ISSN 2414-3146

Received 20 October 2016
Accepted 20 October 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; dithiolethione derivatives; sulfur organic compounds; heterocyclic compounds.

CCDC reference: 1510917

Structural data: full structural data are available from iucrdata.iucr.org

3H-1,2-Benzodithiole-3-thione

Khaled Boukebbous, ${ }^{\text {a* El Adoui Laifa }}{ }^{\text {a }}$ and Aimery De Mallmann ${ }^{\text {b }}$

 ${ }^{\text {b }}$ C2P2 (CNRS-UMR 5265), COMS group, Lyon 1 University, ESCPE Lyon, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69626, France. *Correspondence e-mail: boukebbous.khaled@gmail.com

The almost planar (r.m.s. deviation $=0.034 \AA$) title compound, $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{~S}_{3}$, was synthesized by reacting 2,2-dithiodibenzoic acid with phosphorus pentasulfide in xylene solution. In the crystal, short S...S [3.3727 (14), 3.3765 (13) and 3.4284 (13) \AA] contacts and aromatic $\pi-\pi$ stacking [shortest centroid-centroid separation $=3.618$ (2) \AA] are observed.

Structure description

The title compound belongs to the 1,2-dithiole-3-thione family, which has attracted recent interest because of the bioactive properties and potential applications of its members (Li et al., 2016; Russell et al., 2015).

The title compound is composed of a benzene ring fused with a five-membered ring containing two S atoms and a thione functional group (Fig. 1). The geometry of the molecule is almost planar (r.m.s. deviation $=0.034 \AA$), with bond lengths of 2.064 (1), 1.751 (3), 1.732 (3) and 1.654 (4) \AA for S1-S2, C5-S1, C3-S2 and C3-S10, respectively. Furthermore, bond angles of 93.62 (12) and 98.24 (12) ${ }^{\circ}$ are observed for $\mathrm{C} 5-\mathrm{S} 1-$ S2 and S1-S2-C3, respectively. The S2-C3-C4 angle [113.5 (2) ${ }^{\circ}$] deviates from the expected value of 120° for a $\mathrm{Csp}{ }^{2}$ atom $(\mathrm{C} 3=\mathrm{S} 10)$; similarly, minor deviations of -3° are observed for the angles $\mathrm{S} 1-\mathrm{C} 5-\mathrm{C} 4$ and $\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$ from the expected value of 120° (C4=C5).

In the crystal, short $\mathrm{S} \cdots \mathrm{S}$ [3.3727 (14), 3.3765 (13) and 3.4284 (13) \AA) contacts and aromatic $\pi-\pi$ stacking [shortest centroid-centroid separation $=3.618$ (2) \AA] are observed (Figs. 2 and 3).

Figure 1

The title compound, with displacement ellipsoids drawn at the 50% probability level.

Synthesis and crystallization

The synthesis of 3 H -1,2-benzodithiole-3-thione was based on a previously reported method (Klingsberg \& Schreiber, 1962). To a xylene solution (150 ml) of 2,2-dithiodibenzoic acid (10 g , 0.033 mol) was added phosphorus pentasulfide (10 g , 0.04 mol) dissolved in xylene. The mixture was stirred for 1 h

Figure 2
The crystal packing of the title compound, with displacement ellipsoids drawn at the 50% probability level. Inversion centres at $[0,0,0]$ and $[1 / 4,1 /$ $4,0]$ with symmetry operations of $(-x,-y,-z)$ and $\left(\frac{1}{2}-x, \frac{1}{2}-y,-z\right)$, respectively, are shown as orange dots. Rotation and screw axes in the [010] direction at $(0, y, 1 / 4)$ and $(1 / 4, y, 1 / 4)$ with symmetry operations of ($-x, y, \frac{1}{2}-z$) and ($\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$), respectively, are shown as purple lines.

Table 1
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{~S}_{3}$
$M_{\text {r }}$	184.28
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	150
$a, b, c(\AA)$	$\begin{aligned} & 13.1921 \text { (9), 7.5999 (5), } \\ & 15.2507(11) \end{aligned}$
$\beta\left({ }^{\circ}\right)$	105.223 (7)
$V\left(\AA^{3}\right)$	1475.36 (18)
Z	8
Radiation type	Mo K α
$\mu\left(\mathrm{mm}^{-1}\right)$	0.91
Crystal size (mm)	$0.37 \times 0.16 \times 0.14$
Data collection	
Diffractometer	Oxford Diffraction Xcalibur Atlas Gemini ultra
Absorption correction	Multi-scan [empirical absorption correction using spherical harmonics (Clark \& Reid, 1995)]
$T_{\text {min }}, T_{\text {max }}$	0.602, 0.815
No. of measured, independent and observed $[I>2.0 \sigma(I)$] reflections	17502, 1969, 1784
$R_{\text {int }}$	0.070
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.696
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.059, 0.174, 1.04
No. of reflections	1965
No. of parameters	91
H -atom treatment	H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.80, -0.67

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SIR97 (Altomare et al., 1999), CRYSTALS (Betteridge et al., 2003) and CAMERON (Watkin et al., 1996).
under reflux. The orange precipitate which formed was washed with distilled water and cold ethanol at 273 K successively and dried at room temperature for several hours. The recrystallization process was performed from toluene solution and red plates in a yield of 80% were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The H atoms were initially refined

Figure 3
A view along the c axis of the packing. The shortest van der Waals interactions are shown as dashed blue lines.
with soft restraints on the bond lengths and angles to regularize their geometry $(\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$ and $\mathrm{N}-\mathrm{H}=0.86-$ $0.89 \AA$) and $U_{\text {iso }}(\mathrm{H})$ values (in the range 1.2-1.5 times $U_{\text {eq }}$ of the parent atom), after which the positions were refined with riding constraints.

Acknowledgements

We are grateful to The French National Center for Scientific Research (CNRS) for financial support.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Clark, R. C. \& Reid, J. S. (1995). Acta Cryst. A51, 887-897.
Klingsberg, E. \& Schreiber, A. M. (1962). J. Am. Chem. Soc. 84, 29412944.

Li, K. R., Yang, S. Q., Gong, Y. Q., Yang, H., Li, X. M., Zhao, Y. X., Yao, J., Jiang, Q. \& Cao, C. (2016). Sci. Rep. 6, 13.
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.
Russell, G. K., Gupta, R. C. \& Vadhanam, M. V. (2015). Mutat. Res./ Fundam. Mol. Mech. Mutagen. 774, 25-32.
Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

full crystallographic data

IUCrData (2016). 1, x161688 [https://doi.org/10.1107/S2414314616016886]

3H-1,2-Benzodithiole-3-thione

Khaled Boukebbous, El Adoui Laifa and Aimery De Mallmann

(I)

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{~S}_{3}$
$M_{r}=184.28$
Monoclinic, $C 2 / c$
Hall symbol: -C 2yc
$a=13.1921$ (9) \AA
$b=7.5999$ (5) \AA
$c=15.2507$ (11) \AA
$\beta=105.223$ (7) ${ }^{\circ}$
$V=1475.36(18) \AA^{3}$
$Z=8$

Data collection

Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source
Graphite monochromator
Detector resolution: 10.4685 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
Empirical absorption correction using spherical harmonics, (Clark \& Reid, 1995)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.174$
$S=1.04$
1965 reflections
91 parameters
0 restraints
$F(000)=752$
$D_{\mathrm{x}}=1.659 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 16526 reflections
$\theta=3.4-29.4^{\circ}$
$\mu=0.91 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Plate, red
$0.37 \times 0.16 \times 0.14 \mathrm{~mm}$

$$
\begin{aligned}
& T_{\min }=0.602, T_{\max }=0.815 \\
& 17502 \text { measured reflections } \\
& 1969 \text { independent reflections } \\
& 1784 \text { reflections with } I>2.0 \sigma(I) \\
& R_{\text {int }}=0.070 \\
& \theta_{\max }=29.6^{\circ}, \theta_{\min }=3.1^{\circ} \\
& h=-17 \rightarrow 18 \\
& k=-10 \rightarrow 10 \\
& l=-20 \rightarrow 20
\end{aligned}
$$

> Primary atom site location: structure-invariant direct methods
> Hydrogen site location: difference Fourier map
> H-atom parameters constrained
> Method = Modified Sheldrick $w=1 /\left[\sigma^{2}\left(F^{2}\right)+(\right.$ $\left.0.09 P)^{2}+10.33 P\right]$,
> where $P=\left(\max \left(F_{0}^{2}, 0\right)+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.0003912$
> $\Delta \rho_{\max }=0.80 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.67$ e \AA^{-3}

Special details
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier \& Glazer, 1986) with a nominal stability of 0.1 K .

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
S1	$0.58588(7)$	$0.30591(11)$	$0.64939(6)$	0.0267
S2	$0.71762(6)$	$0.15998(11)$	$0.71004(6)$	0.0256
C3	$0.7343(3)$	$0.0566(4)$	$0.6136(2)$	0.0236
C4	$0.6570(3)$	$0.1061(4)$	$0.5317(2)$	0.0227
C5	$0.5785(3)$	$0.2235(4)$	$0.5407(2)$	0.0234
C6	$0.4972(3)$	$0.2718(5)$	$0.4651(2)$	0.0272
C7	$0.4986(3)$	$0.2065(5)$	$0.3811(3)$	0.0310
C8	$0.5770(3)$	$0.0912(5)$	$0.3711(2)$	0.0304
C9	$0.6559(3)$	$0.0407(4)$	$0.4456(2)$	0.0248
S10	$0.83218(7)$	$-0.08475(12)$	$0.62490(6)$	0.0310
H91	0.7081	-0.0376	0.4393	0.0301^{*}
H81	0.5773	0.0501	0.3136	0.0362^{*}
H71	0.4450	0.2388	0.3300	0.0373^{*}
H61	0.4433	0.3466	0.4714	0.0335^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0287(4)$	$0.0234(4)$	$0.0270(4)$	$0.0048(3)$	$0.0053(3)$	$-0.0032(3)$
S2	$0.0261(4)$	$0.0260(4)$	$0.0238(4)$	$0.0021(3)$	$0.0049(3)$	$-0.0008(3)$
C3	$0.0255(15)$	$0.0216(14)$	$0.0255(15)$	$-0.0018(12)$	$0.0101(12)$	$0.0000(11)$
C4	$0.0284(15)$	$0.0155(13)$	$0.0247(15)$	$-0.0022(11)$	$0.0075(12)$	$0.0000(11)$
C5	$0.0273(15)$	$0.0174(14)$	$0.0252(15)$	$-0.0007(11)$	$0.0062(12)$	$-0.0024(11)$
C6	$0.0274(16)$	$0.0236(16)$	$0.0290(16)$	$0.0032(12)$	$0.0046(13)$	$0.0017(12)$
C7	$0.0323(18)$	$0.0271(17)$	$0.0297(17)$	$-0.0013(14)$	$0.0015(13)$	$0.0022(13)$
C8	$0.0389(19)$	$0.0250(16)$	$0.0273(16)$	$-0.0036(14)$	$0.0088(14)$	$-0.0023(13)$
C9	$0.0288(16)$	$0.0190(14)$	$0.0281(15)$	$-0.0013(12)$	$0.0101(12)$	$-0.0008(12)$
S10	$0.0310(5)$	$0.0303(5)$	$0.0329(5)$	$0.0098(3)$	$0.0105(4)$	$0.0044(3)$

Geometric parameters (\AA, ${ }^{\circ}$)

S1-S2	2.0644 (12)	C6-C7	1.379 (5)
S1-C5	1.751 (3)	C6-H61	0.935
S2-C3	1.731 (3)	C7-C8	1.394 (5)
C3-C4	1.440 (5)	C7-H71	0.937
C3-S10	1.653 (3)	C8-C9	1.379 (5)
$\mathrm{C} 4-\mathrm{C} 5$	1.401 (5)	C8-H81	0.932
C4-C9	1.401 (5)	C9-H91	0.934
C5-C6	1.401 (5)		
S2-S1-C5	93.62 (12)	C5-C6-H61	120.9
S1-S2-C3	98.24 (12)	C7-C6-H61	120.6
S2-C3-C4	113.5 (2)	C6-C7-C8	121.3 (3)
S2-C3-S10	118.5 (2)	C6-C7-H71	119.2
C4-C3-S10	128.0 (3)	C8-C7-H71	119.5

$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$117.1(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 9$	$123.5(3)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 9$	$119.4(3)$
$\mathrm{S} 1-\mathrm{C} 5-\mathrm{C} 4$	$117.5(2)$
$\mathrm{S} 1-\mathrm{C} 5-\mathrm{C} 6$	$121.7(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$120.8(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$118.4(3)$

$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$120.4(3)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 81$	120.1
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 81$	119.5
$\mathrm{C} 4-\mathrm{C} 9-\mathrm{C} 8$	$119.6(3)$
$\mathrm{C} 4-\mathrm{C} 9-\mathrm{H} 91$	119.7
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 91$	120.7

