

IUCrData

ISSN 2414-3146

Received 25 August 2016 Accepted 26 September 2016

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México

Keywords: crystal structure; phenylalanine hydroxylase inhibitor; zwitterion; hydrogen bonding; three-dimensional framework.

CCDC reference: 1506760

Structural data: full structural data are available from iucrdata.iucr.org

(S)-2-Azaniumyl-2-methyl-3-phenylpropanoate monohydrate

Isao Fujii*

School of Science, Tokai University, 4-1-1 Kitakaname, Hiratuka, Kanagawa 259-1292, Japan. *Correspondence e-mail: fujii@wing.ncc.u-tokai.ac.jp

The title compound, $C_{10}H_{13}NO_2 H_2O$, crystallizes in a zwitterionic form as a monohydrate, involving the propylbenzene group with a *trans* conformation. It is a non-natural amino acid, and has attracted attention as an inhibitor of phenylalanine hydroxylase. In the crystal, molecules are linked by $N-H\cdots O$ hydrogen bonds, forming C(5) chains along the *c*-axis direction. Two chains are linked by another $N-H\cdots O$ hydrogen bond, forming an $R_3^3(11)$ ring motif. Further $O-H\cdots O$ hydrogen bonds link these motifs *via* the water molecules, to form a three-dimensional framework.

Structure description

Solid-phase synthesis is now the accepted method to synthesize peptides, in which protected natural or non-natural amino acids are widely used; for example, 2-methyl-phenylalanine (MePhe), a non-natural amino acid. At first, it attracted attention as a substrate analogue and an inhibitor of phenylalanine hydroxylase (EC 1.14.16.1: phenylalanine 4-monooxygenase), related to phenylketonuria (PKU), a genetic disorder (Greengard *et al.*, 1976; Binek *et al.*, 1981). Despite the biological and pharmaceutical interest, only a few crystal structures for 2-methyl-substituted phenylalanine derivatives have been reported, for example (*R*)- α -MePheOMe·HCI·H₂O (QABCAX; Crisma *et al.*, 1997), (*RS*)- α -MeTyr (DMTYRS; Gaudestad *et al.*, 1976) or (*S*)- α -MeDOPA·1.5H₂O (COSGUM; Neuman *et al.*, 1984).

In the title compound (Fig. 1, CAS No. 23239–35-2 for the non-hydrated molecule), the molecule has a conformation like a cross, in which the propylbenzene group has a *trans* conformation [torsion angle C10–C2–C3–C4: $\tau = 167.9 (2)^{\circ}$]. A similar conformation is found in other 2-methyl-substituted amino acids, for example, *iso*Val monohydrate, CISNUP [$\tau = 177.0 (3)^{\circ}$; Butcher *et al.*, 2013] and DMTYRS [$\tau = -176.58 (1)^{\circ}$], while the *cis* conformation is observed in other cases, as in QABCAX. This slightly distorted

Figure 1

A view of the molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. The dashed line indicates the intermolecular $O-H\cdots O$ hydrogen bond (see Table 1, entry 3).

conformation is also comparable to that found in the crystal structures of phenylalanine derivatives, for example in L-Phe monohydrate (GOFWOP; Williams *et al.*, 2013).

In the crystal, molecules are linked by $N-H\cdots O$ hydrogen bonds, forming C(5) chains along the *c*-axis direction (Table 1, entry 1). Two chains are linked by another $N-H\cdots O$

Figure 2

A view of the crystal packing of the title compound. Dashed lines indicate the $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds (see Table 1).

Table 1	
Hydrogen-bond geon	netry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1C\cdots O2^{i}$	0.93 (3)	1.83 (3)	2.7642 (18)	175 (3)
$N1-H1B\cdotsO1^{ii}$	0.91(2)	1.99 (2)	2.8581 (18)	160.6 (19)
$O3-H11A\cdots O2$	0.87(2)	2.06 (2)	2.897 (2)	160 (3)
$O3-H11B\cdots O1^{iii}$	0.91(2)	1.92 (2)	2.825 (2)	178 (4)
$N1 - H1A \cdots O3^{iv}$	0.96 (3)	2.40 (3)	3.050 (2)	124.9 (18)

Symmetry codes: (i) x, y, z + 1; (ii) $-x + \frac{3}{2}, -y, z + \frac{1}{2}$; (iii) x - 1, y, z; (iv) x + 1, y, z + 1.

hydrogen bond, forming $R_3^3(11)$ rings, approximately parallel to the *bc* plane (Fig. 2). Further O-H···O and N-H···O hydrogen bonds link the layers of *R* rings *via* the water molecules, forming a three-dimensional framework (Table 1 and Fig. 3).

The methyl groups are surrounded by the hydrophilic planes and are arranged in a columnar structure (Fig. 3), similar to that of 2-MeAsp (NUPVUR; Fujii, 2015). The hydrophilic layers present a honeycomb arrangement, and are well separated from the hydrophobic layers along the *b*-axis direction (Fig. 3).

Synthesis and crystallization

The title compound was purchased from Nagase–Sangyo Co. Ltd. The absolute configuration could not be established by anomalous-dispersion effects. The *S* enantiomer has been chosen by referring to the sign of the known polarity in the synthetic procedure (Yamada *et al.*, 1969). Rod-like colourless crystals of the title compound were obtained by vapour-phase diffusion of an aqueous ethanol–chloroform solvent mixture at room temperature.

Figure 3

A view along the *c* axis of the crystal packing of the title compound. Dashed lines indicate the $O-H \cdots O$ and $N-H \cdots O$ hydrogen bonds (see Table 1).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The author thanks Tokai University for a research grant, which partially supported this work.

References

- Binek, P. A., Johnson, T. C. & Kelly, C. J. (1981). J. Neurochem. 36, 1476–1484.
- Butcher, R. J., Brewer, G., Burton, A. S. & Dworkin, J. P. (2013). Acta Cryst. E69, 01829–01830.
- Crisma, M., Valle, G., Polese, A., Formaggio, F., Toniolo, C. & Kamphuis, J. (1997). Z. Kristallogr. New Cryst. Struct. 212, 113–114.
- Enraf-Nonius (1994). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Fujii, I. (2015). Acta Cryst. E71, 0731-0732.
- Gaudestad, O., Mostad, A. & Romming, C. (1976). *Acta Chem. Scand.* Ser. B, **30**, 501–504.
- Greengard, O., Yoss, M. S. & Del Valle, J. A. (1976). Science, 192, 1007–1008.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Neuman, A., Gillier, H., Avenel, D. & Perret, G. (1984). Acta Cryst. C40, 2124–2126.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Table 2	
Experimen	tal details

Crystal data	
Chemical formula	$C_{10}H_{13}NO_2 \cdot H_2O$
$M_{ m r}$	197.23
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Temperature (K)	297
a, b, c (Å)	6.1146 (9), 28.3272 (10), 5.9614 (8)
$V(Å^3)$	1032.6 (2)
Ζ	4
Radiation type	Cu Kα
$\mu (\text{mm}^{-1})$	0.77
Crystal size (mm)	$0.4 \times 0.2 \times 0.2$
Data collection	
Diffractometer	Enraf-Nonius CAD-4-turbo
Absorption correction	ψ scan (North <i>et al.</i> , 1968)
$T_{\min}, \overline{T}_{\max}$	0.750, 0.860
No. of measured, independent and	1490, 1448, 1384
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.071
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.623
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.029, 0.082, 1.08
No. of reflections	1448
No. of parameters	149
No. of restraints	2
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm ~\AA}^{-3})$	0.16, -0.18

Computer programs: CAD-4 Software (Enraf-Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015),

Williams, P. A., Hughes, C. E., Buanz, A. B. M., Gaisford, S. & Harris, K. D. M. (2013). J. Phys. Chem. C, 117, 12136–12145.

Yamada, S.-I., Achiwa, K., Terashima, S., Mizuno, H., Takamura, N. & Legrand, M. (1969). *Chem. Pharm. Bull.* 17, 2608–2613.

full crystallographic data

IUCrData (2016). 1, x161516 [https://doi.org/10.1107/S2414314616015169]

(S)-2-Azaniumyl-2-methyl-3-phenylpropanoate monohydrate

Isao Fujii

(S)-2-Azaniumyl-2-methyl-3-phenylpropanoate monohydrate

Crystal data

 $C_{10}H_{13}NO_2 \cdot H_2O$ $M_r = 197.23$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 6.1146 (9) Å b = 28.3272 (10) Å c = 5.9614 (8) Å V = 1032.6 (2) Å³ Z = 4

Data collection

Enraf–Nonius CAD-4-turbo diffractometer Radiation source: Enraf–Nonius FR590 Graphite monochromator non–profiled $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.750, T_{\max} = 0.860$ 1490 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.082$ S = 1.081448 reflections 149 parameters 2 restraints 0 constraints Hydrogen site location: mixed F(000) = 424 $D_x = 1.269 \text{ Mg m}^{-3}$ Cu K\alpha radiation, \lambda = 1.54184 \u00e5 Cell parameters from 25 reflections $\theta = 28-35^{\circ}$ $\mu = 0.77 \text{ mm}^{-1}$ T = 297 KRod, colorless $0.4 \times 0.2 \times 0.2 \text{ mm}$

1448 independent reflections 1384 reflections with $I > 2\sigma(I)$ $R_{int} = 0.071$ $\theta_{max} = 73.9^{\circ}, \ \theta_{min} = 3.1^{\circ}$ $h = -1 \rightarrow 7$ $k = 0 \rightarrow 35$ $l = -7 \rightarrow 0$ 3 standard reflections every 60 min intensity decay: 1%

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0485P)^2 + 0.1286P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.16 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.18 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0047 (9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C10	0.2812 (3)	0.03959 (6)	0.5984 (3)	0.0381 (4)	
H10A	0.3235	0.0072	0.5798	0.057*	

H10B	0.1725	0.0476	0.4886	0.057*
H10C	0.222	0.0441	0.7461	0.057*
N1	0.6435 (2)	0.05862 (5)	0.7456 (2)	0.0301 (3)
O3	0.0250 (3)	0.09096 (7)	0.0372 (3)	0.0624 (4)
C1	0.5807 (3)	0.06044 (5)	0.3360 (2)	0.0280 (3)
C2	0.4804 (3)	0.07123 (5)	0.5680 (2)	0.0271 (3)
C3	0.4175 (3)	0.12352 (5)	0.5933 (3)	0.0343 (4)
H3A	0.3305	0.1327	0.4644	0.041*
H3B	0.3261	0.1269	0.7254	0.041*
C4	0.6074 (3)	0.15712 (5)	0.6137 (3)	0.0380 (4)
C5	0.7560 (4)	0.16373 (6)	0.4415 (4)	0.0473 (5)
Н5	0.7382	0.1473	0.3077	0.057*
C6	0.9312 (4)	0.19445 (7)	0.4654 (5)	0.0618 (6)
H6	1.0315	0.1979	0.3494	0.074*
C7	0.9564 (5)	0.21965 (8)	0.6600 (5)	0.0756 (8)
H7	1.0724	0.2407	0.6755	0.091*
C8	0.8094 (6)	0.21368 (8)	0.8318 (5)	0.0786 (8)
H8	0.8264	0.2307	0.9639	0.094*
C9	0.6365 (4)	0.18263 (7)	0.8105 (4)	0.0565 (6)
Н9	0.5389	0.1788	0.9287	0.068*
01	0.75798 (19)	0.03832 (4)	0.3320 (2)	0.0377 (3)
O2	0.4743 (2)	0.07410 (5)	0.16925 (18)	0.0402 (3)
H1A	0.778 (4)	0.0757 (8)	0.733 (4)	0.054 (6)*
H1B	0.683 (4)	0.0279 (8)	0.739 (3)	0.043 (5)*
H1C	0.579 (5)	0.0644 (7)	0.885 (4)	0.055 (6)*
H11A	0.158 (4)	0.0929 (12)	0.091 (6)	0.111 (12)*
H11B	-0.058 (6)	0.0735 (11)	0.131 (6)	0.124 (14)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C10	0.0367 (8)	0.0508 (8)	0.0267 (7)	-0.0065 (8)	0.0027 (7)	-0.0004 (7)
N1	0.0343 (7)	0.0354 (7)	0.0207 (6)	0.0039 (6)	-0.0012 (6)	0.0007 (5)
O3	0.0504 (9)	0.0922 (12)	0.0447 (8)	0.0064 (9)	0.0081 (8)	0.0098 (8)
C1	0.0313 (7)	0.0329 (7)	0.0199 (6)	-0.0011 (6)	0.0032 (7)	-0.0014 (5)
C2	0.0288 (8)	0.0352 (7)	0.0173 (6)	0.0033 (6)	0.0005 (6)	0.0003 (5)
C3	0.0356 (8)	0.0386 (7)	0.0286 (7)	0.0082 (7)	0.0030 (7)	-0.0002 (6)
C4	0.0464 (9)	0.0305 (7)	0.0371 (8)	0.0069 (7)	-0.0009 (8)	0.0029 (6)
C5	0.0531 (11)	0.0382 (8)	0.0507 (10)	0.0007 (8)	0.0072 (11)	0.0034 (8)
C6	0.0539 (12)	0.0495 (10)	0.0819 (16)	-0.0035 (10)	0.0101 (14)	0.0158 (10)
C7	0.0731 (16)	0.0520 (11)	0.102 (2)	-0.0188 (12)	-0.0224 (19)	0.0098 (13)
C8	0.108 (2)	0.0584 (12)	0.0692 (15)	-0.0206 (15)	-0.0236 (19)	-0.0094 (12)
C9	0.0775 (15)	0.0477 (9)	0.0443 (10)	-0.0044 (11)	-0.0012 (13)	-0.0067 (8)
O1	0.0375 (6)	0.0449 (6)	0.0306 (5)	0.0102 (5)	0.0062 (6)	-0.0029 (5)
02	0.0383 (7)	0.0628 (7)	0.0194 (5)	0.0065 (6)	0.0007 (5)	0.0011 (5)

Geometric parameters (Å, °)

С10—С2	1.523 (2)	C3—C4	1.506 (3)
C10—H10A	0.96	С3—НЗА	0.97
C10—H10B	0.96	С3—Н3В	0.97
C10—H10C	0.96	C4—C5	1.383 (3)
N1—C2	1.4983 (19)	C4—C9	1.389 (2)
N1—H1A	0.96 (3)	C5—C6	1.388 (3)
N1—H1B	0.91 (2)	С5—Н5	0.93
N1—H1C	0.93 (3)	C6—C7	1.371 (4)
O3—H11A	0.87 (2)	С6—Н6	0.93
O3—H11B	0.91 (2)	C7—C8	1.373 (4)
C1—O2	1.2497 (19)	С7—Н7	0.93
C1—O1	1.252 (2)	C8—C9	1.381 (4)
C1—C2	1.5435 (19)	C8—H8	0.93
C2—C3	1.538 (2)	С9—Н9	0.93
C2C10H10A	109.5	С4—С3—НЗА	108.5
C2-C10-H10B	109.5	С2—С3—НЗА	108.5
H10A—C10—H10B	109.5	C4—C3—H3B	108.5
C2-C10-H10C	109.5	C2—C3—H3B	108.5
H10A—C10—H10C	109.5	НЗА—СЗ—НЗВ	107.5
H10B—C10—H10C	109.5	C5—C4—C9	118.15 (19)
C2—N1—H1A	113.3 (14)	C5—C4—C3	122.14 (15)
C2—N1—H1B	112.2 (14)	C9—C4—C3	119.71 (17)
H1A—N1—H1B	104.6 (19)	C4—C5—C6	121.1 (2)
C2—N1—H1C	107.7 (16)	C4—C5—H5	119.5
H1A—N1—H1C	110 (2)	С6—С5—Н5	119.5
H1B—N1—H1C	108.8 (19)	C7—C6—C5	120.0 (2)
H11A—O3—H11B	109 (3)	С7—С6—Н6	120
O2—C1—O1	126.21 (14)	С5—С6—Н6	120
O2—C1—C2	116.37 (13)	C6—C7—C8	119.5 (2)
O1—C1—C2	117.41 (13)	С6—С7—Н7	120.2
N1-C2-C10	107.93 (12)	С8—С7—Н7	120.2
N1—C2—C3	109.06 (12)	C7—C8—C9	120.7 (2)
C10—C2—C3	110.82 (14)	С7—С8—Н8	119.6
N1—C2—C1	108.74 (12)	С9—С8—Н8	119.6
C10-C2-C1	107.95 (12)	C8—C9—C4	120.5 (2)
C3—C2—C1	112.22 (12)	С8—С9—Н9	119.8
C4—C3—C2	115.10 (14)	С4—С9—Н9	119.8

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
N1—H1C···O2 ⁱ	0.93 (3)	1.83 (3)	2.7642 (18)	175 (3)
N1—H1 <i>B</i> ···O1 ⁱⁱ	0.91 (2)	1.99 (2)	2.8581 (18)	160.6 (19)
O3—H11A···O2	0.87 (2)	2.06 (2)	2.897 (2)	160 (3)
O3—H11 <i>B</i> …O1 ⁱⁱⁱ	0.91 (2)	1.92 (2)	2.825 (2)	178 (4)

				data reports
C10—H10 <i>C</i> ···O3 ⁱ	0.96	2.5	3.378 (2)	153
N1—H1 <i>A</i> ···O3 ^{iv}	0.96 (3)	2.40 (3)	3.050 (2)	124.9 (18)

Symmetry codes: (i) *x*, *y*, *z*+1; (ii) –*x*+3/2, –*y*, *z*+1/2; (iii) *x*-1, *y*, *z*; (iv) *x*+1, *y*, *z*+1.