Received 13 August 2016 Accepted 29 August 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; cyclophane; butadiyne.

CCDC reference: 812220

Structural data: full structural data are available from iucrdata.iucr.org

1,4-Bis[3,11-dithiatricyclo[11.3.1.1^{5,9}]octadeca-1(17),5,7,9(18),13,15-hexaen-7-yl]buta-1,3-diyne

Tetsuji Moriguchi,* Daisuke Yakeya, Venkataprasad Jalli and Akihiko Tsuge

Department of Applied Chemistry, Graduate School of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan. *Correspondence e-mail: moriguch@che.kyutech.ac.jp

The complete molecule of the title compound, $C_{36}H_{30}S_4$ {common name: 1,4-[4-(9,17-dithia[3.3]metacyclophane)]-1,3-butadiyne}, is generated by a crystallographic inversion centre at the mid-point of the central C–C bond [1.367 (5) Å]. Both cyclophane units exist in *cisoid* pseudo-boat–chair chair– boat conformations. In the crystal, the packing is controlled by van der Waals interactions.

Structure description

The synthesis and molecular structure analysis of bridged cyclophanes continue to attract interest in supramolecular chemistry. The understanding of preferred conformations in cyclophanes is of importance in the design of various supramolecular systems. Small-sized cyclophane molecules act as a model to explore the mobility of such cyclophanes due to the presence of a variety of conformational processes including ring-flipping, ring-tilting and *syn-anti* isomerization. Small-sized cyclophane units have been used as a platform to build cofacial bisporphyrins (Tsuge *et al.*, 2012). The [3.3]dithiametacyclophane skeleton have also been used to provide an appropriate platform to arrange two oligomer chains side by side in stacked form because this kind of cyclophane assumes a *syn* structure (Tsuge *et al.*, 2008). On the other hand, [3.3]dithiametacyclophanes consisting of oligo-thiophene units with extended π -conjugation have shown better fluorescence properties (Tsuge *et al.*, 2008). Thus, the elucidation of the crystal structures of cyclophane derivatives has attracted much attention.

Here, we report the crystal structure of the title compound, possessing extended π conjugation *via* a 1,3-butadiyne unit (Fig. 1). The complete molecule is generated by a
crystallographic inversion centre at the mid-point of the central C-C bond. The C-C
single- and triple-bond lengths match the reported values in the literature (Mo *et al.*,

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Unlabelled atoms are generated by the symmetry operation (-x, -y + 2, -z + 1). H atoms have been omitted for clarity.

1996). Both cyclophane units exist in *cisoid*, pseudo boatchair, chair-boat conformations with both substitutents positioned on the same side.

No directional interactions beyond normal van der Waals' contacts could be identified in the crystal. The crystal packing is shown in Fig. 2.

Synthesis and crystallization

The title compound was synthesized using Hay coupling as follows. The reaction scheme is shown in Fig. 3. A dichloromethane solution (10 ml) of 6-ethynyl-2,11-dithia[3.3]metacyclophane (40.2 mg, 0.125 mmol) was added dropwise to a solution of tetramethylethylenediamine (TMEDA) (0.80 ml,

Figure 2

Crystal packing diagram of the title compound, viewed along the a axis, with H atoms omitted for clarity.

Table	1	
Experi	mental	details.

Crystal data	
Chemical formula	$C_{36}H_{30}S_4$
M _r	590.84
Crystal system, space group	Orthorhombic, Pbca
Temperature (K)	90
a, b, c (Å)	8.717 (3), 16.325 (5), 21.043 (7)
$V(Å^3)$	2994.5 (17)
Z	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.34
Crystal size (mm)	$0.35 \times 0.25 \times 0.20$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2009)
T_{\min}, T_{\max}	0.659, 0.934
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	12443, 2641, 2172
R _{int}	0.041
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.595
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.043, 0.130, 1.16
No. of reflections	2641
No. of parameters	181
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.37, -0.22

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXS2014/7 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015) and Mercury (Macrae et al., 2008).

5.7 mmol) and CuCl (0.28 g, 2.9 mmol) as a catalyst in dichloromethane (50 ml). The reaction mixture was stirred for 2 h. After the completion of reaction, the resulting mixture was poured into 10% HCl (aq.) and then, the organic layer was washed with water. The resulting organic layer was dried over MgSO₄ and the solvent was removed under reduced pressure. The resulting residue was purified by recrystallization and the title compound was obtained as white crystals (33.2 mg, 0.0562 mmol, 39% yield). Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of a dichloromethane–hexane solution at room temperature using the slow vapor diffusion technique.

¹H NMR (400 MHz, CDCl₃) 3.75 (*s*, 8 H, -CH₂-), 3.78 (*s*, 8 H, -CH₂-), 6.90 (*d*, 4 H, aryl C–H, *J* = 2.5 Hz), 6.97 (*d*, 4 H, aryl C–H, *J* = 2.5 Hz), 7.03 (*m*, 6 H, aryl C–H). EI–MS (75 eV): *m*/*z* 590 (*M*⁺). Elemental analysis: C 73.13% (73.18%, calculated), H 5.09% (5.12%, calculated).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

Figure 3 The reaction scheme for the synthesis of the title compound.

Acknowledgements

We are grateful to the Center for Instrumental Analysis, Kyushu Institute of Technology (KITCIA), for the X-ray analysis.

References

- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Mo, Y., Lin, Z., Wu, W. & Zhang, Q. (1996). J. Phys. Chem. 100, 11569–11572.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Tsuge, A., Hara, T., Moriguchi, T. & Yamaji, M. (2008). *Chem. Lett.* **37**, 870–871.
- Tsuge, A., Ikeda, Y., Moriguchi, T. & Araki, K. (2012). J. Porphyrins Phthalocyanines, 16, 250–254.

full crystallographic data

IUCrData (2016). **1**, x161378 [doi:10.1107/S241431461601378X]

1,4-Bis[3,11-dithiatricyclo[11.3.1.1^{5,9}]octadeca-1(17),5,7,9(18),13,15-hexaen-7-yl]buta-1,3-diyne

 $D_{\rm x} = 1.311 {\rm Mg m^{-3}}$

 $\theta = 1.9 - 25.0^{\circ}$

 $\mu = 0.34 \text{ mm}^{-1}$ T = 90 K

Prism, yellow

 $0.35 \times 0.25 \times 0.20$ mm

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 12443 reflections

Tetsuji Moriguchi, Daisuke Yakeya, Venkataprasad Jalli and Akihiko Tsuge

1,4-Bis[3,11-dithiatricyclo[11.3.1.1^{5,9}]octadeca-1(17),5,7,9(18),13,15-hexaen-7-yl]buta-1,3-diyne

Crystal data

 $C_{36}H_{30}S_4$ $M_r = 590.84$ Orthorhombic, *Pbca* a = 8.717 (3) Å b = 16.325 (5) Å c = 21.043 (7) Å V = 2994.5 (17) Å³ Z = 4F(000) = 1240

Data collection

Bruker APEXII CCD	12443 measured reflections
diffractometer	2641 independent reflections
Radiation source: fine focus sealed tube	2172 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.041$
Detector resolution: 8.333 pixels mm ⁻¹	$\theta_{\rm max} = 25.0^\circ, \theta_{\rm min} = 1.9^\circ$
ω scans	$h = -10 \rightarrow 6$
Absorption correction: multi-scan	$k = -19 \rightarrow 19$
(SADABS; Bruker, 2009)	$l = -24 \rightarrow 25$
$T_{\min} = 0.659, \ T_{\max} = 0.934$	
Refinement	

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.064P)^2 + 2.2214P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.37$ e Å⁻³ $\Delta\rho_{min} = -0.22$ e Å⁻³

Special details

Refinement on F^2

 $wR(F^2) = 0.130$

2641 reflections

181 parameters 0 restraints

S = 1.16

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.043$

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.7566 (3)	0.93934 (17)	0.63894 (13)	0.0272 (6)
H1A	0.8431	0.9633	0.6167	0.033*
H1B	0.7974	0.9048	0.6724	0.033*
C2	0.6688 (3)	0.88566 (16)	0.59271 (12)	0.0232 (6)
C3	0.6204 (3)	0.91543 (16)	0.53423 (12)	0.0253 (6)
Н3	0.6481	0.968	0.5216	0.03*
C4	0.5310 (3)	0.86717 (17)	0.49439 (13)	0.0291 (7)
H4	0.4995	0.8875	0.4552	0.035*
C5	0.4883 (4)	0.78859 (17)	0.51288 (13)	0.0315 (7)
Н5	0.4252	0.7573	0.4868	0.038*
C6	0.5397 (4)	0.75665 (16)	0.57031 (12)	0.0297 (7)
C7	0.6325 (3)	0.80538 (16)	0.60904 (13)	0.0271 (6)
H7	0.6709	0.7836	0.6467	0.033*
C8	0.4951 (4)	0.66958 (17)	0.58834 (14)	0.0413 (8)
H8B	0.5769	0.6334	0.5746	0.05*
H8A	0.4043	0.6551	0.5642	0.05*
C9	0.2692 (3)	0.69461 (16)	0.68376 (13)	0.0285 (6)
H9A	0.1963	0.6704	0.6544	0.034*
H9B	0.2345	0.6827	0.7266	0.034*
C10	0.2712 (3)	0.78628 (15)	0.67415 (11)	0.0205 (6)
C11	0.1831 (3)	0.82242 (15)	0.62706 (11)	0.0194 (5)
H11	0.113	0.791	0.6044	0.023*
C12	0.1990 (3)	0.90631 (15)	0.61345 (11)	0.0169 (5)
C13	0.3051 (3)	0.95296 (15)	0.64694 (11)	0.0170 (5)
H13	0.3166	1.0083	0.6375	0.02*
C14	0.3943 (3)	0.91761 (14)	0.69438 (11)	0.0155 (5)
C15	0.3743 (3)	0.83492 (15)	0.70824 (11)	0.0189 (5)
H15	0.4309	0.8115	0.741	0.023*
C16	0.5167 (3)	0.96678 (16)	0.72801 (12)	0.0211 (6)
H16A	0.5767	0.93	0.7543	0.025*
H16B	0.4671	1.0059	0.756	0.025*
C17	0.1119 (3)	0.94410 (15)	0.56359 (12)	0.0190 (5)
C18	0.0414 (3)	0.97970 (15)	0.52266 (12)	0.0188 (5)
S1	0.64610 (8)	1.02199 (4)	0.67558 (3)	0.0240 (2)
S2	0.45632 (10)	0.64782 (4)	0.67156 (4)	0.0328 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0255 (14)	0.0334 (16)	0.0228 (14)	-0.0002 (12)	0.0054 (12)	0.0026 (12)
C2	0.0259 (14)	0.0251 (14)	0.0185 (13)	0.0024 (11)	0.0088 (11)	-0.0026 (11)
C3	0.0330 (15)	0.0248 (14)	0.0181 (14)	-0.0005 (12)	0.0082 (12)	0.0037 (11)
C4	0.0437 (17)	0.0301 (15)	0.0135 (13)	0.0048 (13)	0.0064 (12)	-0.0001 (11)
C5	0.0440 (17)	0.0298 (16)	0.0207 (14)	-0.0020 (13)	0.0086 (13)	-0.0119 (12)
C6	0.0493 (18)	0.0196 (14)	0.0204 (14)	0.0041 (13)	0.0115 (13)	-0.0041 (11)

C7	0.0377 (16)	0.0246 (14)	0.0191 (13)	0.0087 (12)	0.0079 (12)	0.0033 (11)
C8	0.072 (2)	0.0209 (15)	0.0308 (17)	0.0021 (15)	0.0123 (17)	-0.0049 (13)
C9	0.0409 (16)	0.0160 (14)	0.0287 (15)	-0.0041 (12)	-0.0035 (13)	0.0040 (11)
C10	0.0288 (14)	0.0144 (12)	0.0182 (13)	-0.0007 (11)	0.0017 (11)	-0.0011 (10)
C11	0.0252 (13)	0.0170 (12)	0.0161 (12)	-0.0032 (11)	-0.0015 (10)	-0.0047 (10)
C12	0.0200 (12)	0.0194 (12)	0.0113 (12)	0.0025 (10)	0.0010 (10)	0.0002 (10)
C13	0.0234 (13)	0.0129 (12)	0.0148 (12)	0.0019 (10)	0.0037 (11)	-0.0021 (9)
C14	0.0185 (12)	0.0157 (12)	0.0124 (12)	0.0021 (10)	0.0021 (10)	-0.0045 (9)
C15	0.0256 (13)	0.0186 (13)	0.0126 (12)	0.0044 (10)	-0.0004 (10)	0.0025 (10)
C16	0.0241 (13)	0.0239 (14)	0.0154 (13)	-0.0017 (11)	0.0006 (11)	-0.0035 (10)
C17	0.0223 (13)	0.0197 (13)	0.0151 (13)	-0.0014 (11)	0.0030 (11)	-0.0029 (10)
C18	0.0217 (13)	0.0190 (13)	0.0156 (12)	-0.0005 (10)	0.0006 (10)	-0.0026 (10)
S1	0.0276 (4)	0.0220 (4)	0.0224 (4)	-0.0074 (3)	0.0002 (3)	-0.0014 (3)
S2	0.0526 (5)	0.0131 (4)	0.0327 (4)	0.0065 (3)	0.0014 (4)	0.0054 (3)

Geometric parameters (Å, °)

C1—C2	1.517 (4)	C9—S2	1.820 (3)	
C1—S1	1.828 (3)	С9—Н9А	0.97	
C1—H1A	0.97	С9—Н9В	0.97	
C1—H1B	0.97	C10—C11	1.386 (4)	
C2—C3	1.389 (4)	C10—C15	1.397 (4)	
C2—C7	1.391 (4)	C11—C12	1.406 (3)	
C3—C4	1.390 (4)	C11—H11	0.93	
С3—Н3	0.93	C12—C13	1.390 (3)	
C4—C5	1.391 (4)	C12—C17	1.434 (3)	
C4—H4	0.93	C13—C14	1.390 (4)	
C5—C6	1.390 (4)	C13—H13	0.93	
С5—Н5	0.93	C14—C15	1.392 (3)	
C6—C7	1.397 (4)	C14—C16	1.511 (3)	
C6—C8	1.522 (4)	C15—H15	0.93	
С7—Н7	0.93	C16—S1	1.817 (3)	
C8—S2	1.818 (3)	C16—H16A	0.97	
C8—H8B	0.97	C16—H16B	0.97	
C8—H8A	0.97	C17—C18	1.207 (4)	
C9—C10	1.510 (3)	C18—C18 ⁱ	1.367 (5)	
C2—C1—S1	115.54 (19)	S2—C9—H9A	109.0	
C2	108.4	С10—С9—Н9В	109.0	
S1—C1—H1A	108.4	S2—C9—H9B	109.0	
C2—C1—H1B	108.4	H9A—C9—H9B	107.8	
S1—C1—H1B	108.4	C11—C10—C15	118.8 (2)	
H1A—C1—H1B	107.5	C11—C10—C9	120.7 (2)	
С3—С2—С7	118.7 (3)	C15—C10—C9	120.2 (2)	
C3—C2—C1	121.3 (2)	C10-C11-C12	120.4 (2)	
C7—C2—C1	120.0 (2)	C10—C11—H11	119.8	
C2—C3—C4	120.4 (3)	C12—C11—H11	119.8	
С2—С3—Н3	119.8	C13—C12—C11	119.7 (2)	

С4—С3—Н3	119.8	C13—C12—C17	119.2 (2)
C3—C4—C5	120.3 (3)	C11—C12—C17	121.0 (2)
C3—C4—H4	119.9	C14—C13—C12	120.6 (2)
C5—C4—H4	119.9	C14—C13—H13	119.7
C6—C5—C4	120.2 (3)	С12—С13—Н13	119.7
С6—С5—Н5	119.9	C13—C14—C15	118.9 (2)
С4—С5—Н5	119.9	C13—C14—C16	120.7 (2)
C5—C6—C7	118.7 (3)	C15—C14—C16	120.4 (2)
C5—C6—C8	119.0 (3)	C14—C15—C10	121.6 (2)
C7—C6—C8	122.3 (3)	C14—C15—H15	119.2
C2—C7—C6	121.6 (3)	C10—C15—H15	119.2
С2—С7—Н7	119.2	C14—C16—S1	114.68 (17)
С6—С7—Н7	119.2	C14—C16—H16A	108.6
C6—C8—S2	118.0 (2)	S1—C16—H16A	108.6
C6—C8—H8B	107.8	C14—C16—H16B	108.6
S2—C8—H8B	107.8	S1—C16—H16B	108.6
С6—С8—Н8А	107.8	H16A—C16—H16B	107.6
S2—C8—H8A	107.8	C18—C17—C12	176.7 (3)
H8B—C8—H8A	107.1	C17-C18-C18 ⁱ	178.6 (3)
C10—C9—S2	112.7 (2)	C16—S1—C1	102.53 (13)
С10—С9—Н9А	109.0	C8—S2—C9	102.74 (15)
S1—C1—C2—C3	69.6 (3)	C9—C10—C11—C12	-172.5 (2)
S1—C1—C2—C7	-109.1 (3)	C10-C11-C12-C13	0.7 (4)
C7—C2—C3—C4	3.2 (4)	C10-C11-C12-C17	178.1 (2)
C1—C2—C3—C4	-175.5 (2)	C11-C12-C13-C14	-0.8 (4)
C2—C3—C4—C5	0.3 (4)	C17—C12—C13—C14	-178.3 (2)
C3—C4—C5—C6	-2.4 (4)	C12-C13-C14-C15	-0.7 (3)
C4—C5—C6—C7	0.9 (4)	C12-C13-C14-C16	176.1 (2)
C4—C5—C6—C8	-178.2 (3)	C13-C14-C15-C10	2.4 (4)
C3—C2—C7—C6	-4.8 (4)	C16-C14-C15-C10	-174.4 (2)
C1—C2—C7—C6	174.0 (2)	C11—C10—C15—C14	-2.5 (4)
C5—C6—C7—C2	2.7 (4)	C9-C10-C15-C14	171.0 (2)
C8—C6—C7—C2	-178.2 (3)	C13-C14-C16-S1	-49.5 (3)
C5—C6—C8—S2	-143.7 (3)	C15—C14—C16—S1	127.3 (2)
C7—C6—C8—S2	37.2 (4)	C14—C16—S1—C1	-69.7 (2)
S2—C9—C10—C11	118.5 (2)	C2-C1-S1-C16	69.8 (2)
S2-C9-C10-C15	-54.8 (3)	C6—C8—S2—C9	74.4 (3)
C15—C10—C11—C12	0.9 (4)	C10—C9—S2—C8	-62.9 (2)

Symmetry code: (i) -x, -y+2, -z+1.