0044 (7)	-0.0123 (7)	-0.0008 (6)
C1	0.0244 (9)	0.0224 (9)	0.0217 (9)	0.0036 (8)	0.0018 (7)	0.0033 (7)
C5	0.0218 (10)	0.0251 (9)	0.0229 (9)	0.0033 (8)	-0.0006 (7)	-0.0012 (7)
C6	0.0223 (9)	0.0198 (9)	0.0228 (9)	0.0028 (7)	0.0041 (7)	0.0003 (7)
C10	0.0247 (10)	0.0187 (9)	0.0261 (9)	0.0022 (7)	0.0050 (7)	-0.0007 (7)
C2	0.0210 (9)	0.0266 (9)	0.0253 (9)	-0.0011 (7)	0.0005 (7)	-0.0016 (7)
C9	0.0300 (10)	0.0207 (9)	0.0254 (9)	0.0012 (8)	0.0012 (8)	-0.0031 (7)
C3	0.0283 (10)	0.0210 (9)	0.0317 (10)	-0.0009 (8)	0.0079 (8)	0.0024 (7)
C7	0.0259 (10)	0.0229 (9)	0.0233 (9)	0.0013 (8)	0.0006 (7)	-0.0022 (7)
C4	0.0287 (10)	0.0243 (9)	0.0279 (9)	0.0043 (8)	0.0033 (8)	0.0078 (7)
C8	0.0279 (10)	0.0236 (9)	0.0284 (10)	-0.0007 (8)	-0.0022 (8)	0.0009 (7)

data reports

C15	0.0334 (11)	0.0238 (10)	0.0346 (10)	-0.0041 (8)	-0.0017 (8)	-0.0011 (8)
C13	0.0355 (12)	0.0285 (10)	0.0356 (11)	0.0057 (9)	0.0055 (9)	0.0113 (8)
C11	0.0387 (12)	0.0205 (9)	0.0304 (10)	-0.0025 (8)	-0.0007 (9)	0.0003 (7)
C14	0.0416 (13)	0.0214 (9)	0.0455 (12)	-0.0014 (9)	0.0059 (10)	0.0050 (8)
C12	0.0438 (13)	0.0325 (11)	0.0310 (10)	-0.0018 (10)	-0.0056 (9)	0.0037 (8)

Geometric parameters (Å, °)

F2—C5	1.359 (2)	С3—Н3	0.95
F1—C2	1.364 (2)	С7—С8	1.324 (3)
O1—C9	1.221 (2)	С7—Н7	0.95
C1—C2	1.372 (2)	C4—H4	0.95
C1—C6	1.400 (2)	C8—H8	0.95
C1—H1	0.95	C15—C14	1.380 (3)
C5—C4	1.381 (3)	C15—H15	0.95
С5—С6	1.394 (2)	C13—C12	1.381 (3)
С6—С7	1.465 (2)	C13—C14	1.384 (3)
C10-C11	1.391 (3)	C13—H13	0.95
C10—C15	1.394 (3)	C11—C12	1.383 (3)
С10—С9	1.500 (2)	C11—H11	0.95
С2—С3	1.379 (3)	C14—H14	0.95
С9—С8	1.482 (3)	C12—H12	0.95
C3—C4	1.380 (3)		
C2—C1—C6	119.48 (16)	С6—С7—Н7	117.1
C2-C1-H1	120.3	C3—C4—C5	118.97 (16)
C6—C1—H1	120.3	C3—C4—H4	120.5
F2—C5—C4	117.93 (15)	C5—C4—H4	120.5
F2—C5—C6	118.38 (16)	C7—C8—C9	122.22 (18)
C4—C5—C6	123.69 (17)	С7—С8—Н8	118.9
C5—C6—C1	116.38 (16)	С9—С8—Н8	118.9
С5—С6—С7	121.15 (16)	C14—C15—C10	120.66 (18)
C1—C6—C7	122.46 (16)	C14—C15—H15	119.7
C11—C10—C15	118.51 (17)	C10—C15—H15	119.7
С11—С10—С9	123.26 (16)	C12—C13—C14	119.74 (18)
C15—C10—C9	118.23 (16)	C12—C13—H13	120.1
F1-C2-C1	118.05 (16)	C14—C13—H13	120.1
F1—C2—C3	118.42 (16)	C12-C11-C10	120.75 (18)
C1—C2—C3	123.53 (17)	C12—C11—H11	119.6
O1—C9—C8	120.61 (17)	C10-C11-H11	119.6
O1—C9—C10	120.63 (16)	C15—C14—C13	120.22 (18)
C8—C9—C10	118.75 (16)	C15-C14-H14	119.9
C2—C3—C4	117.93 (17)	C13—C14—H14	119.9
С2—С3—Н3	121	C13—C12—C11	120.10 (19)
С4—С3—Н3	121	C13—C12—H12	120
С8—С7—С6	125.74 (17)	C11—C12—H12	120
С8—С7—Н7	117.1		

F2-C5-C6-C1	-179.29 (15)	C1—C6—C7—C8	-6.1(3)
F2-C5-C6-C7	-0.2(3)	F2-C5-C4-C3	-179.97 (16)
C4—C5—C6—C7	179.81 (16)	C6—C5—C4—C3	0.0 (3)
C2-C1-C6-C5	-0.8 (2)	C6—C7—C8—C9	177.78 (16)
C2-C1-C6-C7	-179.88 (16)	O1—C9—C8—C7	9.3 (3)
C6-C1-C2-F1	-179.43 (15)	C10—C9—C8—C7	-169.86 (17)
C6—C1—C2—C3	0.2 (3)	C11—C10—C15—C14	0.3 (3)
C11—C10—C9—O1	-173.28 (18)	C9—C10—C15—C14	-178.73 (19)
C15—C10—C9—O1	5.7 (3)	C15—C10—C11—C12	-1.3 (3)
C11—C10—C9—C8	5.9 (3)	C9—C10—C11—C12	177.74 (19)
C15—C10—C9—C8	-175.08 (17)	C10-C15-C14-C13	0.1 (3)
F1-C2-C3-C4	-179.81 (16)	C12—C13—C14—C15	0.4 (3)
C1—C2—C3—C4	0.6 (3)	C14—C13—C12—C11	-1.4 (3)
C5—C6—C7—C8	174.89 (18)	C10-C11-C12-C13	1.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···· A	D—H···A
C1—H1···F1 ⁱ	0.95	2.49	3.440 (2)	174
C11—H11…F1 ⁱ	0.95	2.46	3.379 (2)	163

Symmetry code: (i) -x+2, -y+1, -z+1.