ISSN 2414-3146

Received 25 October 2016 Accepted 13 November 2016

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México

Keywords: crystal structure; 1,2-dithiol-3-one; sulfur organic compounds; heterocyclic compounds.

CCDC reference: 1517056

Structural data: full structural data are available from iucrdata.iucr.org

4,5-Dichloro-3H-1,2-dithiol-3-one

Khaled Boukebbous,^a* El Adoui Laifa,^a Aimery De Mallmann^b and Mostafa Taoufik^b

^aDepartment of Chemistry, University of Constantine, BP 325, Route de Ain El Bey, Constantine 25017, Algeria, and ^bC2P2 (CNRS-UMR 5265), COMS group, Lyon 1 University, ESCPE Lyon, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69626, France. *Correspondence e-mail: boukebbous.khaled@gmail.com

The crystallization from an ethyl acetate solution of the title compound, also known as dichloro-1,2-dithiacyclopentenone, $C_3Cl_2OS_2$, leads to a monoclinic system with $P2_1/n$ space group. The molecule displays an almost planar geometry, with a torsion angle of $-2.1 (1)^\circ$ for the endocyclic C-C-S-S fragment. The S-S and C=O bond lengths are 2.0521 (8) and 1.212 (3) Å, respectively. The endocyclic S-C-C angle sustained by the carbonyl group, 110.94 (16)°, deviates from the expected value of 120° for an *sp*²-hybridized C atom. In the crystal, short S···S, S···Cl, S···O and Cl···Cl contacts are observed.

Structure description

The title compound belongs to a family of bioactive compounds (He *et al.*, 2004). Its crystallization from an ethyl acetate solution leads to a monoclinic system with $P2_1/n$ space group (Figs. 1 and 2). The molecule is almost planar, with torsion angles of -0.3 (3), 0.6 (3), -2.1 (1), -0.8 (2) and -0.6 (3)° for the Cl6–C5=C4–Cl7, Cl7–C4–C3=O8, C4–C3–S2–S1, C4=C5–S1–S2 and S1–C5=C4–C3 fragments, respectively. Bond lengths of 2.0521 (8), 1.728 (2), 1.785 (2), 1.696 (2), 1.707 (2), and 1.212 (3) Å, respectively, for the S1–S2, C5–S1, C3–S2, C5–Cl6, C4–Cl7 and C3=O8 bonds are observed; furthermore, values of 93.88 (8) and 97.60 (8)° for the C5–S1–S2 and S1–S2–C3 angles, respectively, are noted. The endocyclic angle at C3, 110.94 (16)°, deviates from the value of 120° expected for an sp^2 -hybridized carbon atom (C3=O8 bond); similarly, minor deviations (less than 2°) are observed for the angles S1–C5=C4 and C3–C4=C5 from the expected value of 120° for these sp^2 C atoms (C4=C5 bond).

In the crystal, short $S \cdots S$ [3.5929 (11) Å], $S \cdots Cl$ [3.4162 and 3.5219 (11) Å], $S \cdots O$ [3.153 (2) and 3.140 (2) Å] and $Cl \cdots Cl$ [3.3390 (11) Å] contacts are observed (Fig. 3).

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Synthesis and crystallization

A commercial sample (Matrix Scientific) of 4,5-dichloro-3*H*-1,2-dithiol-3-one was used. The crystallization was performed using an ethyl acetate solution with a slow evaporation process, affording suitable single crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

Figure 2

Crystal packing view of the title compound with displacement ellipsoids drawn at the 50% probability level. The inversion centre at [0,0,0] with symmetry operation (-x, -y, -z) is shown as orange dots. The twofold screw axis parallel to [010] at $[\frac{1}{4}, y, \frac{1}{4}]$ with symmetry operation $(\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z)$ is shown as purple lines. The glide plane perpendicular to [010] with glide component $(\frac{1}{2}, 0, \frac{1}{2})$ and symmetry operation $(\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z)$ is shown as light-blue planes.

Table 1	
Experimental details.	
Crystal data	
Chemical formula	$C_3Cl_2OS_2$
M _r	187.07
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	150
<i>a</i> , <i>b</i> , <i>c</i> (Å)	8.678 (2), 7.9332 (14), 8.7340 (18)
β (°)	98.62 (2)
$V(Å^3)$	594.5 (2)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	1.67
Crystal size (mm)	$0.51 \times 0.19 \times 0.15$
Data collection	
Diffractometer	Agilent Xcalibur, Atlas, Gemini ultra
Absorption correction	Analytical (<i>CrysAlis PRO</i> ; Rigaku OD, 2015)
T_{\min}, T_{\max}	0.603, 0.822
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	2973, 1377, 1228
R _{int}	0.036
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.675
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.032, 0.094, 0.99
No. of reflections	1373
No. of parameters	74
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.45, -0.41

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SIR97 (Altomare et al., 1999), CRYSTALS (Betteridge et al., 2003) and Mercury (Macrae et al., 2008).

Acknowledgements

We are grateful to The Centre National de la Recherche Scientifique (CNRS, France) for the financial support.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Figure 3

A view along the b axis showing the molecular packing. Displacement ellipsoids are drawn at the 50% probability level. Short interactions are shown as dashed blue lines.

- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. **36**, 1487.
- He, X., Reeve, A. M. E., Desai, U. R., Kellogg, G. E. & Reynolds, K. A. (2004). Antimicrob. Agents Chemother. 48, 3093–3102.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Rigaku OD (2015). CrysAlis PRO. Rigaku Americas Corporation, The Woodlands, Texas, USA.

full crystallographic data

IUCrData (2016). 1, x161820 [https://doi.org/10.1107/S2414314616018204]

4,5-Dichloro-3H-1,2-dithiol-3-one

Khaled Boukebbous, El Adoui Laifa, Aimery De Mallmann and Mostafa Taoufik

4,5-Dichloro-3H-1,2-dithiol-3-one

Crystal data

C₃Cl₂OS₂ $M_r = 187.07$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 8.678 (2) Å b = 7.9332 (14) Å c = 8.7340 (18) Å $\beta = 98.62$ (2)° V = 594.5 (2) Å³ Z = 4

Data collection

Agilent Xcalibur, Atlas, Gemini ultra diffractometer Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 10.4685 pixels mm⁻¹ ω scans Absorption correction: analytical (CrysAlis PRO; Rigaku OD, 2015)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.094$ S = 0.991373 reflections 74 parameters 0 restraints 0 constraints Primary atom site location: structure-invariant direct methods F(000) = 368 $D_x = 2.090 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \text{ Å} Cell parameters from 1441 reflections $\theta = 3.5-28.4^{\circ}$ $\mu = 1.67 \text{ mm}^{-1}$ T = 150 KPlate, light yellow $0.51 \times 0.19 \times 0.15 \text{ mm}$

 $T_{\min} = 0.603, T_{\max} = 0.822$ 2973 measured reflections 1377 independent reflections 1228 reflections with $I > 2.0\sigma(I)$ $R_{int} = 0.036$ $\theta_{\max} = 28.7^{\circ}, \theta_{\min} = 3.5^{\circ}$ $h = -6 \rightarrow 11$ $k = -10 \rightarrow 10$ $l = -11 \rightarrow 11$

Secondary atom site location: difference Fourier map [weight] = $1/[A_0*T_0(x) + A_1*T_1(x) \cdots + A_{n-1}]*T_{n-1}(x)]$ where A_i are Chebychev coefficients and x = F/Fmax; $w = [weight]*[1-(deltaF/6*sigmaF)^2]^2 A_i$ coefficient are: $0.248E + 04 \ 0.417E + 04 \ 0.267E$ $+ 04 \ 0.120E + 04 \ 299.$ ($\Delta/\sigma)_{max} = 0.0004321$ $\Delta\rho_{max} = 0.45 \ e \ A^{-3}$ $\Delta\rho_{min} = -0.41 \ e \ A^{-3}$ Extinction correction: Larson, Equation 22 Extinction coefficient: 17 (4)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat with a nominal stability of 0.1 K.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.65286 (6)	0.53082 (7)	0.38502 (6)	0.0173	
S2	0.59380 (7)	0.28367 (7)	0.33822 (7)	0.0182	
C3	0.4325 (2)	0.3208 (3)	0.1897 (2)	0.0161	
C4	0.4052 (2)	0.4996 (3)	0.1666 (2)	0.0145	
C5	0.5024 (2)	0.6089 (3)	0.2519 (2)	0.0145	
C16	0.48670 (7)	0.82139 (7)	0.23385 (7)	0.0207	
Cl7	0.25439 (6)	0.56383 (7)	0.03087 (6)	0.0195	
08	0.3614 (2)	0.2041 (2)	0.1230 (2)	0.0232	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0155 (3)	0.0155 (3)	0.0199 (3)	0.00018 (18)	-0.0002 (2)	-0.00018 (19)
S2	0.0196 (3)	0.0133 (3)	0.0210 (3)	0.00319 (19)	0.0008 (2)	0.00174 (19)
C3	0.0178 (10)	0.0132 (10)	0.0175 (10)	0.0016 (8)	0.0032 (8)	-0.0001 (8)
C4	0.0151 (9)	0.0133 (9)	0.0149 (10)	0.0020 (8)	0.0018 (8)	-0.0007 (8)
C5	0.0152 (9)	0.0131 (10)	0.0156 (10)	0.0022 (7)	0.0039 (8)	0.0008 (8)
Cl6	0.0220 (3)	0.0111 (3)	0.0280 (3)	-0.00152 (18)	0.0007 (2)	-0.00077 (19)
Cl7	0.0199 (3)	0.0157 (3)	0.0207 (3)	0.00089 (19)	-0.0038 (2)	0.00105 (19)
08	0.0283 (9)	0.0126 (8)	0.0270 (9)	-0.0034 (6)	-0.0018 (7)	-0.0025 (6)

Geometric parameters (Å, °)

<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	2.0521 (8)	C3—O8	1.212 (3)
S1—C5	1.728 (2)	C4—C5	1.353 (3)
S2—C3	1.785 (2)	C4—C17	1.707 (2)
C3—C4	1.447 (3)	C5—C16	1.696 (2)
S2—S1—C5	93.88 (8)	C3—C4—C17	118.83 (17)
S1—S2—C3	97.60 (8)	C5—C4—Cl7	122.75 (18)
S2—C3—C4	110.94 (16)	S1—C5—C4	119.11 (18)
S2—C3—O8	120.71 (17)	S1—C5—Cl6	117.45 (13)
C4—C3—O8	128.3 (2)	C4—C5—Cl6	123.43 (17)
C3—C4—C5	118.4 (2)		