IUCrData ISSN 2414-3146

Received 14 September 2016
Accepted 15 September 2016

Edited by P. C. Healy, Griffith University, Australia

Keywords: crystal structure; picolinamide; dicyanoethene; hydrogen bonding.

CCDC reference: 1504520

Structural data: full structural data are available from iucrdata.iucr.org

(E)-N, N^{\prime}-(1,2-Dicyanoethene-1,2-diyl)dipicolinamide

Maciej Posel ${ }^{\text {a }}$ and Helen Stoeckli-Evans ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Institute of Chemistry, University of Neuchâtel, Av de Bellevaux 51, CH-2000 Neuchâtel, Switzerland, and ${ }^{\mathbf{b}}$ Institute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland. *Correspondence e-mail: helen.stoeckli-evans@unine.ch

The whole molecule of the title dicyanoethene derivative, $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{2}$, is generated by inversion symmetry. The conformation about the central $\mathrm{C}=\mathrm{C}$ bond, which is situated about the inversion center, is E. There are short intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ contacts present and the molecule is slightly twisted, with the plane of the amide $\mathrm{C}(=\mathrm{O}) \mathrm{N}$ group being inclined to the pyridine ring by $10.6(4)^{\circ}$, and by $20.2(4)^{\circ}$ to the plane of the dicyanoethene unit $(\mathrm{N} \equiv \mathrm{C}-$ $\mathrm{C}=\mathrm{C}-\mathrm{C} \equiv \mathrm{N}$). In the crystal, molecules are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, forming sheets parallel to (1 $\overline{2} 1$), enclosing $R_{2}^{2}(10), R_{2}^{2}(22)$ and $R_{4}^{4}(22)$ ring motifs.

Chemical scheme

Structure description

When synthesizing 2,3-bis(2-pyridyl)-5,6-dicyanopyrazine, whose structure and an alternative synthesis have been described (Du et al., 2001), an orange-brown precipitate was formed. This precipitate was recrystallized from a mixture of solvents (see below) and found to be the title compound. From the filtrate, colourless crystals of 2,3-bis(2-pyridyl)-5,6-dicyanopyrazine were obtained.

The whole molecule of the title dicyanoethene derivative, Fig. 1, is generated by inversion symmetry. The conformation about the central $\mathrm{C} 7=\mathrm{C} 7^{\mathrm{i}}$ bond [symmetry code: (i) $-x+1,-y+1,-z+1]$, situated about the inversion center, is E. There are short intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ contacts present and the molecule is slightly twisted, with the plane of the amide $\mathrm{C}(=\mathrm{O}) \mathrm{N}$ group being inclined to the pyridine ring by $10.6(4)^{\circ}$, and by $20.2(4)^{\circ}$ to the plane of the dicyanoethene unit $(N \equiv \mathrm{C}-\mathrm{C}=\mathrm{C}-\mathrm{C} \equiv \mathrm{N})$.

In the crystal, molecules are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, forming sheets parallel to ($1 \overline{2} 1$), enclosing $R_{2}^{2}(10), R_{2}^{2}(22)$ and $R_{4}^{4}(22)$ ring motifs (Table 1 and Fig. 2).

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 N \cdots \mathrm{~N} 1$	$0.86(3)$	$2.23(3)$	$2.671(3)$	$111(3)$
C $2-\mathrm{H} 2 \cdots \mathrm{~N} 3^{\mathrm{i}}$	0.93	2.61	$3.354(4)$	138
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O}^{\mathrm{ii}}$	0.93	2.51	$3.274(4)$	140

Symmetry codes: (i) $x-1, y-1, z-1$; (ii) $-x+2,-y+1,-z$.

Synthesis and crystallization

In a round-bottomed flask outfitted with a reflux condenser, $9.3663 \mathrm{~g}(0.03 \mathrm{~mol})$ of $2,2^{\prime}$-pyridyl were dissolved in 15 ml of dry n-butanol. A solution of $2.7026 \mathrm{~g}(0.025 \mathrm{~mol})$ of diaminomaleonitrile in 15 ml of dry n-butanol was then added at 333 K with stirring. The mixture was refluxed for 3 h . After stopping the reaction, the mixture was filtered to remove the orange-brown precipitate that had formed. This orangebrown precipitate was recrystallized from a mixture of methanol/acetonitrile/acetylacetone (3/3/1), which resulted in the formation of yellow needle-like crystals of the title compound on slow evaporation of the solvents (yield 2.5 g , 32%; m.p. > 360 K). From the filtrate, colourless crystals of 2,3-bis(2-pyridyl)-5,6-dicyanopyrazine were obtained on slow evaporation of the solvent n-butanol.

Figure 1
A view of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Unlabelled atoms are related to the labelled atoms by the inversionsymmetry operation $-x+1,-y+1,-z+1$.

Figure 2
A view along the normal to $(1 \overline{2} 1)$ of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1).

Table 2
Experimental details.

Crystal data Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
No. of measured, independent and
observed $[I>2 \sigma(I)]$ reflections $(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$
$\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{2}$
318.30

Triclinic, $P \overline{1}$
293
5.1939 (11), 8.0697 (17),
9.1482 (15)
106.819 (19), 96.077 (18), 92.804 (18)
363.69 (13)

1
Mo $K \alpha$
0.10
$0.72 \times 0.30 \times 0.30$

STOE-Siemens AED2, 4-circle
1281, 1281, 1196
0.595

Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
$0.073,0.155,1.40$
No. of reflections
1281
No. of parameters
114
H -atom treatment
H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\max }, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
$0.17,-0.17$

Computer programs: STADI4 and X-RED (Stoe \& Cie, 1997), SHELXS97 (Sheldrick, 2008), SHELXL2014/6 (Sheldrick, 2015), PLATON (Spek, 2009), Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

The mechanism for the synthesis of the title compound is unknown. However, Du et al. (2001) did note that 2,3-bis(2-pyridyl)-5,6-dicyanopyrazine is not stable when exposed to air for several months. Hence, we may postulate that the title compound may be formed by oxidation of 2,3-bis(2-pyridyl)-5,6-dicyanopyrazine.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH H atom was located in a difference Fourier map and freely refined. Only one equivalent of data was measured, hence $R_{\mathrm{int}}=0$.

Acknowledgements

We are grateful to the Swiss National Science Foundation and the University of Neuchâtel for financial support.

References

Du, M., Bu, X.-H., Liu, H. \& Leng, X.-B. (2001). Acta Cryst. C57, 201202.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Stoe \& Cie (1997). STADI4 and X-RED. Stoe \& Cie GmbH, Damstadt, Germany.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2016). 1, x161464 [doi:10.1107/S2414314616014644]

(E)-N, N^{\prime}-(1,2-Dicyanoethene-1,2-diyl)dipicolinamide

Maciej Posel and Helen Stoeckli-Evans

(E)-N, N^{\prime}-(1,2-Dicyanoethene-1,2-diyl)dipicolinamide

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{2}$
$M_{r}=318.30$
Triclinic, $P \overline{1}$
$a=5.1939$ (11) \AA
$b=8.0697$ (17) \AA
$c=9.1482(15) \AA$
$\alpha=106.819(19)^{\circ}$
$\beta=96.077(18)^{\circ}$
$\gamma=92.804(18)^{\circ}$
$V=363.69(13) \AA^{3}$

Data collection

STOE-Siemens AED2, 4-circle
diffractometer
Radiation source: fine-focus sealed tube
Plane graphite monochromator
$\omega / 2 \theta$ scans
1281 measured reflections
1281 independent reflections
1196 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.073$
$w R\left(F^{2}\right)=0.155$
$S=1.40$
1281 reflections
114 parameters
0 restraints
Hydrogen site location: mixed

$$
\begin{aligned}
& Z=1 \\
& F(000)=164 \\
& D_{\mathrm{x}}=1.444 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 18 \text { reflections } \\
& \theta=12.5-19.5^{\circ} \\
& \mu=0.10 \mathrm{~mm}^{-1} \\
& T=293 \mathrm{~K} \\
& \text { Needle, yellow } \\
& 0.72 \times 0.30 \times 0.30 \mathrm{~mm}
\end{aligned}
$$

$$
R_{\mathrm{int}}=0.0
$$

$$
\theta_{\max }=25.0^{\circ}, \theta_{\min }=2.7^{\circ}
$$

$$
h=-6 \rightarrow 6
$$

$$
k=-9 \rightarrow 9
$$

$$
l=0 \rightarrow 10
$$

3 standard reflections every 60 min intensity decay: 4\%

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$0.8969(4)$	$0.4716(3)$	$0.2158(2)$	$0.0663(7)$
N1	$0.3495(4)$	$0.1893(3)$	$0.0137(3)$	$0.0459(6)$
N2	$0.5113(4)$	$0.4118(3)$	$0.2910(3)$	$0.0440(6)$
H2N	$0.359(7)$	$0.360(4)$	$0.255(4)$	$0.069(10)^{*}$
N3	$0.9259(6)$	$0.7628(4)$	$0.5384(3)$	$0.0728(9)$
C1	$0.2632(5)$	$0.0829(4)$	$-0.1254(3)$	$0.0524(8)$
H1	0.1094	0.0137	-0.1371	0.063^{*}
C2	$0.3889(6)$	$0.0691(4)$	$-0.2533(3)$	$0.0573(8)$
H2	0.3210	-0.0075	-0.3483	0.069^{*}
C3	$0.6154(6)$	$0.1702(4)$	$-0.2379(3)$	$0.0573(8)$
H3	0.7030	0.1644	-0.3226	0.069^{*}
C4	$0.7115(6)$	$0.2807(4)$	$-0.0949(3)$	$0.0492(7)$
H4	0.8652	0.3506	-0.0807	0.059^{*}
C5	$0.5737(5)$	$0.2848(3)$	$0.0266(3)$	$0.0405(6)$
C6	$0.6791(5)$	$0.3986(4)$	$0.1837(3)$	$0.0441(7)$
C7	$0.5678(5)$	$0.5119(3)$	$0.4442(3)$	$0.0396(6)$
C8	$0.7738(5)$	$0.6490(4)$	$0.4874(3)$	$0.0473(7)$

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0450(12)$	$0.0910(17)$	$0.0489(13)$	$-0.0214(11)$	$0.0134(9)$	$0.0003(11)$
N1	$0.0381(12)$	$0.0477(13)$	$0.0495(14)$	$-0.0021(10)$	$0.0072(10)$	$0.0110(11)$
N2	$0.0359(12)$	$0.0535(14)$	$0.0370(13)$	$-0.0098(10)$	$0.0077(10)$	$0.0059(10)$
N3	$0.0664(18)$	$0.0739(19)$	$0.0645(18)$	$-0.0321(16)$	$0.0050(14)$	$0.0064(15)$
C1	$0.0429(16)$	$0.0514(17)$	$0.0549(19)$	$-0.0035(13)$	$-0.0033(13)$	$0.0077(14)$
C2	$0.0615(19)$	$0.0557(18)$	$0.0441(17)$	$0.0014(15)$	$-0.0043(14)$	$0.0027(14)$
C3	$0.0638(19)$	$0.067(2)$	$0.0387(16)$	$0.0033(16)$	$0.0120(14)$	$0.0109(14)$
C4	$0.0456(16)$	$0.0547(17)$	$0.0454(17)$	$-0.0026(13)$	$0.0110(12)$	$0.0110(13)$
C5	$0.0391(14)$	$0.0423(14)$	$0.0387(15)$	$0.0025(11)$	$0.0071(11)$	$0.0093(11)$
C6	$0.0383(14)$	$0.0499(16)$	$0.0437(16)$	$-0.0027(12)$	$0.0097(12)$	$0.0127(12)$
C7	$0.0335(13)$	$0.0436(15)$	$0.0394(15)$	$-0.0050(11)$	$0.0071(10)$	$0.0094(11)$
C8	$0.0426(15)$	$0.0563(17)$	$0.0391(15)$	$-0.0094(13)$	$0.0082(12)$	$0.0093(13)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 6$	$1.215(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.369(4)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.329(3)$	$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{~N} 1-\mathrm{C} 5$	$1.339(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.378(4)$
$\mathrm{N} 2-\mathrm{C} 6$	$1.365(3)$	$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{~N} 2-\mathrm{C} 7$	$1.392(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.378(4)$
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	$0.86(3)$	$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{~N} 3-\mathrm{C} 8$	$1.135(4)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.493(4)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.379(4)$	$\mathrm{C} 7-\mathrm{C} 7^{\mathrm{i}}$	$1.352(5)$
$\mathrm{C} 1-\mathrm{H} 1$	0.9300	$\mathrm{C} 7-\mathrm{C} 8$	$1.438(4)$

C1-N1-C5	116.4 (2)	C5-C4-C3	118.2 (3)
C6-N2-C7	124.1 (2)	C5-C4-H4	120.9
C6-N2-H2N	115 (2)	C3-C4-H4	120.9
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	121 (2)	N1-C5-C4	123.9 (3)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	123.7 (3)	N1-C5-C6	116.9 (2)
N1-C1-H1	118.1	C4-C5-C6	119.2 (2)
C2- $\mathrm{C} 1-\mathrm{H} 1$	118.1	O1-C6-N2	122.1 (3)
C3-C2-C1	118.8 (3)	O1-C6-C5	123.5 (2)
C3-C2-H2	120.6	N2-C6-C5	114.3 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.6	C7--C7-N2	122.5 (3)
C2-C3-C4	118.9 (3)	C7- ${ }^{\text {i }} 7-\mathrm{C} 8$	117.8 (3)
C2-C3-H3	120.5	N2-C7-C8	119.7 (2)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.5	N3-C8-C7	171.7 (3)
C5-N1-C1-C2	-1.0 (4)	C7-N2-C6-O1	1.8 (5)
N1-C1-C2-C3	-0.1(5)	C7-N2-C6-C5	-179.4 (2)
C1-C2-C3-C4	0.7 (5)	N1-C5-C6-O1	168.8 (3)
C2-C3-C4-C5	-0.2 (4)	C4-C5-C6-O1	-10.0 (4)
C1-N1-C5-C4	1.6 (4)	N1-C5-C6-N2	-10.0 (4)
C1-N1-C5-C6	-177.1 (2)	C4-C5-C6-N2	171.2 (3)
C3-C4-C5-N1	-1.0 (4)	C6-N2-C7- $\mathrm{C}^{\text {i }}$	-161.8 (3)
C3-C4-C5-C6	177.7 (3)	C6-N2-C7-C8	19.5 (4)

Symmetry code: (i) $-x+1,-y+1,-z+1$.

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 2 N \cdots \mathrm{~N} 1$	$0.86(3)$	$2.23(3)$	$2.671(3)$	$111(3)$
$\mathrm{C} 2 — \mathrm{H} 2 \cdots \mathrm{~N} 3^{\mathrm{ii}}$	0.93	2.61	$3.354(4)$	138
$\mathrm{C} 4 — \mathrm{H} 4 \cdots 1^{\text {iii }}$	0.93	2.51	$3.274(4)$	140

Symmetry codes: (ii) $x-1, y-1, z-1$; (iii) $-x+2,-y+1,-z$.

