

ISSN 2414-3146

Received 4 July 2016 Accepted 3 September 2016

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic

Keywords: crystal structure; zirconium; organozirconium compounds.

CCDC reference: 1502439

Structural data: full structural data are available from iucrdata.iucr.org

Dichlorido[(1,2,3,3a,8b-η)-2,4-dimethylcyclopenta[b]indolyl)(η⁵-pentamethylcyclopentadienyl)zirconium(IV)

Michael G. Medvedev,^a* Alexey N. Ryabov,^b Dmitry V. Uborsky,^b Dmitry S. Kononovich,^b Vyatcheslav V. Izmer^b and Alexander Z. Voskoboynikov^b

^aX-ray Structural Laboratory, A.N. Nesmeyanov Institute of Organoelement, Compounds, Vavilova St. 28, GSP-1, Moscow 119991, V-334, Russian Federation, and ^bDepartment of Chemistry, Lomonosov Moscow State University 1/3 Leninskie Gory, GSP-1, Moscow 119991, Russian Federation. *Correspondence e-mail: medvedev.m.g@gmail.com

In the structure of the title compound, $[Zn(C_{13}H_{12}N)(C_{10}H_{15})Cl_2]$, the dihedral angle between the planes of rings coordinating to Zr is 51.6 (2)°. The Cl–Zr–Cl angle is 97.52 (4)°. The crystal structure is stabilized by $H \cdots Cl$ and $C - H \cdots \pi$ interactions.

Structure description

A view of the title molecule is given on Fig. 1. The chlorine ligands form intramolecular $C-H\cdots Cl$ hydrogen bonds (Table 1). The crystal structure is stabilized by $C-H\cdots \pi$ interactions.

Synthesis and crystallization

The title complex was obtained *via* treatment of $(C_5Me_5)ZrCl_3$ (Ryabov *et al.*, 2002) with the lithium salt of 2,4-dimethyl-1,4-dihydrocyclopenta[*b*]indole (van Baar *et al.*, 2003) in THF followed by crystallization of the crude product from toluene. Single crystals suitable for X-ray crystal structure analysis were grown from a toluene–hexanes solution at $-30^{\circ}C$.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 1 Hydrogen-bond geometry (Å, °).

Cg4 is the centroid of the C6-C11 ring.

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	D-H	···A
$C2-H2\cdots Cl1^i$	1.0	2.72	3.684 (5)	162	
C10-H10···Cl2 ⁱⁱ	0.95	2.77	3.699 (5)	166	
$C22-H22C\cdots Cl1$	0.98	2.67	3.158 (5)	111	
$C22-H22A\cdots Cg4^{iii}$	0.98	2.57	3.487 (5)	156	
Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + \frac{3}{2}$.) $-x + 1$,	-y + 1, z;	(ii) $y, -x + 1,$	-z + 1;	(iii)

Table 2	
Experimental	details.

Crystal data	
Chemical formula	$[Zn(C_{13}H_{12}N)(C_{10}H_{15})Cl_2]$
M _r	479.57
Crystal system, space group	Tetragonal, $P\overline{4}2_1c$
Temperature (K)	100
a, c(Å)	15.9363 (8), 16.8801 (8)
$V(Å^3)$	4287.0 (5)
Ζ	8
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.77
Crystal size (mm)	$0.25 \times 0.2 \times 0.2$
Data collection	
Diffractometer	Bruker SMART CCD area detector
Absorption correction	Multi-scan (SADABS; Bruker, 2001)
T_{\min}, T_{\max}	0.759, 0.925
No. of measured, independent and	86055, 5707, 5264
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.051
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.682
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.042, 0.096, 1.11
No. of reflections	5707
No. of parameters	251
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	1.25, -0.38
Absolute structure	Flack x determined using 2285 quotients $[(I^+)-(I)]/[(I^+)+(I)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	-0.056 (13)
*	

Computer programs: SMART and SAINT (Bruker, 2001), SHELXS (Sheldrick, 2008), SHELXL (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

Figure 1

The structure of the title compound with displacement ellipsoids at the 50% probability level.

Acknowledgements

This work was supported by the Ministry of Education and Science of the Russian Federation, grant agreement No. 14.613.21.0041 on 11.11.2015 (unique project identifier RFMEFI61315X0041).

References

- Baar, J. F. van, Horton, A. D., de Kloe, K. P., Kragtwijk, E., Mkoyan, S. G., Nifant'ev, I. E., Schut, P. A. & Taidakov, I. V. (2003). Organometallics, 22, 2711–2722.
- Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.

Ryabov, A. N., Izmer, V. V., Borisenko, A. A., Canich, J. A. M., Kuz'mina, L. G., Howard, J. A. K. & Voskoboynikov, A. Z. (2002). J. Chem. Soc. Dalton Trans. pp. 2995–3000.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2016). **1**, x161408 [doi:10.1107/S2414314616014085]

Dichlorido[(1,2,3,3a,8b- η)-2,4-dimethylcyclopenta[b]indolyl)(η^5 -pentamethyl-cyclopentadienyl)zirconium(IV)

Michael G. Medvedev, Alexey N. Ryabov, Dmitry V. Uborsky, Dmitry S. Kononovich, Vyatcheslav V. Izmer and Alexander Z. Voskoboynikov

 $Dichlorido[(1,2,3,3a,8b-\eta)-2,4-dimethylcyclopenta[b]indolyl)(\eta^{5}-pentamethylcyclopentadienyl]zirconium(IV)$

Crystal data

 $[Zn(C_{13}H_{12}N)(C_{10}H_{15})Cl_2]$ $M_r = 479.57$ Tetragonal, $P42_{1c}$ a = 15.9363 (8) Å c = 16.8801 (8) Å V = 4287.0 (5) Å³ Z = 8F(000) = 1968

Data collection

Bruker SMART CCD area detector diffractometer Graphite monochromator phi and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\min} = 0.759, T_{\max} = 0.925$ 86055 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.096$ S = 1.115707 reflections 251 parameters 0 restraints Hydrogen site location: inferred from neighbouring sites $D_x = 1.486 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1024 reflections $\theta = 2.8-28.9^{\circ}$ $\mu = 0.77 \text{ mm}^{-1}$ T = 100 KPrism, yellow $0.25 \times 0.2 \times 0.2 \text{ mm}$

5707 independent reflections 5264 reflections with $I > 2\sigma(I)$ $R_{int} = 0.051$ $\theta_{max} = 29.0^{\circ}, \ \theta_{min} = 1.8^{\circ}$ $h = -21 \rightarrow 21$ $k = -21 \rightarrow 21$ $l = -23 \rightarrow 23$

H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.040P)^{2} + 7.P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 1.25 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.38 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack *x* determined using 2285 quotients $[(I^{+})-(I^{-})]/[(I^{+})+(I^{-})]$ (Parsons *et al.*, 2013) Absolute structure parameter: -0.056 (13)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Zr1	0.65206 (2)	0.33633 (2)	0.77455 (2)	0.02065 (10)	
Cl1	0.64847 (7)	0.47013 (7)	0.84549 (7)	0.0319 (2)	
C12	0.65603 (7)	0.39342 (7)	0.64001 (7)	0.0297 (2)	
N1	0.4764 (2)	0.3176 (2)	0.6413 (3)	0.0273 (8)	
C1	0.4985 (3)	0.3110 (3)	0.7191 (3)	0.0279 (9)	
C2	0.4924 (3)	0.3562 (3)	0.7901 (3)	0.0338 (11)	
H2	0.4627	0.4110	0.7973	0.041*	
C3	0.5219 (3)	0.3034 (4)	0.8516(3)	0.0362 (12)	
C4	0.5521 (3)	0.2274 (3)	0.8176 (3)	0.0279 (10)	
H4	0.5667	0.1752	0.8474	0.033*	
C5	0.5391 (3)	0.2331 (3)	0.7334 (3)	0.0238 (9)	
C6	0.5416 (3)	0.1902 (3)	0.6576 (3)	0.0242 (9)	
C7	0.5689 (3)	0.1122 (3)	0.6303 (3)	0.0263 (9)	
H7	0.5931	0.0730	0.6660	0.032*	
C8	0.5604 (3)	0.0922 (3)	0.5505 (3)	0.0291 (10)	
H8	0.5798	0.0394	0.5318	0.035*	
С9	0.5237 (3)	0.1489 (4)	0.4974 (3)	0.0310 (10)	
Н9	0.5183	0.1339	0.4432	0.037*	
C10	0.4951 (3)	0.2267 (3)	0.5229 (3)	0.0298 (10)	
H10	0.4710	0.2655	0.4867	0.036*	
C11	0.5027 (3)	0.2461 (3)	0.6024 (3)	0.0258 (9)	
C12	0.5167 (4)	0.3213 (4)	0.9390 (3)	0.0475 (15)	
H12A	0.4582	0.3169	0.9565	0.071*	
H12B	0.5375	0.3781	0.9495	0.071*	
H12C	0.5510	0.2806	0.9680	0.071*	
C13	0.4404 (3)	0.3916 (3)	0.6035 (4)	0.0394 (13)	
H13A	0.4255	0.4330	0.6441	0.059*	
H13B	0.3901	0.3755	0.5739	0.059*	
H13C	0.4816	0.4161	0.5671	0.059*	
C14	0.7468 (3)	0.2111 (3)	0.7950 (3)	0.0245 (9)	
C15	0.7796 (3)	0.2544 (3)	0.7291 (3)	0.0240 (8)	
C16	0.8101 (3)	0.3336 (3)	0.7566 (3)	0.0265 (9)	
C17	0.7955 (3)	0.3379 (3)	0.8390 (3)	0.0227 (8)	
C18	0.7547 (3)	0.2631 (3)	0.8630(3)	0.0247 (9)	
C19	0.7246 (3)	0.1194 (3)	0.7945 (3)	0.0313 (10)	
H19B	0.7736	0.0866	0.7780	0.047*	
H19C	0.6784	0.1098	0.7572	0.047*	
H19A	0.7073	0.1021	0.8477	0.047*	
C20	0.7866 (3)	0.2202 (3)	0.6466 (3)	0.0292 (10)	
H20A	0.8277	0.1745	0.6458	0.044*	
H20B	0.8048	0.2648	0.6106	0.044*	
H20C	0.7318	0.1988	0.6295	0.044*	
C21	0.8562 (3)	0.3978 (3)	0.7079 (3)	0.0327 (11)	
H21B	0.9166	0.3932	0.7179	0.049*	
H21C	0.8369	0.4541	0.7224	0.049*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H21A	0.8451	0.3879	0.6516	0.049*
C22	0.8289 (3)	0.4052 (3)	0.8927 (3)	0.0335 (11)
H22A	0.8902	0.4010	0.8955	0.050*
H22B	0.8052	0.3981	0.9459	0.050*
H22C	0.8132	0.4604	0.8719	0.050*
C23	0.7349 (4)	0.2407 (3)	0.9467 (3)	0.0341 (11)
H23A	0.7870	0.2283	0.9752	0.051*
H23B	0.6983	0.1913	0.9476	0.051*
H23C	0.7063	0.2879	0.9723	0.051*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zr1	0.02017 (18)	0.01997 (18)	0.02183 (17)	0.00016 (14)	0.00149 (16)	0.00073 (16)
Cl1	0.0272 (5)	0.0237 (5)	0.0448 (6)	0.0029 (4)	-0.0035 (5)	-0.0081 (4)
Cl2	0.0245 (5)	0.0343 (5)	0.0303 (5)	-0.0008 (5)	-0.0015 (5)	0.0120 (4)
N1	0.0210 (17)	0.0251 (18)	0.036 (2)	0.0016 (14)	-0.0022 (16)	0.0037 (16)
C1	0.0195 (19)	0.026 (2)	0.038 (3)	0.0002 (15)	-0.001 (2)	-0.003 (2)
C2	0.0191 (19)	0.036 (3)	0.046 (3)	-0.0020 (18)	0.0064 (18)	-0.009 (2)
C3	0.025 (2)	0.055 (3)	0.028 (2)	-0.009 (2)	0.012 (2)	-0.012 (2)
C4	0.029 (2)	0.029 (2)	0.026 (2)	-0.0101 (19)	0.0053 (18)	0.0029 (19)
C5	0.025 (2)	0.0193 (18)	0.027 (2)	-0.0078 (16)	0.0036 (18)	-0.0006 (17)
C6	0.020 (2)	0.025 (2)	0.027 (2)	-0.0019 (16)	-0.0019 (17)	0.0013 (17)
C7	0.028 (2)	0.023 (2)	0.028 (2)	-0.0005 (18)	-0.0034 (18)	-0.0005 (18)
C8	0.026 (2)	0.033 (2)	0.029 (2)	-0.0013 (18)	0.0008 (18)	-0.0036 (19)
C9	0.026 (2)	0.042 (3)	0.025 (2)	-0.008 (2)	-0.0008 (17)	0.000 (2)
C10	0.026 (2)	0.032 (2)	0.032 (2)	-0.0043 (18)	-0.0061 (19)	0.009 (2)
C11	0.022 (2)	0.025 (2)	0.031 (2)	-0.0026 (17)	-0.0013 (18)	0.0053 (18)
C12	0.039 (3)	0.065 (4)	0.038 (3)	-0.014 (3)	0.013 (2)	-0.014 (3)
C13	0.029 (3)	0.029 (3)	0.060 (4)	0.004 (2)	-0.011 (3)	0.005 (2)
C14	0.025 (2)	0.022 (2)	0.027 (2)	0.0073 (17)	-0.0012 (17)	0.0012 (17)
C15	0.0222 (19)	0.030 (2)	0.020 (2)	0.0079 (16)	-0.0002 (18)	-0.0013 (19)
C16	0.0164 (17)	0.029 (2)	0.034 (2)	0.0052 (17)	0.0001 (16)	0.0033 (19)
C17	0.0199 (18)	0.021 (2)	0.028 (2)	0.0010 (16)	-0.0052 (15)	-0.0031 (17)
C18	0.027 (2)	0.025 (2)	0.023 (2)	0.0048 (17)	-0.0022 (17)	0.0015 (17)
C19	0.038 (3)	0.023 (2)	0.033 (3)	0.0018 (19)	-0.004 (2)	-0.0025 (18)
C20	0.032 (2)	0.037 (3)	0.018 (2)	0.010 (2)	0.0025 (18)	-0.0015 (19)
C21	0.026 (2)	0.028 (2)	0.045 (3)	0.0010 (18)	0.004 (2)	0.0073 (19)
C22	0.029 (2)	0.028 (2)	0.043 (3)	0.0016 (19)	-0.009 (2)	-0.009 (2)
C23	0.049 (3)	0.031 (2)	0.023 (2)	0.007 (2)	0.002 (2)	0.0031 (19)

Geometric parameters (Å, °)

Zr1—Cl1	2.4463 (12)	C3—C12	1.505 (7)
Zr1—Cl2	2.4473 (12)	C4—C5	1.439 (6)
Zr1—C1	2.651 (4)	C5—C6	1.451 (7)
Zr1—C2	2.578 (5)	С6—С7	1.394 (6)
Zr1—C3	2.504 (5)	C6—C11	1.430 (6)

Zr1—C4	2.466 (5)	C7—C8	1.391 (7)
Zr1—C5	2.535 (4)	C8—C9	1.401 (7)
Zr1—C14	2.525 (4)	C9—C10	1.389 (8)
Zr1—C15	2.534 (4)	C10-C11	1.383 (7)
Zr1—C16	2.538 (4)	C14—C15	1.409 (7)
Zr1—C17	2.532 (4)	C14—C18	1.421 (7)
Zr1—C18	2.504 (4)	C14—C19	1.504 (6)
N1—C1	1.364 (7)	C15—C16	1.429 (7)
N1-C11	1.381 (6)	C15-C20	1.501 (6)
N1-C13	1 459 (6)	C16-C17	1 413 (6)
C1-C2	1.109(0) 1 402(7)	C16-C21	1.504 (6)
C1 - C5	1.402(7)	C10 C21 C17 - C18	1.304 (6)
$C_1 = C_2$	1.420(0) 1.418(2)	C17 - C13	1.410 (0)
$C_2 - C_3$	1.418(6) 1.424(7)	C17 - C22	1.301(0) 1.401(7)
05-04	1.424 (7)	C18-C25	1.491 (7)
Cl1—Zr1—Cl2	97.52 (4)	C1—N1—C13	125.8 (4)
Cl1—Zr1—C1	106.50 (11)	C11—N1—C13	125.4 (4)
C11—Zr1—C2	79.62 (12)	N1 - C1 - Zr1	124.5 (3)
$C_1 = Z_r = C_3$	84.79 (13)	N1 - C1 - C2	139.9 (5)
C_{11} Z_{r1} C_{4}	117.03 (12)	N1 - C1 - C5	110 4 (4)
$C_1 - Z_r - C_5$	133 10 (11)	C^2 — C^1 — Zr^1	71.6 (3)
$C_{11} - 7r_{1} - C_{14}$	129 47 (11)	$C^2 - C^1 - C^5$	109.7(5)
C_{11} Z_{r1} C_{15}	128.01 (11)	$C_{2} = C_{1} = C_{2}$	69.7(2)
$\begin{array}{cccc} C11 & Zr1 & C16 \end{array}$	95 56 (11)	$C_1 C_2 Z_{r1}$	77.3(3)
$C_{11} = C_{11} = C_{10}$	78 57 (10)	C1 - C2 - Z11	107.3(3)
C_{11} Z_{11} C_{12}	76.37(10)	C1 - C2 - C3	107.3(4)
C12 - Z11 - C18	97.40 (11)	$C_3 = C_2 = Z_{11}$	70.9 (3)
$Cl_2 = Zfl = Cl_2$	/5.09 (12)	$C_2 = C_3 = C_4$	/0./(3)
$Cl_2 = Zr_1 = C_2$	94.25 (13)	$C_2 = C_3 = C_4$	108.8 (4)
C12 - Zr1 - C3	125.56 (14)	$C_2 - C_3 - C_{12}$	125.9 (5)
Cl2—Zr1—C4	123.48 (12)	C4—C3—Zr1	71.9 (3)
Cl2—Zr1—C5	90.29 (12)	C4—C3—C12	125.2 (6)
Cl2—Zr1—C14	113.90 (11)	C12—C3—Zr1	121.0 (4)
Cl2—Zr1—C15	83.69 (11)	C3—C4—Zr1	74.8 (3)
Cl2—Zr1—C16	82.53 (11)	C3—C4—C5	107.2 (4)
Cl2—Zr1—C17	111.83 (11)	C5—C4—Zr1	75.9 (3)
Cl2—Zr1—C18	135.23 (11)	C1—C5—Zr1	78.7 (3)
C2—Zr1—C1	31.06 (15)	C1—C5—C4	106.7 (4)
C3—Zr1—C1	52.18 (17)	C1—C5—C6	106.0 (4)
C3—Zr1—C2	32.36 (18)	C4—C5—Zr1	70.7 (3)
C3—Zr1—C5	54.44 (16)	C4—C5—C6	146.8 (5)
C3—Zr1—C14	104.96 (18)	C6—C5—Zr1	121.9 (3)
C3—Zr1—C15	135.51 (18)	C7—C6—C5	136.0 (4)
C3—Zr1—C16	151.72 (17)	C7—C6—C11	118.4 (4)
C3—Zr1—C17	121.77 (16)	C11—C6—C5	105.6 (4)
C3—Zr1—C18	97.67 (18)	C8—C7—C6	119.6 (5)
C4—Zr1—C1	53.15 (16)	C7—C8—C9	120.8 (5)
C4—Zr1—C2	54.47 (17)	C10—C9—C8	121.0 (5)
C4—Zr1—C3	33.29 (17)	C11—C10—C9	118.1 (5)
	× /		

C4—Zr1—C5	33.41 (14)	N1—C11—C6	109.6 (4)
C4—Zr1—C14	77.85 (16)	N1—C11—C10	128.3 (4)
C4—Zr1—C15	104.16 (16)	C10—C11—C6	122.1 (5)
C4—Zr1—C16	131.63 (16)	C15—C14—Zr1	74.2 (2)
C4—Zr1—C17	117.64 (16)	C15—C14—C18	108.6 (4)
C4—Zr1—C18	85.31 (16)	C15—C14—C19	123.9 (4)
C5—Zr1—C1	31.69 (14)	C18—C14—Zr1	72.8 (2)
C5—Zr1—C2	53.63 (15)	C18—C14—C19	126.3 (4)
C5—Zr1—C16	131.34 (15)	C19—C14—Zr1	128.8 (3)
C14—Zr1—C1	118.66 (15)	C14—C15—Zr1	73.5 (3)
C14—Zr1—C2	132.32 (17)	C14—C15—C16	107.6 (4)
C14—Zr1—C5	87.08 (15)	C14—C15—C20	125.6 (4)
C14—Zr1—C15	32.35 (15)	C16—C15—Zr1	73.8 (2)
C14—Zr1—C16	53.80 (15)	C16—C15—C20	126.6 (4)
C14—Zr1—C17	53.82 (15)	C20—C15—Zr1	121.9 (3)
C15—Zr1—C1	123.72 (15)	C15—C16—Zr1	73.5 (2)
C15—Zr1—C2	152.35 (16)	C15—C16—C21	126.1 (4)
C15—Zr1—C5	98.75 (14)	C17—C16—Zr1	73.6 (2)
C15—Zr1—C16	32.73 (15)	C17—C16—C15	107.9 (4)
C16—Zr1—C1	150.64 (16)	C17—C16—C21	125.8 (4)
C16—Zr1—C2	173.85 (16)	C21—C16—Zr1	122.5 (3)
C17—Zr1—C1	170.66 (15)	C16—C17—Zr1	74.0 (2)
C17—Zr1—C2	147.81 (15)	C16—C17—C18	108.4 (4)
C17—Zr1—C5	139.93 (14)	C16—C17—C22	124.9 (4)
C17—Zr1—C15	53.93 (14)	C18—C17—Zr1	72.6 (2)
C17—Zr1—C16	32.36 (14)	C18—C17—C22	126.2 (4)
C18—Zr1—C1	137.96 (15)	C22—C17—Zr1	125.9 (3)
C18—Zr1—C2	129.92 (17)	C14—C18—Zr1	74.4 (3)
C18—Zr1—C5	108.95 (15)	C14—C18—C23	127.4 (4)
C18—Zr1—C14	32.82 (15)	C17—C18—Zr1	74.7 (2)
C18—Zr1—C15	54.29 (15)	C17—C18—C14	107.5 (4)
C18—Zr1—C16	54.17 (15)	C17—C18—C23	124.7 (4)
C18—Zr1—C17	32.70 (15)	C23—C18—Zr1	122.5 (3)
C1—N1—C11	108.4 (4)		

Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C6–C11 ring.

<i>D</i> —H··· <i>A</i>	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C2—H2···Cl1 ⁱ	1.0	2.72	3.684 (5)	162
C10—H10…Cl2 ⁱⁱ	0.95	2.77	3.699 (5)	166
C22—H22C···Cl1	0.98	2.67	3.158 (5)	111
C22—H22A····Cg4 ⁱⁱⁱ	0.98	2.57	3.487 (5)	156

Symmetry codes: (i) -x+1, -y+1, z; (ii) y, -x+1, -z+1; (iii) x+1/2, -y+1/2, -z+3/2.