ISSN 2414-3146

Received 1 September 2016 Accepted 5 September 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: azide; cycloaddition; imidazole; norbornadiene; crystal structure.

CCDC reference: 1502503

Structural data: full structural data are available from iucrdata.iucr.org

2-(2-Azabicyclo[3.2.1]octa-3,6-dien-2-yl)-1,3-dimethoxyimidazolium hexafluoridophosphate

Simone Haslinger, Gerhard Laus,* Klaus Wurst and Herwig Schottenberger

University of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80, 6020 Innsbruck, Austria. *Correspondence e-mail: gerhard.laus@uibk.ac.at

The title salt, $C_{12}H_{16}N_3O_2^+ \cdot PF_6^-$, was obtained by the dipolar cycloaddition of norbornadiene to 2-azido-1,3-dimethoxyimidazolium hexafluoridophosphate. The methoxy groups attached to the imidazolium ring of the cation adopt an *anti* conformation [displacements of the C atoms from the ring plane = 1.386 (4) and -1.404 (3) Å]. In the crystal, weak inter-ionic C-H···F contacts are observed. The structure was refined as a two-component twin. Positional disorder of the fluorine atoms of the PF₆ anion was observed, the occupancy ratio being 0.562 (16):0.438 (16).

Structure description

The 1,3-dipolar cycloaddition of strained alkenes such as norbornene or norbornadiene to azidoazolium salts with concomitant loss of dinitrogen affords tricyclic aziridines or bicyclic azaoctadienes, respectively (Laus, Kahlenberg *et al.*, 2016; Laus, Kostner *et al.*, 2016). Thus, the title compound was obtained from bicyclo[2.2.1]hepta-2,5-diene (norbornadiene) and 2-azido-1,3-dimethoxyimidazolium hexafluoridophosphate.

Conformational *syn/anti* isomerism in related 1,3-di(alkyloxy)imidazolium salts has been noticed previously (Laus *et al.*, 2007; Laus, Kahlenberg *et al.*, 2010; Laus, Wurst *et al.*, 2010; Froschauer *et al.*, 2013; Rietzler *et al.*, 2015; Partl *et al.*, 2016). Here, the methoxy groups of the norbornadiene adduct adopt an *anti* conformation (Fig. 1). The C4 atom is displaced from the ring plane by 1.386 (4), and C5 by -1.404 (3) Å. A C4 $-O1 \cdots O2-C5$ pseudo dihedral angle of 168.4 (3)° is found.

There are no directional classical hydrogen bonds in this structure. At the most, weak $C-H\cdots F$ interactions ($H2\cdots F5 = 2.36$, $H3\cdots F6 = 2.42$ and $H5A\cdots F5 = 2.53$ Å) shorter than the sum of van der Waals radii between the imidazole H atoms and negatively polarized F atoms are worth mentioning (Table 1; Fig. 2).

Figure 1

Synthesis and crystallization

A solution of 2-azido-1,3-dimethoxyimidazolium hexafluoridophosphate (0.38 g, 1.2 mmol; Laus *et al.*, 2007) and norbornadiene (0.13 g, 1.4 mmol) in acetone (20 ml) was stirred for 18 h at room temperature. The volatiles were removed under reduced pressure, and the residue was crystallized from H₂O/acetone. ¹H NMR (300 MHz, DMSO-*d*₆): δ 1.86 (*d*, *J* = 10.6 Hz, 1H), 2.00 (*m*, 1H), 2.87 (*m*, 1H), 4.12 (*s*, 6H), 4.76 (*s*, 1H), 5.40 (*td*, *J* = 6.4, 1.3 Hz, 1H), 5.68 (*dd*, *J* = 2.3, 5.5 Hz, 1H), 6.06 (*dd*, *J* = 0.9, 7.7 Hz, 1H), 6.41 (*dd*, *J* = 2.7, 5.4 Hz, 1H), 8.00 (*s*, 2H) p.p.m. ¹³C NMR (75 MHz, DMSOd₆): δ 35.2, 36.2, 63.8, 68.0 (2 C), 109.6, 112.4 (2 C), 121.2, 122.4, 134.8, 139.4 p.p.m. IR (neat): ν 3173, 3151, 1627, 1614, 827 cm⁻¹.

Figure 2

Crystal packing of the title compound. The $C-H\cdots F$ interactions are shown as dashed lines.

Table 1	1		_		
Hydrog	en-bond	geometry	(Å,	°).	

details.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C2-H2\cdots F5^{i}$	0.95	2.36	3.242 (12)	154
$C2-H2\cdot\cdot\cdot F5A^{i}$	0.95	2.36	3.23 (2)	153
$C3-H3 \cdot \cdot \cdot F6$	0.95	2.42	3.365 (11)	171
$C4-H4A\cdots F6A^{ii}$	0.98	2.49	3.21 (2)	131
$C4-H4B\cdots F2A^{iii}$	0.98	2.51	3.383 (17)	148
$C5-H5A\cdots F5^{iv}$	0.98	2.53	3.134 (11)	120
$C5-H5A\cdots F5A^{iv}$	0.98	2.34	3.02 (2)	125

Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y + 1, -z + 1; (iii) -x + 2, -y + 1, -z + 1; (iv) -x + 3, -y, -z + 1.

Table	2
-------	---

Ev.	norimont	-1
ĽA	permem	aı

Crystal data	
Chemical formula	$C_{12}H_{16}N_2O_2^+ \cdot PE_6^-$
M.	379.25
Crystal system space group	Triclinic $P\overline{1}$
Temperature (K)	173
$a \ b \ c \ (\text{Å})$	7 4207 (6) 8 8159 (7) 12 5246 (10)
α, β, ν (°)	86 873 (3) 87 735 (3) 77 166 (3)
$V(A^3)$	797 39 (11)
Z	2
Radiation type	Ξ Μο Κα
$\mu (\text{mm}^{-1})$	0.25
Crystal size (mm)	$0.18 \times 0.17 \times 0.09$
Data collection	
Diffractometer	Bruker D8 QUEST PHOTON 100
Absorption correction	Multi-scan (<i>DIFABS</i> ; Bruker, 2014)
T_{\min}, T_{\max}	0.792, 0.862
No. of measured, independent and	2774, 2774, 2501
observed $[I > 2\sigma(I)]$ reflections	
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.595
Refinement	
$R[F^2 > 2\sigma(F^2)] wR(F^2) S$	0.054 0.124 1.12
No of reflections	2774
No of parameters	273
H-atom treatment	H-atom parameters constrained
$\Lambda \rho = \Lambda \rho + (e Å^{-3})$	0.40 - 0.31
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} (C \Lambda)$	0.40, -0.51

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SHELXS2014/7 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2006).

Refinement

The structure was refined as a two-component twin with nonmerohedral twinning by 180 degrees about the reciprocal axis 0 0 1. In addition, positional disorder of the fluorine atoms of the PF₆ anion was observed; the occupancy ratio of 0.562 (16):0.438 (16) for the two orientations was obtained by refinement with a free variable. Crystal data, data collection and structure refinement details are summarized in Table 2.

References

Bruker (2014). APEX2, SAINT and DIFABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Froschauer, C., Salchner, R., Laus, G., Weber, H. K., Tessadri, R., Griesser, U., Wurst, K., Kahlenberg, V. & Schottenberger, H. (2013). Aust. J. Chem. 66, 391–395.

- Laus, G., Kahlenberg, V. & Schottenberger, H. (2010). Z. Kristallogr. New Cryst. Struct. 225, 759–760.
- Laus, G., Kahlenberg, V. & Schottenberger, H. (2016). Crystals, 6, 20.
- Laus, G., Kostner, M. E., Kahlenberg, V. & Schottenberger, H. (2016). Z. Naturforsch. Teil B, 71, 997–1003.
- Laus, G., Schwärzler, A., Schuster, P., Bentivoglio, G., Hummel, M., Wurst, K., Kahlenberg, V., Lörting, T., Schütz, J., Peringer, P., Bonn, G., Nauer, G. & Schottenberger, H. (2007). Z. Naturforsch. Teil B, 62, 295–308.
- Laus, G., Wurst, K., Kahlenberg, V., Kopacka, H., Kreutz, C. & Schottenberger, H. (2010). Z. Naturforsch. Teil B, 65, 776–782.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). *J. Appl. Cryst.* **39**, 453–457.
- Partl, G., Lampl, M., Laus, G., Wurst, K., Huppertz, H. & Schottenberger, H. (2016). *IUCrData*, **1**, x160824.
- Rietzler, B., Laus, G., Kahlenberg, V. & Schottenberger, H. (2015). Acta Cryst. E71, m251-m252.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2016). **1**, x161410 [doi:10.1107/S2414314616014103]

2-(2-Azabicyclo[3.2.1]octa-3,6-dien-2-yl)-1,3-dimethoxyimidazolium hexafluoridophosphate

Simone Haslinger, Gerhard Laus, Klaus Wurst and Herwig Schottenberger

2-(2-Azabicyclo[3.2.1]octa-3,6-dien-2-yl)-1,3-dimethoxyimidazolium hexafluoridophosphate

Crystal data

C₁₂H₁₆N₃O₂⁺·PF₆⁻ $M_r = 379.25$ Triclinic, *P*I a = 7.4207 (6) Å b = 8.8159 (7) Å c = 12.5246 (10) Å a = 86.873 (3)° $\beta = 87.735$ (3)° $\gamma = 77.166$ (3)° V = 797.39 (11) Å³

Data collection

Bruker D8 QUEST PHOTON 100 diffractometer Radiation source: Incoatec Microfocus Multi layered optics monochromator Detector resolution: 10.4 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (DIFABS; Bruker, 2014)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.124$ S = 1.122774 reflections 273 parameters 0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Z = 2 F(000) = 388 $D_x = 1.580 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4024 reflections $\theta = 2.8-25.3^{\circ}$ $\mu = 0.25 \text{ mm}^{-1}$ T = 173 K Prism, brown $0.18 \times 0.17 \times 0.09 \text{ mm}$

 $T_{\min} = 0.792, T_{\max} = 0.862$ 2774 measured reflections 2774 independent reflections 2501 reflections with $I > 2\sigma(I)$ $\theta_{\max} = 25.0^\circ, \theta_{\min} = 2.4^\circ$ $h = -8 \rightarrow 8$ $k = -10 \rightarrow 10$ $l = 0 \rightarrow 14$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.031P)^2 + 0.897P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.40$ e Å⁻³ $\Delta\rho_{min} = -0.31$ e Å⁻³ **Refinement**. Refined as a 2-component twin with non-merohedral twinning by 180 degrees about the reciprocal axis 0 0 1. Programs like "cell_now" and "twinabs" (Bruker) were used for cell search of twin components and absorption correction. Positional disorder of the fluorine atoms of PF6; ratio of 56:44 was obtained by using refinement with free variable.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	0.4239 (4)	0.2863 (3)	0.7117 (3)	0.0505 (8)	
02	1.0715 (3)	0.2143 (3)	0.6834 (3)	0.0429 (7)	
N1	0.6012 (4)	0.2657 (4)	0.6683 (3)	0.0417 (8)	
N2	0.8907 (4)	0.2373 (4)	0.6560 (3)	0.0367 (8)	
N3	0.7628 (4)	0.2455 (4)	0.8350 (2)	0.0372 (8)	
C1	0.7505 (6)	0.2487 (5)	0.7279 (3)	0.0335 (8)	
C2	0.6461 (7)	0.2612 (5)	0.5602 (4)	0.0513 (11)	
H2	0.5639	0.2666	0.5032	0.062*	
C3	0.8300 (7)	0.2476 (5)	0.5526 (3)	0.0470 (11)	
H3	0.9036	0.2454	0.4887	0.056*	
C4	0.3311 (7)	0.4469 (5)	0.6979 (5)	0.0724 (16)	
H4A	0.2053	0.4614	0.7287	0.109*	
H4B	0.3989	0.5117	0.7342	0.109*	
H4C	0.3256	0.4774	0.6215	0.109*	
C5	1.1633 (6)	0.0519 (4)	0.6758 (4)	0.0513 (11)	
H5A	1.2927	0.0374	0.6957	0.077*	
H5B	1.1011	-0.0124	0.7244	0.077*	
H5C	1.1583	0.0208	0.6022	0.077*	
C6	0.6429 (6)	0.1744 (5)	0.9028 (3)	0.0462 (10)	
H6	0.5642	0.1171	0.8733	0.055*	
C7	0.6429 (8)	0.1896 (6)	1.0083 (4)	0.0650 (14)	
H7	0.5667	0.1398	1.0544	0.078*	
C8	0.7627 (11)	0.2851 (7)	1.0546 (4)	0.0775 (17)	
H8	0.7280	0.3147	1.1298	0.093*	
С9	0.9570 (10)	0.1996 (7)	1.0392 (5)	0.0832 (19)	
Н9	1.0245	0.1315	1.0923	0.100*	
C10	1.0243 (8)	0.2281 (6)	0.9454 (5)	0.0685 (15)	
H10	1.1462	0.1852	0.9198	0.082*	
C11	0.8821 (6)	0.3375 (5)	0.8847 (3)	0.0428 (10)	
H11	0.9348	0.4058	0.8315	0.051*	
C12	0.7620 (8)	0.4288 (6)	0.9721 (4)	0.0673 (15)	
H12A	0.6363	0.4779	0.9477	0.081*	
H12B	0.8201	0.5082	1.0009	0.081*	
P1	1.26751 (15)	0.24411 (11)	0.32028 (8)	0.0327 (2)	
F1	1.2604 (10)	0.1998 (16)	0.4404 (5)	0.095 (5)	0.562 (16)
F2	1.2768 (14)	0.2929 (17)	0.1975 (5)	0.104 (4)	0.562 (16)
F3	1.2520 (13)	0.4160 (9)	0.3478 (14)	0.115 (5)	0.562 (16)
F4	1.285 (2)	0.0749 (9)	0.2887 (15)	0.137 (7)	0.562 (16)
F5	1.4859 (13)	0.2220 (13)	0.3286 (9)	0.068 (3)	0.562 (16)
F6	1.0517 (15)	0.2681 (14)	0.3144 (8)	0.066 (3)	0.562 (16)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

data reports

	1 0 0 1 (0)	0.1100.(10)	0.005 (0)	0.005 (11)	0.400 (1.0)
FIA	1.201 (3)	0.1183 (18)	0.387 (2)	0.205 (11)	0.438 (16)
F2A	1.315 (2)	0.382 (2)	0.258 (2)	0.159 (9)	0.438 (16)
F3A	1.232 (2)	0.341 (2)	0.4227 (13)	0.134 (7)	0.438 (16)
F4A	1.305 (2)	0.139 (3)	0.2291 (15)	0.149 (9)	0.438 (16)
F5A	1.470 (2)	0.177 (3)	0.345 (2)	0.184 (11)	0.438 (16)
F6A	1.067 (2)	0.318 (3)	0.2936 (18)	0.135 (8)	0.438 (16)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
01	0.0267 (15)	0.0486 (17)	0.078 (2)	-0.0131 (13)	-0.0037 (14)	0.0034 (15)
O2	0.0269 (13)	0.0386 (14)	0.0639 (19)	-0.0073 (11)	0.0018 (14)	-0.0100 (15)
N1	0.0323 (17)	0.0449 (18)	0.051 (2)	-0.0143 (14)	-0.0047 (17)	-0.0025 (17)
N2	0.0301 (17)	0.0390 (17)	0.042 (2)	-0.0095 (13)	0.0010 (14)	-0.0058 (14)
N3	0.0345 (19)	0.0411 (19)	0.0392 (17)	-0.0147 (14)	0.0014 (14)	-0.0049 (15)
C1	0.0320 (19)	0.0313 (19)	0.0403 (19)	-0.0141 (15)	-0.0001 (18)	-0.0009 (17)
C2	0.060 (3)	0.055 (3)	0.042 (3)	-0.017 (2)	-0.016 (2)	-0.005 (2)
C3	0.060 (3)	0.047 (2)	0.037 (2)	-0.017 (2)	-0.001 (2)	-0.0073 (19)
C4	0.047 (3)	0.050 (3)	0.121 (5)	-0.011 (2)	0.010 (3)	-0.017 (3)
C5	0.044 (2)	0.035 (2)	0.072 (3)	-0.0010 (17)	-0.001 (2)	-0.010 (2)
C6	0.047 (2)	0.047 (2)	0.047 (3)	-0.017 (2)	0.009 (2)	-0.003 (2)
C7	0.087 (4)	0.055 (3)	0.057 (3)	-0.029 (3)	0.021 (3)	-0.006 (2)
C8	0.120 (5)	0.078 (4)	0.045 (3)	-0.041 (4)	0.012 (4)	-0.023 (3)
C9	0.124 (6)	0.079 (4)	0.058 (4)	-0.044 (4)	-0.029 (4)	0.002 (3)
C10	0.077 (4)	0.059 (3)	0.077 (4)	-0.025 (3)	-0.030 (3)	-0.005 (3)
C11	0.048 (2)	0.039 (2)	0.046 (2)	-0.0162 (18)	0.0029 (19)	-0.0122 (18)
C12	0.093 (4)	0.059 (3)	0.055 (3)	-0.025 (3)	0.014 (3)	-0.024 (3)
P1	0.0377 (5)	0.0274 (4)	0.0329 (5)	-0.0070 (3)	-0.0026 (5)	-0.0024 (5)
F1	0.080 (5)	0.183 (13)	0.025 (3)	-0.041 (6)	-0.002 (3)	0.031 (5)
F2	0.110 (6)	0.161 (12)	0.034 (3)	-0.025 (6)	0.000 (4)	0.028 (5)
F3	0.099 (6)	0.040 (4)	0.210 (15)	-0.021 (4)	0.032 (8)	-0.048 (6)
F4	0.138 (8)	0.028 (4)	0.252 (19)	-0.028 (4)	0.020 (11)	-0.052 (6)
F5	0.040 (4)	0.099 (6)	0.068 (5)	-0.024 (5)	0.001 (3)	-0.010 (4)
F6	0.044 (4)	0.099 (7)	0.064 (4)	-0.028 (4)	0.005 (3)	-0.028 (5)
F1A	0.31 (3)	0.088 (9)	0.22 (2)	-0.074 (12)	0.124 (19)	0.038 (11)
F2A	0.155 (13)	0.109 (12)	0.22 (2)	-0.067 (10)	-0.010 (13)	0.107 (14)
F3A	0.165 (12)	0.127 (15)	0.110 (12)	-0.009 (10)	0.000 (9)	-0.101 (11)
F4A	0.136 (11)	0.19 (2)	0.117 (13)	-0.003 (14)	-0.002 (10)	-0.141 (14)
F5A	0.098 (12)	0.169 (16)	0.24 (2)	0.101 (11)	-0.103 (13)	-0.121 (14)
F6A	0.047 (8)	0.133 (14)	0.208 (17)	0.017 (8)	-0.059 (9)	0.014 (11)

Geometric parameters (Å, °)

01—N1	1.380 (4)	C8—C9	1.481 (9)	
O1—C4	1.435 (5)	C8—C12	1.590 (8)	
O2—N2	1.366 (4)	C8—H8	1.0000	
O2—C5	1.449 (4)	C9—C10	1.293 (9)	
N1-C1	1.336 (5)	С9—Н9	0.9500	

N1—C2	1.382 (6)	C10—C11	1.467 (7)
N2—C1	1.339 (5)	C10—H10	0.9500
N2—C3	1.379 (5)	C11—C12	1.529 (6)
N3—C1	1.347 (5)	C11—H11	1.0000
N3—C6	1.426 (5)	C12—H12A	0.9900
N3—C11	1.499 (5)	C12—H12B	0.9900
C2—C3	1.343 (6)	P1—F4A	1.489 (9)
С2—Н2	0.9500	P1—F2A	1.504 (9)
С3—Н3	0.9500	P1—F1A	1.511 (10)
C4—H4A	0.9800	P1—F5A	1.523 (15)
C4—H4B	0.9800	P1—F6A	1.528 (15)
C4—H4C	0.9800	P1—F1	1.535 (5)
С5—Н5А	0.9800	P1—F4	1.540 (7)
С5—Н5В	0.9800	P1—F3	1.550 (7)
С5—Н5С	0.9800	P1—F3A	1.562 (9)
C6—C7	1.335 (6)	P1—F6	1.572 (11)
С6—Н6	0.9500	P1—F2	1.577 (6)
C7—C8	1.504 (8)	P1—F5	1.596 (9)
C7—H7	0.9500		1.030(3)
N1-01-C4	109.6 (3)	С8—С9—Н9	123.8
N2-02-C5	110.5 (3)	C9—C10—C11	109.0 (6)
C1—N1—O1	123.0 (4)	C9—C10—H10	125.5
C1—N1—C2	112.1 (4)	С11—С10—Н10	125.5
01—N1—C2	124.9 (4)	C10-C11-N3	108.0 (4)
C1—N2—O2	123.3 (3)	C10-C11-C12	103.2 (4)
C1—N2—C3	111.7 (3)	N3—C11—C12	106.1 (4)
O2—N2—C3	124.9 (3)	C10-C11-H11	113.0
C1—N3—C6	120.6 (3)	N3—C11—H11	113.0
C1—N3—C11	120.1 (3)	C12—C11—H11	113.0
C6—N3—C11	118.7 (3)	C11—C12—C8	96.9 (4)
N1—C1—N2	104.0 (3)	C11—C12—H12A	112.4
N1—C1—N3	129.5 (4)	C8—C12—H12A	112.4
N2—C1—N3	126.5 (4)	C11—C12—H12B	112.4
C3—C2—N1	105.7 (4)	C8—C12—H12B	112.4
С3—С2—Н2	127.2	H12A—C12—H12B	109.9
N1—C2—H2	127.2	F4A—P1—F2A	95.0 (11)
C2—C3—N2	106.4 (4)	F4A—P1—F1A	89.4 (11)
С2—С3—Н3	126.8	F2A—P1—F1A	173.8 (11)
N2—C3—H3	126.8	F4A—P1—F5A	84.3 (10)
O1—C4—H4A	109.5	F2A—P1—F5A	91.4 (12)
O1—C4—H4B	109.5	F1A—P1—F5A	93.4 (13)
H4A—C4—H4B	109.5	F4A—P1—F6A	96.4 (10)
O1—C4—H4C	109.5	F2A—P1—F6A	85.9 (10)
H4A—C4—H4C	109.5	F1A—P1—F6A	89.3 (11)
H4B—C4—H4C	109.5	F5A—P1—F6A	177.3 (12)
O2—C5—H5A	109.5	F1—P1—F4	92.9 (7)
O2—C5—H5B	109.5	F1—P1—F3	89.2 (7)
			\[

H5A—C5—H5B	109.5	F4—P1—F3	177.9 (8)
O2—C5—H5C	109.5	F4A—P1—F3A	174.9 (11)
H5A—C5—H5C	109.5	F2A—P1—F3A	89.6 (11)
H5B—C5—H5C	109.5	F1A—P1—F3A	86.2 (9)
C7—C6—N3	119.1 (4)	F5A—P1—F3A	93.4 (10)
С7—С6—Н6	120.4	F6A—P1—F3A	86.1 (10)
N3—C6—H6	120.4	F1—P1—F6	91.1 (5)
C6—C7—C8	120.4 (4)	F4—P1—F6	88.4 (7)
С6—С7—Н7	119.8	F3—P1—F6	92.1 (5)
С8—С7—Н7	119.8	F1—P1—F2	178.7 (7)
C9—C8—C7	107.0 (5)	F4—P1—F2	88.3 (7)
C9—C8—C12	99.4 (5)	F3—P1—F2	89.6 (7)
C7—C8—C12	106.2 (4)	F6—P1—F2	89.5 (5)
С9—С8—Н8	114.3	F1—P1—F5	88.0 (5)
С7—С8—Н8	114.3	F4—P1—F5	92.6 (7)
С12—С8—Н8	114.3	F3—P1—F5	87.0 (5)
C10—C9—C8	112.4 (6)	F6—P1—F5	178.7 (5)
С10—С9—Н9	123.8	F2—P1—F5	91.3 (5)
C4—O1—N1—C1	103.4 (5)	O2—N2—C3—C2	176.5 (3)
C4—O1—N1—C2	-76.1 (5)	C1—N3—C6—C7	-171.9 (5)
C5—O2—N2—C1	99.9 (4)	C11—N3—C6—C7	-1.1 (7)
C5—O2—N2—C3	-78.3 (5)	N3—C6—C7—C8	2.1 (8)
O1—N1—C1—N2	-178.0 (3)	C6—C7—C8—C9	-69.0 (7)
C2—N1—C1—N2	1.6 (5)	C6—C7—C8—C12	36.5 (7)
O1—N1—C1—N3	1.0 (7)	C7—C8—C9—C10	84.2 (6)
C2—N1—C1—N3	-179.4 (4)	C12—C8—C9—C10	-26.1 (6)
O2—N2—C1—N1	-178.2 (3)	C8-C9-C10-C11	-0.1 (7)
C3—N2—C1—N1	0.2 (5)	C9—C10—C11—N3	-84.2 (5)
O2—N2—C1—N3	2.7 (6)	C9-C10-C11-C12	27.8 (5)
C3—N2—C1—N3	-178.9 (4)	C1—N3—C11—C10	-119.4 (5)
C6—N3—C1—N1	36.2 (6)	C6—N3—C11—C10	69.8 (5)
C11—N3—C1—N1	-134.4 (4)	C1—N3—C11—C12	130.6 (4)
C6—N3—C1—N2	-144.9 (4)	C6—N3—C11—C12	-40.2(5)
C11—N3—C1—N2	44.4 (6)	C10—C11—C12—C8	-40.5 (5)
C1—N1—C2—C3	-2.7 (5)	N3—C11—C12—C8	72.9 (5)
O1—N1—C2—C3	176.9 (3)	C9—C8—C12—C11	39.0 (5)
N1—C2—C3—N2	2.6 (4)	C7—C8—C12—C11	-71.9 (5)
C1—N2—C3—C2	-1.8 (5)		

Hydrogen-bond geometry (Å, °)

				data reports
C5—H5 <i>A</i> …F5 ^{iv}	0.98	2.53	3.134 (11)	120
C5—H5 A ···F5 A ^{iv}	0.98	2.34	3.02 (2)	125

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) -*x*+2, -*y*+1, -*z*+1; (iv) -*x*+3, -*y*, -*z*+1.